Customised Multi-Energy Pricing: Model and Solutions
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Contributions
- A bilevel optimisation model is developed to formulate the novel customised pricing scheme for an energy retailer that manages multiple microgrids in the multi-energy market. In particular, a retailer’s profit maximisation problem is considered at the upper level. The energy management for each microgrid is detailed, and the operational cost minimisation is formulated at the lower level.
- The detailed energy management model for each microgrid equipped with energy converters (i.e., combined heat and power (CHP) and heat pump), electrical and thermal storage, RES (i.e., solar and wind) and DR programs (i.e., load curtailment and shifting) is formulated as a MILP program at the lower level. Specifically, load curtailment refers to the reduction in energy consumption, while in the load-shifting program, the electricity demand can be rescheduled and shifted to other scheduling hours.
- Three hybrid metaheuristic algorithms (i.e., PSO, GA and SA) combined with the conventional MILP program are developed to solve the proposed bilevel problem. The hybrid solution algorithms conquer the non-convexity of the lower level problems, which are proved difficult to solve with traditional mathematical methods, such as KKT-based solution methods. In numerical analyses, we test the performance of the three algorithms. The comparison between the customised and uniform pricing schemes is illustrated in detail. In addition, the effect of the rated capacity and power of electrical and thermal storage on the energy retailer’s pricing decisions, profit, and microgrids’ operational costs is thoroughly investigated.
1.4. Paper Organisation
2. Model Formulation
2.1. Bilevel MILP Model Overview
2.2. Customised Multi-Energy Pricing Problem Description
2.3. Follower-Side/Lower-Level Problem
2.3.1. Lower-Level Objective Function
2.3.2. CHP Operational Constraints
2.3.3. Heat Pump Operational Constraints
2.3.4. Electrical Storage (ES) Operational Constraints
2.3.5. Thermal Storage (TS) Operational Constraints
2.3.6. DR Programs Constraints
2.3.7. RES Constraints
2.3.8. Microgrid Electricity Exchange Constraints
2.3.9. Energy Balance Constraints
2.4. Leader-Side/Upper-Level Problem
3. Solution Methods
3.1. PSO-Based Algorithm
Algorithm 1 PSO-based algorithm. |
|
3.2. GA-Based Algorithm
Algorithm 2 GA-based algorithm. |
|
3.3. SA-Based Algorithm
Algorithm 3 SA-based algorithm. |
|
4. Numerical Results
4.1. Experimental Setup
4.2. Solution Algorithms Comparison
4.3. Customised and Uniform Multi-Energy Pricing Schemes
4.4. Effect of ES and TS Rated Capacity and Power
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations and Indices | |
RES | Renewable energy sources |
DR | Demand response |
PSO | Particle swarm optimisation |
GA | Genetic algorithm |
SA | Simulated annealing |
MILP | Mixed-integer linear program |
DERs | Distributed energy resources |
RTP | Real-time pricing |
TOU | Time of use |
EVs | Electric vehicles |
CVaR | Conditional value at risk |
EPEC | Equilibrium problem with equilibrium constraints |
IESP | Integrated energy service provider |
KKT | Karush–Kuhn–Tucker |
CHP | Combined heat and power |
ES, TS | Electrical storage, thermal storage |
LC, LS | Load curtailment, load shifting |
PV, WT | Photovoltaic, wind turbine |
i | Index of microgrids |
a | Index of households participating in load-shifting program |
t | Index of time periods |
Sets | |
Set of microgrids | |
Set of scheduling hours | |
Set of households participating in load-shifting program | |
Parameters | |
Proportion that the electricity price sold by the microgrid i back to the retailer against the retail price. | |
Operation and maintenance costs for CHP and heat pump in microgrid i. | |
Start-up and shut-down costs of CHP and heat pump in microgrid i. | |
Electrical and thermal storage costs. | |
Load curtailment cost of electricity, natural gas and heat in microgrid i. | |
Natural gas to electricity and electricity to heat conversion efficiency of the CHP in microgrid i. | |
Minimum and maximum electricity volume generated by the CHP in microgrid i. | |
Initial electricity volume and status of the CHP in microgrid i. | |
Ramp-up and ramp-down limits of the CHP in microgrid i. | |
Electricity to heat conversion efficiency of the Heat pump in microgrid i. | |
Minimum and maximum heat volume generated by the heat pump in microgrid i. | |
Initial heat volume and status of the heat pump in microgrid i. | |
Ramp-up and ramp-down limits of the heat pump in microgrid i. | |
Initial energy level of ES in microgrid i. | |
ES charging, discharging and self-discharging rate in microgrid i. | |
Minimum and maximum of the ES energy level in microgrid i. | |
Minimum and maximum of the ES charging and discharging volume in microgrid i. | |
Initial energy level of TS in microgrid i. | |
TS charging, discharging and self-discharging rate in microgrid i. | |
Minimum and maximum of the TS energy level in microgrid i. | |
Minimum and maximum of the TS charging and discharging volume in microgrid i. | |
Minimum and maximum electricity curtailment rate in microgrid i. | |
Minimum and maximum natural gas curtailment rate in microgrid i. | |
Minimum and maximum heat curtailment rate in microgrid i. | |
Shiftable load adjustable time window of the household a in microgrid i. | |
Start and stop time of the load-shifting program of the household a in microgrid i. | |
Minimum and maximum of the shiftable load of the household a in microgrid i. | |
Total electricity consumption of the household a in microgrid i during the load shifting program. | |
Minimum and maximum of the PV-generated electricity volume in microgrid i at time t. | |
Minimum and maximum of the wind turbine-generated electricity volume in microgrid i at time t. | |
Spinning reserve ratio. | |
Minimum and maximum of electricity volume that the microgrid i purchased from the retailer at time t. | |
Minimum and maximum of electricity volume that the microgrid i sold to the retailer at time t. | |
Total electricity and natural gas volume that the retailer purchased from the wholesale energy markets. | |
Minimum and maximum of retail electricity price for microgrid i. | |
Minimum and maximum of retail natural gas price for microgrid i. | |
Average retail electricity and natural gas price over the scheduling hours. | |
Variables | |
Electricity and natural gas volume that the microgrid i purchased from the retailer at time t. | |
Electricity volume that the microgrid i exports to the retailer at time t. | |
Retail electricity and natural gas price for the microgrid i at time t. | |
Electricity and heat volume generated by the CHP in microgrid i at time t. | |
Natural gas volume that consumed by the CHP in microgrid i at time t. | |
CHP operational, start-up and shut-down status in microgrid i at time t. | |
Electricity consumed and heat generated by the heat pump in microgrid i at time t. | |
Heat pump operational, start-up and shut-down status in microgrid i at time t. | |
ES energy level in microgrid i at time t. | |
ES charging and discharging volume in microgrid i at time t. | |
ES charging and discharging status in microgrid i at time t. | |
The final energy level of the ES in microgrid i. | |
TS energy level in microgrid i at time t. | |
TS charging and discharging volume in microgrid i at time t. | |
TS charging and discharging status in microgrid i at time t. | |
The final energy level of the TS in microgrid i. | |
Electricity, natural gas and heat curtailment rate in microgrid i at time t. | |
Operational status of the household a in microgrid i at time t. | |
Shiftable load of the household a in microgrid i at time t. | |
Electricity generated by PV and wind turbine in microgrid i at time t. | |
Electricity importing and exporting status in microgrid i at time t. |
Appendix A. Input Data
Time (h) | Microgrid 1 | Microgrid 2 | Microgrid 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Electricity (MWh) | Natural Gas (kcf) | Heat (MBtu) | Electricity (MWh) | Natural Gas (kcf) | Heat (MBtu) | Electricity (MWh) | Natural Gas (kcf) | Heat (MBtu) | |
1 | 842.92 | 387.74 | 519.30 | 504.00 | 210.00 | 554.40 | 622.31 | 311.16 | 715.66 |
2 | 828.44 | 381.08 | 531.32 | 499.20 | 208.00 | 549.12 | 596.93 | 298.46 | 686.46 |
3 | 820.95 | 377.64 | 578.56 | 504.00 | 210.00 | 554.40 | 580.13 | 290.06 | 667.14 |
4 | 831.32 | 382.41 | 698.73 | 499.20 | 208.00 | 549.12 | 580.06 | 290.03 | 667.07 |
5 | 861.44 | 396.26 | 972.46 | 508.80 | 212.00 | 559.68 | 597.68 | 298.84 | 687.33 |
6 | 924.58 | 425.31 | 1176.48 | 518.40 | 216.00 | 570.24 | 629.41 | 314.71 | 723.82 |
7 | 939.25 | 432.06 | 1137.13 | 528.00 | 220.00 | 580.80 | 677.44 | 338.72 | 779.05 |
8 | 981.48 | 451.48 | 1091.99 | 696.00 | 290.00 | 765.60 | 725.28 | 362.64 | 834.07 |
9 | 956.98 | 440.21 | 1032.92 | 835.20 | 348.00 | 918.72 | 770.57 | 385.29 | 886.16 |
10 | 937.68 | 431.33 | 979.94 | 936.00 | 390.00 | 1029.60 | 825.62 | 412.81 | 949.46 |
11 | 935.63 | 430.39 | 936.56 | 998.40 | 416.00 | 1098.24 | 879.69 | 439.85 | 1011.64 |
12 | 919.00 | 422.74 | 911.10 | 1008.00 | 420.00 | 1108.80 | 928.89 | 464.45 | 1068.23 |
13 | 916.53 | 421.60 | 900.55 | 1003.20 | 418.00 | 1103.52 | 968.60 | 484.30 | 1113.89 |
14 | 934.69 | 429.96 | 910.40 | 998.40 | 416.00 | 1098.24 | 998.55 | 499.28 | 1148.33 |
15 | 961.06 | 442.09 | 929.05 | 1008.00 | 420.00 | 1108.80 | 1018.46 | 509.23 | 1171.23 |
16 | 1002.37 | 461.09 | 968.73 | 1017.60 | 424.00 | 1119.36 | 1034.82 | 517.41 | 1190.04 |
17 | 1075.71 | 494.83 | 1004.19 | 1070.40 | 446.00 | 1177.44 | 1038.35 | 519.17 | 1194.10 |
18 | 1090.57 | 501.66 | 1017.83 | 1027.20 | 428.00 | 1129.92 | 1016.55 | 508.27 | 1169.03 |
19 | 1074.07 | 494.07 | 1016.88 | 619.20 | 258.00 | 681.12 | 978.60 | 489.30 | 1125.39 |
20 | 1046.70 | 481.48 | 985.27 | 614.40 | 256.00 | 675.84 | 943.57 | 471.79 | 1085.11 |
21 | 1011.72 | 465.39 | 887.76 | 590.40 | 246.00 | 649.44 | 900.10 | 450.05 | 1035.12 |
22 | 968.94 | 445.71 | 686.22 | 489.60 | 204.00 | 538.56 | 831.58 | 415.79 | 956.32 |
23 | 885.73 | 407.44 | 541.79 | 470.40 | 196.00 | 517.44 | 762.76 | 381.38 | 877.18 |
24 | 871.34 | 400.82 | 578.48 | 508.80 | 212.00 | 559.68 | 704.32 | 352.16 | 809.97 |
Parameter | Value |
---|---|
Gas-to-power conversion rate | 0.3 |
Power-to-heat conversion rate | 1 |
Minimum power output (MW/h) | 40 |
Maximum power output (MW/h) | 1200 |
Ramp-up rate (MW/h) | 600 |
Ramp-down rate (MW/h) | 600 |
Operation & maintenance cost ($/kcf) | 15 |
Start-up & shut-down cost ($) | 3.48 |
Parameter | Value |
---|---|
Power-to-heat conversion rate | 0.9 |
Minimum heat output (MBtu/h) | 20 |
Maximum heat output (MBtu/h) | 1200 |
Ramp-up rate (MBtu/h) | 600 |
Ramp-down rate (MBtu/h) | 600 |
Operation & maintenance cost ($/MW) | 2 |
Start-up & shut-down cost ($) | 3 |
Time (h) | PV Power (MW/h) | Wind Power (MW/h) |
---|---|---|
1 | 0.00 | 0.00 |
2 | 0.00 | 0.00 |
3 | 0.00 | 0.00 |
4 | 0.00 | 0.00 |
5 | 0.00 | 0.00 |
6 | 6.43 | 0.00 |
7 | 35.50 | 0.00 |
8 | 67.44 | 5.98 |
9 | 80.50 | 41.53 |
10 | 114.05 | 77.96 |
11 | 127.20 | 135.86 |
12 | 63.41 | 165.05 |
13 | 47.74 | 94.61 |
14 | 48.03 | 145.59 |
15 | 39.42 | 71.58 |
16 | 34.44 | 88.22 |
17 | 13.96 | 45.99 |
18 | 1.92 | 41.53 |
19 | 0.00 | 18.38 |
20 | 0.00 | 13.05 |
21 | 0.00 | 2.55 |
22 | 0.00 | 1.55 |
23 | 0.00 | 0.56 |
24 | 0.00 | 0.00 |
Shiftable Load | Total Energy (MWh) | Min. Power (MW/h) | Max. Power (MW/h) | Time Window (h) | Duration (h) |
---|---|---|---|---|---|
Task 1 | 250 | 25 | 150 | 2-18 | 5 |
Task 2 | 110 | 5 | 50 | 2-20 | 8 |
Task 3 | 180 | 20 | 80 | 5-22 | 6 |
Task 4 | 150 | 10 | 60 | 3-21 | 12 |
Task 5 | 200 | 15 | 100 | 8-22 | 10 |
Time (h) | Electricity Price ($/MWh) | Natural Gas Price ($/kcf) |
---|---|---|
1 | 67.09 | 16.93 |
2 | 66.89 | 16.60 |
3 | 67.64 | 15.75 |
4 | 68.64 | 16.85 |
5 | 69.54 | 20.54 |
6 | 70.16 | 21.30 |
7 | 71.34 | 22.15 |
8 | 71.04 | 22.60 |
9 | 71.41 | 23.77 |
10 | 71.61 | 23.73 |
11 | 71.23 | 23.93 |
12 | 71.17 | 23.75 |
13 | 70.88 | 20.25 |
14 | 71.10 | 20.25 |
15 | 71.52 | 20.48 |
16 | 72.27 | 24.50 |
17 | 72.82 | 24.65 |
18 | 73.15 | 25.00 |
19 | 72.56 | 24.60 |
20 | 71.19 | 24.43 |
21 | 70.42 | 20.53 |
22 | 70.16 | 17.98 |
23 | 69.36 | 17.88 |
24 | 66.92 | 17.18 |
References
- Liu, P.; Ding, T.; Zou, Z.; Yang, Y. Integrated demand response for a load serving entity in multi-energy market considering network constraints. Appl. Energy 2019, 250, 512–529. [Google Scholar] [CrossRef]
- Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 2014, 65, 1–17. [Google Scholar] [CrossRef]
- Meng, F.; Ma, Q.; Liu, Z.; Zeng, X.J. Multiple dynamic pricing for demand response with adaptive clustering-based customer segmentation in smart grids. Appl. Energy 2023, 333, 120626. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Luo, F.; Wen, F.; Dong, Z.Y. Decision-making for electricity retailers: A brief survey. IEEE Trans. Smart Grid 2017, 9, 4140–4153. [Google Scholar] [CrossRef]
- Aljohani, T.M.; Ebrahim, A.F.; Mohammed, O.A. Dynamic real-time pricing mechanism for electric vehicles charging considering optimal microgrids energy management system. IEEE Trans. Ind. Appl. 2021, 57, 5372–5381. [Google Scholar] [CrossRef]
- Nojavan, S.; Zare, K. Optimal energy pricing for consumers by electricity retailer. Int. J. Electr. Power Energy Syst. 2018, 102, 401–412. [Google Scholar] [CrossRef]
- Ghasemi, A.; Monfared, H.J.; Loni, A.; Marzband, M. CVaR-based retail electricity pricing in day-ahead scheduling of microgrids. Energy 2021, 227, 120529. [Google Scholar] [CrossRef]
- Su, S.; Li, Z.; Jin, X.; Yamashita, K.; Xia, M.; Chen, Q. Bi-level energy management and pricing for community energy retailer incorporating smart buildings based on chance-constrained programming. Int. J. Electr. Power Energy Syst. 2022, 138, 107894. [Google Scholar] [CrossRef]
- Hong, Q.; Meng, F.; Liu, J.; Bo, R. A bilevel game-theoretic decision-making framework for strategic retailers in both local and wholesale electricity markets. Appl. Energy 2023, 330, 120311. [Google Scholar] [CrossRef]
- Wei, C.; Wu, Q.; Xu, J.; Wang, Y.; Sun, Y. Bi-level retail pricing scheme considering price-based demand response of multi-energy buildings. Int. J. Electr. Power Energy Syst. 2022, 139, 108007. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Y.; Zhu, H.; Tao, L. Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach. Energy 2022, 239, 121926. [Google Scholar] [CrossRef]
- Zeng, F.; Bie, Z.; Liu, S.; Yan, C.; Li, G. Trading model combining electricity, heating, and cooling under multi-energy demand response. J. Mod. Power Syst. Clean Energy 2019, 8, 133–141. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Sun, W.; Khan, M.Q. Energy Pricing and Management for the Integrated Energy Service Provider: A Stochastic Stackelberg Game Approach. Energies 2022, 15, 7326. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, Y.; Yang, J.; Dou, Z.; Li, G.; Xu, C.; Wen, Y. Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses. Energy 2022, 251, 123914. [Google Scholar] [CrossRef]
- Yazdani-Damavandi, M.; Neyestani, N.; Shafie-khah, M.; Contreras, J.; Catalao, J.P. Strategic behavior of multi-energy players in electricity markets as aggregators of demand side resources using a bi-level approach. IEEE Trans. Power Syst. 2017, 33, 397–411. [Google Scholar] [CrossRef]
- Sinha, A.; Malo, P.; Deb, K. A review on bilevel optimization: From classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 2017, 22, 276–295. [Google Scholar] [CrossRef]
- Yuan, G.; Gao, Y.; Ye, B.; Huang, R. Real-time pricing for smart grid with multi-energy microgrids and uncertain loads: A bilevel programming method. Int. J. Electr. Power Energy Syst. 2020, 123, 106206. [Google Scholar] [CrossRef]
- Sheha, M.; Mohammadi, K.; Powell, K. Solving the duck curve in a smart grid environment using a non-cooperative game theory and dynamic pricing profiles. Energy Convers. Manag. 2020, 220, 113102. [Google Scholar] [CrossRef]
- Li, B.; Roche, R.; Paire, D.; Miraoui, A. A price decision approach for multiple multi-energy-supply microgrids considering demand response. Energy 2019, 167, 117–135. [Google Scholar] [CrossRef]
- Yuan, G.; Gao, Y.; Ye, B.; Liu, Z. A bilevel programming approach for real-time pricing strategy of smart grid considering multi-microgrids connection. Int. J. Energy Res. 2021, 45, 10572–10589. [Google Scholar] [CrossRef]
- Qian, L.P.; Zhang, Y.J.A.; Huang, J.; Wu, Y. Demand response management via real-time electricity price control in smart grids. IEEE J. Sel. Areas Commun. 2013, 31, 1268–1280. [Google Scholar] [CrossRef]
- Meng, F.L.; Zeng, X.J. A Stackelberg game-theoretic approach to optimal real-time pricing for the smart grid. Soft Comput. 2013, 17, 2365–2380. [Google Scholar] [CrossRef]
- Meng, F.L.; Zeng, X.J. A profit maximization approach to demand response management with customers behavior learning in smart grid. IEEE Trans. Smart Grid 2015, 7, 1516–1529. [Google Scholar] [CrossRef]
- Meng, F.; Kazemtabrizi, B.; Zeng, X.J.; Dent, C. An optimal differential pricing in smart grid based on customer segmentation. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, Torino, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Yang, J.; Zhao, J.; Wen, F.; Dong, Z.Y. A framework of customizing electricity retail prices. IEEE Trans. Power Syst. 2017, 33, 2415–2428. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Wen, F.; Dong, Z. A model of customizing electricity retail prices based on load profile clustering analysis. IEEE Trans. Smart Grid 2018, 10, 3374–3386. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, X.; Qi, Y.; Leng, M. A real-time, personalized consumption-based pricing scheme for the consumptions of traditional and renewable energies. Renew. Energy 2021, 180, 452–466. [Google Scholar] [CrossRef]
- Huang, T.; Sun, Y.; Jiao, M.; Liu, Z.; Hao, J. Bilateral energy-trading model with hierarchical personalized pricing in a prosumer community. Int. J. Electr. Power Energy Syst. 2022, 141, 108179. [Google Scholar] [CrossRef]
- Dempe, S.; Zemkoho, A. Bilevel optimization. In Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2020; Volume 161. [Google Scholar]
- Zhang, Y.; Meng, F.; Wang, R.; Kazemtabrizi, B.; Shi, J. Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid. Energy 2019, 179, 1265–1278. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, F.; Wang, R. A comprehensive MPC based energy management framework for isolated microgrids. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, Torino, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Zugno, M.; Morales, J.M.; Pinson, P.; Madsen, H. A bilevel model for electricity retailers’ participation in a demand response market environment. Energy Econ. 2013, 36, 182–197. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of the ICNN’95-International Conference on Neural Networks, IEEE, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Zhang, G.; Zhang, G.; Gao, Y.; Lu, J. Competitive strategic bidding optimization in electricity markets using bilevel programming and swarm technique. IEEE Trans. Ind. Electron. 2010, 58, 2138–2146. [Google Scholar] [CrossRef]
- Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization method for constrained optimization problems. Intell. Technol.—Theory Appl. New Trends Intell. Technol. 2002, 76, 214–220. [Google Scholar]
- Innocente, M.S.; Sienz, J. Constraint-handling techniques for particle swarm optimization algorithms. arXiv 2021, arXiv:2101.10933. [Google Scholar]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1987; pp. 7–15. [Google Scholar]
- PJM Data Directory. Available online: https://dataminer2.pjm.com/list (accessed on 10 November 2022).
- Department for Education Gas and Electricity Half Hourly Data. Available online: https://www.data.gov.uk/dataset/fee711fd-b405-4939-8945-5f9189839ad0/department-for-education-gas-and-electricity-half-hourly-data (accessed on 10 November 2022).
- Open Power System Data: When2Heat Heating Profiles. Available online: https://data.open-power-system-data.org/when2heat/2019-08-06 (accessed on 10 November 2022).
- Photovoltaic Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 12 November 2022).
- Smart Meters in London. Available online: https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london?select=weather_hourly_darksky.csv (accessed on 12 November 2022).
- Qi, S.; Wang, X.; Li, X.; Qian, T.; Zhang, Q. Enhancing integrated energy distribution system resilience through a hierarchical management strategy in district multi-energy systems. Sustainability 2019, 11, 4048. [Google Scholar] [CrossRef] [Green Version]
Literature | Uniform Pricing | Customised Pricing | Electricity Market | Multi-Energy Market | Bilevel Model | KKT-Based Approach | Metaheuristic-Based Approach |
---|---|---|---|---|---|---|---|
[5,6,7] | ✓ | ✗ | ✓ | ✗ | ✗ | – | – |
[8,9] | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ |
[10,12,13,14,15] | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ |
[11] | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[17,18,19] | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ |
[20,21,22,23] | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ |
[24] | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ |
[25] | ✗ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ |
[26,27,28] | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ |
[3] | ✗ | ✓ | ✓ | ✗ | ✗ | – | – |
Parameter | Microgrid 1 | Microgrid 2 | Microgrid 3 |
---|---|---|---|
Charging rate | – | 0.95 | 0.95 |
Discharging rate | – | 0.95 | 0.95 |
Self-discharging rate (MWh) | – | 0.002 | 0.002 |
Initial energy level (MWh) | – | 250 | 500 |
Minimum energy level (MWh) | – | 50 | 100 |
Rated Capacity (MWh) | – | 500 | 1000 |
Minimum charging/discharging power (MW/h) | – | 20 | 30 |
Rated charging/discharging power (MW/h) | – | 200 | 300 |
Operation & maintenance cost ($/MWh) | – | 3.5 | 3.5 |
Parameter | Microgrid 1 | Microgrid 2 | Microgrid 3 |
---|---|---|---|
Charging rate | – | 0.95 | 0.95 |
Discharging rate | – | 0.95 | 0.95 |
Self-discharging rate (MBtu) | – | 0.004 | 0.004 |
Initial energy level (MBtu) | – | 300 | 650 |
Minimum energy level (MBtu) | – | 60 | 130 |
Rated Capacity (MBtu) | – | 600 | 1300 |
Minimum charging/discharging power (MBtu/h) | – | 20 | 43 |
Rated charging/discharging power (MBtu/h) | – | 200 | 430 |
Operation & maintenance cost ($/MBtu) | – | 3.5 | 3.5 |
Scheme | Algorithm | Minimum ($) | Maximum ($) | Median ($) | Average ($) | Standard Deviation | IQR |
---|---|---|---|---|---|---|---|
Customised | PSO | 1,747,893.23 | 3,237,259.44 | 2,637,117.20 | 2,661,933.25 | 305,700.17 | 304,077.64 |
GA | 2,793,836.04 | 3,621,174.98 | 3,226,859.38 | 3,235,457.87 | 188,685.73 | 262,036.86 | |
SA | 2,157,779.58 | 3,253,958.04 | 2,652,633.36 | 2,794,698.37 | 313,398.40 | 534,933.18 | |
Uniform | PSO | 2,229,066.83 | 3,454,961.22 | 2,868,594.24 | 2,873,363.22 | 335,318.00 | 477,855.56 |
GA | 2,785,634.97 | 3,852,188.64 | 3,160,983.13 | 3,206,485.96 | 252,908.66 | 274,699.89 | |
SA | 2,555,064.32 | 3,268,070.40 | 2,862,418.32 | 2,890,620.58 | 199,545.25 | 323,634.31 |
Pricing Scheme | Average Profit of Retailer ($) | Median Profit of Retailer ($) | Cost of Retailer ($) | Revenue of Retailer ($) | Net Profit Margin |
---|---|---|---|---|---|
Customised | 3,235,457.87 | 3,226,859.38 | 8,745,212.30 | 11,972,071.68 | 26.95% |
Uniform | 3,206,485.96 | 3,160,983.13 | 8,811,088.55 | 12,187,869.46 | 25.94% |
Customised | Uniform | |||||
---|---|---|---|---|---|---|
Microgrid 1 | Microgrid 2 | Microgrid 3 | Microgrid 1 | Microgrid 2 | Microgrid 3 | |
Operational cost ($) | 5,443,053.70 | 4,657,522.95 | 5,157,586.89 | 5,394,078.29 | 4,589,881.26 | 5,166,624.95 |
Purchased electricity (MWh) | 24,118.78 | 23,275.57 | 20,984.30 | 28,006.46 | 22,121.82 | 24136.56 |
Purchased natural gas (kcf) | 61,866.34 | 49,612.87 | 65,119.02 | 56,340.05 | 53,270.56 | 60460.13 |
Electricity demand (MWh) | 27,949.10 | 23,022.80 | 25,180.26 | 28,189.10 | 23,072.72 | 25180.26 |
Natural gas demand (kcf) | 11,844.79 | 8712.00 | 11,365.13 | 11,964.79 | 8832.00 | 11,365.13 |
Heat demand (MBtu) | 26,293.81 | 24,378.08 | 27,594.91 | 26,453.64 | 24,529.00 | 27,591.80 |
CHP-generated electricity (MWh) | 15,006.47 | 12,270.26 | 16,126.17 | 13,312.58 | 13,331.57 | 14728.50 |
Heat pump-generated heat (MBtu) | 11,287.34 | 12,191.04 | 11,673.69 | 13,141.06 | 11,308.42 | 12988.86 |
ES charging power (MW/h) | – | 1215.50 | 1682.92 | – | 1600.00 | 2294.51 |
ES discharging power (MW/h) | – | 1096.94 | 1518.79 | – | 1443.95 | 2070.75 |
TS charging power (MBtu/h) | – | 852.64 | 2101.07 | – | 1137.42 | 1286.82 |
TS discharging power (MBtu/h) | – | 769.42 | 1896.13 | – | 1026.43 | 1161.26 |
Scenario 1 | Scenario 2 | Scenario 3 | |
---|---|---|---|
Average of profit ($) | 3,434,862.90 | 3,667,999.43 | 3,247,324.34 |
Median of profit ($) | 3,433,100.16 | 3,656,147.99 | 3,248,191.95 |
Time (h) | Retail Electricity Price ($/MWh) | ES Energy Level (MWh) | ES Charging Power (MW/h) | ES Discharging Power (MW/h) | Retail Natural Gas Price ($/kcf) | TS Energy Level (MBtu) | TS Charging Power (MBtu/h) | TS Discharging Power (MBtu/h) |
---|---|---|---|---|---|---|---|---|
1 | 100.01 | 50.00 | 0.00 | 190.00 | 41.30 | 163.89 | 0.00 | 129.30 |
2 | 73.72 | 240.00 | 200.00 | 0.00 | 33.06 | 220.01 | 59.08 | 0.00 |
3 | 106.93 | 76.02 | 0.00 | 155.78 | 33.51 | 410.00 | 200.00 | 0.00 |
4 | 68.81 | 266.02 | 200.00 | 0.00 | 20.26 | 600.00 | 200.00 | 0.00 |
5 | 105.15 | 55.49 | 0.00 | 200.00 | 44.33 | 600.00 | 0.00 | 0.00 |
6 | 65.89 | 245.49 | 200.00 | 0.00 | 41.39 | 514.83 | 0.00 | 80.91 |
7 | 99.23 | 120.01 | 0.00 | 119.20 | 31.70 | 471.08 | 0.00 | 41.56 |
8 | 91.80 | 120.01 | 0.00 | 0.00 | 42.80 | 408.90 | 0.00 | 59.07 |
9 | 80.04 | 120.01 | 0.00 | 0.00 | 55.36 | 408.89 | 0.00 | 0.00 |
10 | 85.11 | 120.01 | 0.00 | 0.00 | 44.86 | 363.23 | 0.00 | 43.38 |
11 | 89.07 | 120.00 | 0.00 | 0.00 | 27.63 | 363.22 | 0.00 | 0.00 |
12 | 66.12 | 310.00 | 200.00 | 0.00 | 40.06 | 387.41 | 25.46 | 0.00 |
13 | 74.45 | 500.00 | 200.00 | 0.00 | 28.80 | 577.33 | 199.93 | 0.00 |
14 | 106.84 | 500.00 | 0.00 | 0.00 | 21.27 | 600.00 | 23.87 | 0.00 |
15 | 98.33 | 500.00 | 0.00 | 0.00 | 38.25 | 600.00 | 0.00 | 0.00 |
16 | 98.75 | 499.99 | 0.00 | 0.00 | 34.21 | 599.99 | 0.00 | 0.00 |
17 | 104.40 | 357.63 | 0.00 | 135.24 | 47.71 | 438.23 | 0.00 | 153.67 |
18 | 94.22 | 357.63 | 0.00 | 0.00 | 39.77 | 340.75 | 0.00 | 92.61 |
19 | 109.85 | 254.05 | 0.00 | 98.40 | 26.59 | 246.44 | 0.00 | 89.58 |
20 | 103.01 | 50.00 | 0.00 | 193.85 | 51.12 | 185.41 | 0.00 | 57.97 |
21 | 66.43 | 240.00 | 200.00 | 0.00 | 53.62 | 320.54 | 142.24 | 0.00 |
22 | 86.17 | 270.53 | 32.14 | 0.00 | 54.54 | 320.53 | 0.00 | 0.00 |
23 | 109.31 | 60.00 | 0.00 | 200.00 | 56.92 | 110.00 | 0.00 | 200.00 |
24 | 76.35 | 250.00 | 200.00 | 0.00 | 50.99 | 300.00 | 200.00 | 0.00 |
Total: | – | – | 1432.14 | 1292.46 | – | – | 1050.57 | 948.05 |
Time (h) | Retail Electricity Price ($/MWh) | ES Energy Level (MWh) | ES Charging Power (MW/h) | ES Discharging Power (MW/h) | Retail Natural Gas Price ($/kcf) | TS Energy Level (MBtu) | TS Charging Power (MBtu/h) | TS Discharging Power (MBtu/h) |
---|---|---|---|---|---|---|---|---|
1 | 72.75 | 785.00 | 300.00 | 0.00 | 45.98 | 556.00 | 0.00 | 89.30 |
2 | 105.28 | 469.21 | 0.00 | 300.00 | 49.69 | 449.34 | 0.00 | 101.32 |
3 | 102.46 | 245.64 | 0.00 | 212.39 | 50.22 | 449.34 | 0.00 | 0.00 |
4 | 105.44 | 245.63 | 0.00 | 0.00 | 35.79 | 677.53 | 240.20 | 0.00 |
5 | 109.89 | 245.63 | 0.00 | 0.00 | 31.66 | 677.52 | 0.00 | 0.00 |
6 | 102.56 | 245.63 | 0.00 | 0.00 | 29.20 | 467.25 | 0.00 | 199.75 |
7 | 102.04 | 100.00 | 0.00 | 138.34 | 54.17 | 130.01 | 0.00 | 320.38 |
8 | 83.42 | 100.00 | 0.00 | 0.00 | 27.65 | 130.01 | 0.00 | 0.00 |
9 | 62.57 | 385.00 | 300.00 | 0.00 | 42.99 | 130.00 | 0.00 | 0.00 |
10 | 67.83 | 670.00 | 300.00 | 0.00 | 54.99 | 130.00 | 0.00 | 0.00 |
11 | 106.24 | 354.20 | 0.00 | 300.00 | 33.50 | 171.21 | 43.38 | 0.00 |
12 | 94.18 | 354.20 | 0.00 | 0.00 | 18.17 | 291.18 | 126.29 | 0.00 |
13 | 64.51 | 639.20 | 300.00 | 0.00 | 57.00 | 421.18 | 136.84 | 0.00 |
14 | 106.82 | 639.20 | 0.00 | 0.00 | 31.65 | 541.81 | 126.99 | 0.00 |
15 | 89.62 | 639.20 | 0.00 | 0.00 | 29.78 | 582.66 | 43.00 | 0.00 |
16 | 81.47 | 639.19 | 0.00 | 0.00 | 55.27 | 582.66 | 0.00 | 0.00 |
17 | 61.14 | 924.19 | 300.00 | 0.00 | 49.24 | 582.65 | 0.00 | 0.00 |
18 | 89.72 | 924.19 | 0.00 | 0.00 | 25.13 | 582.65 | 0.00 | 0.00 |
19 | 105.77 | 608.40 | 0.00 | 300.00 | 53.40 | 130.01 | 0.00 | 430.00 |
20 | 62.25 | 893.40 | 300.00 | 0.00 | 44.58 | 130.01 | 0.00 | 0.00 |
21 | 100.28 | 577.61 | 0.00 | 300.00 | 42.99 | 130.00 | 0.00 | 0.00 |
22 | 94.81 | 577.60 | 0.00 | 0.00 | 40.82 | 130.00 | 0.00 | 0.00 |
23 | 96.9 | 500.00 | 0.00 | 73.72 | 35.15 | 309.00 | 188.42 | 0.00 |
24 | 92.04 | 500.00 | 0.00 | 0.00 | 20.99 | 650.00 | 358.95 | 0.00 |
Total: | – | – | 1800.00 | 1624.45 | – | – | 1264.09 | 1140.75 |
Microgrid 1 | Microgrid 2 | Microgrid 3 | |
---|---|---|---|
Operational cost ($) | 5,431,648.01 | 5,323,884.54 | 5,215,699.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Q.; Meng, F.; Liu, J. Customised Multi-Energy Pricing: Model and Solutions. Energies 2023, 16, 2080. https://doi.org/10.3390/en16042080
Hong Q, Meng F, Liu J. Customised Multi-Energy Pricing: Model and Solutions. Energies. 2023; 16(4):2080. https://doi.org/10.3390/en16042080
Chicago/Turabian StyleHong, Qiuyi, Fanlin Meng, and Jian Liu. 2023. "Customised Multi-Energy Pricing: Model and Solutions" Energies 16, no. 4: 2080. https://doi.org/10.3390/en16042080
APA StyleHong, Q., Meng, F., & Liu, J. (2023). Customised Multi-Energy Pricing: Model and Solutions. Energies, 16(4), 2080. https://doi.org/10.3390/en16042080