The Mechanical Characteristics of the Neck Zone for a PEMFC Stack
Abstract
:1. Introduction
2. Mathematical Model
2.1. Mechanical Control Equation
2.2. Sealing Fundamental Principle
2.3. Invasion Rate
3. Calculation Model
3.1. Structure of the PEMFC Neck Zone
3.2. Model and Assumptions
3.3. Geometry and Material Properties
4. Results
4.1. Upper Surface of the Gasket and Lower Surface of the Bipolar Plate
4.2. Lower Surface of the Gasket and Upper Surface of the Frame
5. Discussion
5.1. Invasion Rate Results
5.2. Sealing Performance Results
6. Conclusions
- The stress distribution of the MEA frame in the neck zone is extremely uneven. Different MEA frame materials exhibited different effects on the mechanical characteristics of the neck zone. With the decrease in the elastic modulus and thickness of the frame materials, the stress distribution and deformation in the neck zone become more uneven and larger, respectively. The lower surface of the bipolar plate and the upper surface of the sealing ring face (Path-2) are confronted with more serious mechanical problems. The difference between the maximum and minimum stress values reached 1.5 MPa even with a 0.1 mm commercial PEN frame, and the maximum shape variable was up to 0.11 mm for the 0.1 mm PTFE MEA frame, which was responsible for the generation of the leakage point.
- When the MEA frame had a lower elastic modulus and thickness, the invasion rate sharply increased. The 0.1 mm PTFE frame presented the highest invasion, which was up to 32.4%, greatly blocking water–gas transport.
- If inappropriate frame material is adopted, the neck zone will suffer from severe sealing problems. The 0.1 mm PTFE frame displayed the worst sealing effect, and up to 15.6% of the position could not meet the sealing standard. Therefore, the selection of MEA frame materials is of great importance.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, W.T.; Hu, Z.Y.; Huang, H.Y.; Xu, L.F.; Fang, C.; Li, J.Q.; Wang, C.; Ouyang, M.G. All-condition economy evaluation method for fuel cell systems: System efficiency contour map. eTransportation 2021, 9, 100127. [Google Scholar] [CrossRef]
- Wu, C.W.; Zhang, W.; Han, X.; Zhang, Y.X.; Ma, G.J. A systematic review for structure optimization and clamping load design of large proton exchange membrane fuel cell stack. J. Power Sources 2020, 476, 228724. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, C.; Sun, F.M.; Fan, J.T.; Li, H.; Wang, H.J. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation 2020, 5, 100075. [Google Scholar] [CrossRef]
- Yu, Y.; Zhan, Z.; He, L.; Yang, X.; Wan, X.; Sui, P.-C.; Pan, M. Effects of Distribution Zone Design on Flow Uniformity and Pressure Drop in PEMFC. J. Electrochem. Soc. 2021, 168, 094505. [Google Scholar] [CrossRef]
- Lin, P.; Zhou, P.; Wu, C.W. A high efficient assembly technique for large proton exchange membrane fuel cell stacks: Part II. Applications. J. Power Sources 2010, 195, 1383–1392. [Google Scholar] [CrossRef]
- Qiu, D.; Liang, P.; Peng, L.; Yi, P.; Lai, X.; Ni, J. Material behavior of rubber sealing for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2020, 45, 5465–5473. [Google Scholar] [CrossRef]
- Ye, D.H.; Zhan, Z.G. A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells. J. Power Sources 2013, 231, 285–292. [Google Scholar] [CrossRef]
- Gatto, I.; Urbani, F.; Giacoppo, G.; Barbera, O.; Passalacqua, E. Influence of the bolt torque on PEFC performance with different gasket materials. Int. J. Hydrog. Energy 2011, 36, 13043–13050. [Google Scholar] [CrossRef]
- Liang, P.; Qiu, D.; Peng, L.; Yi, P.; Lai, X.; Ni, J. Structure failure of the sealing in the assembly process for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2017, 42, 10217–10227. [Google Scholar] [CrossRef]
- Ye, D.H.; Zhan, Z.G.; Lee, Y.J.; Tu, Z.K.; Zhang, Y.; Pan, M. Effects of Frame Materials and Structures on Stress Concentration of Membrane Electrode Assembly of PEMFCs. Fuel Cells 2013, 13, 1205–1212. [Google Scholar] [CrossRef]
- Qiu, D.; Yi, P.; Peng, L.; Lai, X. Channel Dimensional Error Effect of Stamped Bipolar Plates on the Characteristics of Gas Diffusion Layer Contact Pressure for Proton Exchange Membrane Fuel Cell Stacks. J. Fuel Cell Sci. Technol. 2015, 12, 041002. [Google Scholar] [CrossRef]
- Shi, L.; Xu, S.; Liu, J. Influences of assembly pressure and flow channel size on performances of proton exchange membrane fuel cells based on a multi-model. Int. J. Hydrog. Energy 2022, 47, 7902–7914. [Google Scholar] [CrossRef]
- Qiu, D.; Peng, L.; Liang, P.; Yi, P.; Lai, X. Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells. Energy 2018, 165, 210–222. [Google Scholar] [CrossRef]
- Kang, H.; Zhan, Z.G.; Yang, X.F.; Zhang, Z.B.; Shi, J.R.; Jiang, P.X.; Pan, M. Numerical Study on the Stress Concentration Phenomenon in the Membranes of PEMFCs in an Assembled State. J. Energy Eng. 2020, 146, 04020053. [Google Scholar] [CrossRef]
- Lin, P.; Zhou, P.; Wu, C.W. A high efficient assembly technique for large PEMFC stacks Part I. Theory. J. Power Sources 2009, 194, 381–390. [Google Scholar] [CrossRef]
- Lee, S.J.; Hsu, C.D.; Huang, C.H. Analyses of the fuel cell stack assembly pressure. J. Power Sources 2005, 145, 353–361. [Google Scholar] [CrossRef]
- Junro, N. Fuel Cell Stack. Patent CN110277567A, 24 September 2019. [Google Scholar]
- Goebel, S.G.; Beutel, M.J.; Rock, J.A. Diffusion Medium for Seal Support in Improved Fuel Cell Design. U.S. Patent 7972741B2, 29 November 2007. [Google Scholar]
- Jeffrey, A.R.; Harald, S.; Kim, R.G. Stamped Full Cell Bipolar Plate. U.S. Patent 7781087B2, 24 August 2010. [Google Scholar]
- Masashi, S.; Yoshihito, K. Method for Producing Electrolyte Membrane ElectrodeL Assembly for Fuel Cells. Patent KR20090119675A, 19 November 2009. [Google Scholar]
- Zhang, Z.; Zhang, J.; Pan, T.; Liu, Y.; Yang, D. Finite element method modeling on sealant design of PEMFC metal bipolar plate. China Sci. 2017, 12, 1895–1901. [Google Scholar] [CrossRef]
- Liu, D.a.; Lai, X.; Ni, J.; Peng, L.; Lan, S.; Lin, Z. Robust design of assembly parameters on membrane electrode assembly pressure distribution. J. Power Sources 2007, 172, 760–767. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Han, C.; Zhang, H. Stress response and contact behavior of PEMFC during the assembly and working condition. Int. J. Hydrog. Energy 2021, 46, 30467–30478. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Qiu, D.K.; Peng, L.F.; Lai, X.M. Channel/rib patterns optimization of a proton exchange membrane fuel cell by combining down-the-channel performance model and genetic algorithm. Int. J. Heat Mass Transf. 2022, 183, 122235. [Google Scholar] [CrossRef]
- Cui, T.; Chao, Y.J.; Van Zee, J.W. Sealing force prediction of elastomeric seal material for PEM fuel cell under temperature cycling. Int. J. Hydrog. Energy 2014, 39, 1430–1438. [Google Scholar] [CrossRef]
- Alizadeh, E.; Barzegari, M.M.; Momenifar, M.; Ghadimi, M.; Saadat, S.H.M. Investigation of contact pressure distribution over the active area of PEM fuel cell stack. Int. J. Hydrog. Energy 2016, 41, 3062–3071. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y. Sealing performance and mechanical behavior of PEMFCs sealing system based on thermodynamic coupling. Int. J. Hydrog. Energy 2020, 45, 23480–23489. [Google Scholar] [CrossRef]
Component | Length, l (mm) | Width/Height, w (mm) |
---|---|---|
Frame | 45 | 0.3 |
Sealing ring | 1.5 | 0.5 |
Bipolar plate | 0.4 | 0.1 |
Neck zone | 0.8 | 0.4 |
Component | Modulus of Elasticity, E (MPa) | Poisson’s Ratio, V | Density, 𝜌 (kg m−3) |
---|---|---|---|
Gasket | 7.8 | 0.47 | 1000 |
Bipolar plate | 210,000 | 0.3 | 2160 |
PTFE frame | 200 | 0.25 | 1900 |
PEN frame | 800 | 0.38 | 1200 |
SER frame | 60,000 | 0.38 | 1200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhou, F.; Zhan, Z.; Tan, J.; Pan, M. The Mechanical Characteristics of the Neck Zone for a PEMFC Stack. Energies 2023, 16, 2038. https://doi.org/10.3390/en16042038
Zhang Z, Zhou F, Zhan Z, Tan J, Pan M. The Mechanical Characteristics of the Neck Zone for a PEMFC Stack. Energies. 2023; 16(4):2038. https://doi.org/10.3390/en16042038
Chicago/Turabian StyleZhang, Zhen, Fen Zhou, Zhigang Zhan, Jinting Tan, and Mu Pan. 2023. "The Mechanical Characteristics of the Neck Zone for a PEMFC Stack" Energies 16, no. 4: 2038. https://doi.org/10.3390/en16042038
APA StyleZhang, Z., Zhou, F., Zhan, Z., Tan, J., & Pan, M. (2023). The Mechanical Characteristics of the Neck Zone for a PEMFC Stack. Energies, 16(4), 2038. https://doi.org/10.3390/en16042038