Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- (1)
- Calculation Method for the Industry-Level Carbon Emissions
- (2)
- Calculation Method for the Total Industrial Carbon Emissions in Guangdong
2.2. Data Source and Adjustment of the Industrial Sector Classification Method
2.3. Model Calculation Methods
Standard Deviational Ellipse Analysis Method
3. Results
3.1. Distribution Change of Industrial Enterprises in Guangdong
3.2. Temporal and Spatial Variation Characteristics of the Total Industrial Carbon Emissions in Guangdong
3.2.1. Time Change
3.2.2. Spatial Change
3.3. Temporal and Spatial Evolution Characteristics at the Industry Level
3.3.1. Time Sequence Evolution of the Total Carbon Emissions of Different Industries
- (1)
- Steady growth type
- (2)
- Fluctuant growth type
- (3)
- Basically-stable type
- (4)
- Decrease type
3.3.2. Time Sequence Evolution of the Carbon Emission Intensity of Different Industries
4. Discussion
4.1. The Relationship between Fossil Energy Consumption and Industrial Carbon Emissions in Guangdong Province
4.2. Relationship between the Industrial Transfer and the Temporal and Spatial Evolution of the Carbon Emissions
4.3. Change and Trend of Spatial Pattern of Industrial Carbon Emissions in Guangdong
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency (IEA). Energy Technology Perspectives 2008-Scenarios and Strategies to 2050; IEA: Paris, France, 2010. [Google Scholar]
- Ban, Y.U.; Jeong, J.H.; Jeong, S.K. Assessing the performance of carbon dioxide emission reduction of commercialized eco-industrial park projects in South Korea. J. Clean. Prod. 2016, 114, 124–131. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kashem, M.A. Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis. Energy Policy 2017, 110, 600–608. [Google Scholar] [CrossRef]
- Bamminger, C.; Poll, C.; Marhan, S. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application. Glob. Chang. Biol. 2018, 24, E318–E334. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Cai, H.; Wang, B. Comparative analysis of regional carbon emissions accounting methods in China: Production-based versus consumption-based principles. J. Clean. Prod. 2018, 194, 12–22. [Google Scholar] [CrossRef]
- Feng, K.S.; Davis, S.J.; Sun, L.X.; Li, X.; Guan, D.B.; Liu, W.D.; Liu, Z.; Hubacek, K. Outsourcing CO2 within China. Proc. Natl. Acad. Sci. USA 2013, 110, 11654–11659. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Guo, J.E.; Chai, J.; Zhang, Z.K. China’s regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies. Energy Policy 2011, 39, 6136–6144. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, L.Q.; Wang, R.; Wang, B.Y.; Liu, Y.Q.; Liu, W.Q.; Wang, J.; Wen, M.X. The influencing factors of industrial carbon emissions in the context of undertaking industrial transfer in anhui province, China. Appl. Ecol. Environ. Res. 2019, 17, 4205–4227. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Shen, M.F.; Luan, Y.P.; Cui, W.J.; Lin, X.Q. Spatial Evolutionary Characteristics and Influencing Factors of Urban Industrial Carbon Emission in China. Int. J. Environ. Res. Public Health 2022, 19, 11227. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, Q.X.; Sun, A.; Bao, J.; Wu, D.T. Spatio-Temporal Patterns of CO2 Emissions and Influencing Factors in China Using ESDA and PLS-SEM. Mathematics 2021, 9, 2711. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, F.; Zhang, H.G.; Ye, Y.Y.; Wu, Q.T.; Su, Y.X. Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province. Sustainability 2014, 6, 8164–8179. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.F.; Wang, J.N.; He, J.; Geng, Y. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Appl. Energy 2016, 166, 191–200. [Google Scholar] [CrossRef]
- Li, A.J.; Zhang, A.Z.; Zhou, Y.X.; Yao, X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. J. Clean. Prod. 2017, 141, 1428–1444. [Google Scholar] [CrossRef]
- Jia, J.S.; Gong, Z.H.; Xie, D.M.; Chen, J.H.; Chen, C.D. Analysis of drivers and policy implications of carbon dioxide emissions of industrial energy consumption in an underdeveloped city: The case of Nanchang, China. J. Clean. Prod. 2018, 183, 843–857. [Google Scholar] [CrossRef]
- Wang, H.K.; Zhang, Y.X.; Lu, X.; Nielsen, C.P.; Bi, J. Understanding China’s carbon dioxide emissions from both production and consumption perspectives. Renew. Sust. Energ. Rev. 2015, 52, 189–200. [Google Scholar] [CrossRef]
- Gao, P.; Yue, S.J.; Chen, H.T. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- Zhu, R.M.; Zhao, R.Q.; Sun, J.; Xiao, L.G.; Jiao, S.X.; Chuai, X.W.; Zhang, L.J.; Yang, Q.L. Temporospatial pattern of carbon emission efficiency of China’s energy-intensive industries and its policy implications. J. Clean. Prod. 2021, 286, 125507. [Google Scholar] [CrossRef]
- Peng, J.Y.; Sun, Y.D.; Song, J.N.; Yang, W. Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input-Output Approach. Sustainability 2020, 12, 2148. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xi, F.M.; Yin, Y.; Wang, J.Y.; Bing, L.F. Industrial total factor CO2 emission performance assessment of Chinese heavy industrial province. Energy Effic. 2020, 13, 177–192. [Google Scholar] [CrossRef]
- Lebel, L.; Garden, P.; Banaticla, M.R.N.; Lasco, R.D.; Contreras, A.; Mitra, A.P.; Sharma, C.; Nguyen, H.T.; Ooi, G.L.; Sari, A. Integrating carbon management into the development strategies of urbanizing regions in Asia—Implications of urban function, form, and role. J. Ind. Ecol. 2007, 11, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.S.; Xiong, S.Q.; Ma, X.M.; Ji, J.P. Structural path decomposition of carbon emission: A study of China’s manufacturing industry. J. Clean. Prod. 2018, 193, 563–574. [Google Scholar] [CrossRef]
- Dong, F.; Gao, X.Q.; Li, J.Y.; Zhang, Y.Q.; Liu, Y.J. Drivers of China’s Industrial Carbon Emissions: Evidence from Joint PDA and LMDI Approaches. Int. J. Environ. Res. Public Health 2018, 15, 2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.B.; Yi, Q.; Li, C.B.; Liao, L. Life cycle oriented low-carbon operation models of machinery manufacturing industry. J. Clean. Prod. 2015, 91, 145–157. [Google Scholar] [CrossRef]
- Xu, S.C.; He, Z.X.; Long, R.Y.; Chen, H. Factors that influence carbon emissions due to energy consumption based on different stages and sectors in China. J. Clean. Prod. 2016, 115, 139–148. [Google Scholar] [CrossRef]
- Wang, X.L.; Lin, B.Q. How to reduce CO2 emissions in China’s iron and steel industry. Renew. Sustain. Energy Rev. 2016, 57, 1496–1505. [Google Scholar] [CrossRef]
- Xian, Y.J.; Wang, K.; Shi, X.P.; Zhang, C.; Wei, Y.M.; Huang, Z.M. Carbon emissions intensity reduction target for China’s power industry: An efficiency and productivity perspective. J. Clean. Prod. 2018, 197, 1022–1034. [Google Scholar] [CrossRef]
- Shan, Y.L.; Liu, Z.; Guan, D.B. CO2 emissions from China’s lime industry. Appl. Energy 2016, 166, 245–252. [Google Scholar] [CrossRef]
- Wen, Z.G.; Chen, M.; Meng, F.X. Evaluation of energy saving potential in China’s cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis. Energy Policy 2015, 77, 227–237. [Google Scholar] [CrossRef]
- Lin, B.Q.; Lei, X.J. Carbon emissions reduction in China’s food industry. Energy Policy 2015, 86, 483–492. [Google Scholar] [CrossRef]
- Peng, L.H.; Zhang, Y.T.; Wang, Y.J.; Zeng, X.L.; Peng, N.J.; Yu, A.G. Energy efficiency and influencing factor analysis in the overall Chinese textile industry. Energy 2015, 93, 1222–1229. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.H.; Zeng, X.L.; Wang, Y.J.; Hong, G.B. Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry. Energy Policy 2015, 80, 65–75. [Google Scholar] [CrossRef]
- Dong, J.; Li, C.B.; Wang, Q.Q. Decomposition of carbon emission and its decoupling analysis and prediction with economic development: A case study of industrial sectors in Henan Province. J. Clean. Prod. 2021, 321, 129019. [Google Scholar] [CrossRef]
- Wen, H.X.; Chen, Z.; Yang, Q.; Liu, J.Y.; Nie, P.Y. Driving forces and mitigating strategies of CO(2 )emissions in China: A decomposition analysis based on 38 industrial sub-sectors. Energy 2022, 245, 123262. [Google Scholar] [CrossRef]
- Yuan, R.; Zhao, T. Changes in CO2 emissions from China’s energy-intensive industries: A subsystem input-output decomposition analysis. J. Clean. Prod. 2016, 117, 98–109. [Google Scholar] [CrossRef]
- Zhang, C.J.; Ma, T.L.; Shi, C.F.; Chiu, Y.H. Carbon emission from the electric power industry in Jiangsu province, China: Historical evolution and future prediction. Energy Environ. 2022, in press. [CrossRef]
- Wang, F.; Gao, C.H.; Zhang, W.L.; Huang, D.W. Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO2 Emission Peak Target. Sustainability 2021, 13, 4417. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Y.; Xu, W.; Sun, J.; Zhang, Y.Y. Carbon Emission Calculation and Influencing Factor Analysis Based on Industrial Big Data in the “Double Carbon” Era. Comput. Intell. Neurosci. 2022, 2022, 2815940. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Xie, H.; Zhang, J.B.; Wang, X.Y.; Wei, J.Y.; Quan, X.B. Prediction and Trend Analysis of Regional Industrial Carbon Emission in China: A Study of Nanjing City. Int. J. Environ. Res. Public Health 2022, 19, 7165. [Google Scholar] [CrossRef]
- Kong, H.J.; Shi, L.F.; Da, D.; Li, Z.J.; Tang, D.C.; Xing, W. Simulation of China’s Carbon Emission based on Influencing Factors. Energies 2022, 15, 3272. [Google Scholar] [CrossRef]
- Wang, P.; Wu, W.S.; Zhu, B.Z.; Wei, Y.M. Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Appl. Energy 2013, 106, 65–71. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.J.; Su, Y.X.; Jin, L.X.; Wang, Y.; Zhang, X.L. Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014. Sustainability 2017, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.X.; Kuang, Y.Q.; Huang, N.S.; Zhao, D.Q. Empirical Research on Decoupling Relationship between Energy-Related Carbon Emission and Economic Growth in Guangdong Province Based on Extended Kaya Identity. Sci. World J. 2014, 2014, 782750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, J.; Niu, Z.; Wang, L.; Song, X.P.; Huang, N.; Geng, J.; Wu, Y.B.; Jiang, H.H. Spatial-temporal dynamics of carbon emissions and carbon sinks in economically developed areas of China: A case study of Guangdong Province. Sci. Rep. 2018, 8, 13383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.X.; Wang, W.J.; Xie, P.C.; Zhao, D.Q. Spatial and temporal disparities of carbon emissions and interregional carbon compensation in major function-oriented zones: A case study of Guangdong province. J. Clean. Prod. 2020, 245, 118873. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, F.; Zhang, X.L.; Deng, H.J. Analysis of influence mechanism of energy-related carbon emissions in Guangdong: Evidence from regional China based on the input-output and structural decomposition analysis. Environ. Sci. Pollut. Res. 2017, 24, 25190–25203. [Google Scholar] [CrossRef]
- Ye, F.; Li, L.X.; Wang, Z.Q.; Li, Y.N. An Asymmetric Nash Bargaining Model for Carbon Emission Quota Allocation among Industries: Evidence from Guangdong Province, China. Sustainability 2018, 10, 4210. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Dong, Y.X.; Yang, R.; Zhang, H.O.; Wang, C.J.; Du, Z.W. Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling. J. Clean. Prod. 2019, 214, 615–622. [Google Scholar] [CrossRef]
- Zhao, X.F.; Li, H.M.; Wu, L.; Qi, Y. Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets. Energy Policy 2014, 66, 170–184. [Google Scholar] [CrossRef]
- Voumik, L.C.; Islam, M.A.; Ray, S.; Mohamed Yusop, N.Y.; Ridzuan, A.R. CO2 Emissions from Renewable and Non-Renewable Electricity Generation Sources in the G7 Countries: Static and Dynamic Panel Assessment. Energies 2023, 16, 1044. [Google Scholar] [CrossRef]
- Walsh, B.; Ciais, P.; Janssens, I.A.; Penuelas, J.; Riahi, K.; Rydzak, F.; van Vuuren, D.P.; Obersteiner, M. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 2017, 8, 14856. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 1st ed.; Institute for Global Environmental Strategies: Hayama, Japan, 2006; Volume 5, pp. 1–50. [Google Scholar]
- Vanhulsel, M.; Beckx, C.; Janssens, D.; Vanhoof, K.; Wets, G. Measuring dissimilarity of geographically dispersed space-time paths. Transportation 2011, 38, 65–79. [Google Scholar] [CrossRef]
- Xu, S.H. The spatial agglomeration and the evolution of interregional division of labor in Guangdong Province under industrial transfer: Based on statistical data from 2005 to 2014. Trop. Geogr. 2017, 37, 347–355. (In Chinese) [Google Scholar]
- Li, Y.; He, C.Y. Characteristics and mechanism of manufacturing industry shift in the Pearl River Delta during 1998-2009. Prog. Geogr. 2013, 32, 777–787. (In Chinese) [Google Scholar]
- Yang, B.J.; Mao, Y.H. Industrial relocation policy and firm migration: An empirical analysis from Guangdong industrial relocation survey data. South China J. Econ. 2014, 3, 1–20. (In Chinese) [Google Scholar]
- Zhang, T. Spatiotemporal Evolution and Scenario Simulations of Carbon Emissions from Industrial Land. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2019. (In Chinese). [Google Scholar]
Code | Industry Type | Code | Industry Type |
---|---|---|---|
7 | Extraction of Petroleum and Natural Gas | 27 | Manufacture of Medicines |
8 | Mining and Dressing of Ferrous Metal Ores | 28 | Manufacture of Chemical Fibers |
9 | Mining and Dressing of Nonferrous Metal Ores | 29 | Rubber and Plastic Products |
10 | Mining and Dressing of Nonmetal Ores | 30 | Nonmetal Mineral Products |
13 | Processing of Farm and Sideline Food | 31 | Smelting and Pressing of Ferrous Metals |
14 | Manufacture of Food | 32 | Smelting and Pressing of Nonferrous Metals |
15 | Manufacture of Wine, Beverage, and Refined Tea | 33 | Metal Products |
16 | Tobacco Products | 34 | Manufacture of General-purpose Machinery |
17 | Textile Industry | 35 | Manufacture of Special-purpose Machinery |
18 | Manufacture of Textile Garments, Footwear, and Headgear | 36 | Manufacture of Automobile |
19 | Leather, Fur, Feather, Down, and Related Products | 37 | Manufacture of Railway, Ship, Aeronautics, and Other Transport equipment |
20 | Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products | 38 | Manufacture of Electrical Machinery and Equipment |
21 | Manufacture of Furniture | 39 | Manufacture of Communication Equipment, Computers and |
22 | Papermaking and Paper Products | 40 | Other Electronic Equipment Manufacture of Instruments and Meters |
23 | Printing and Record Medium Reproduction | 41 | Other Manufactures |
24 | Manufacture of Cultural, Educational, Sports, and Entertainment Articles | 44 | Production and Supply of Electric Power and Heat Power |
25 | Petroleum Refining, Coking, and Nuclear Fuel Processing | 45 | Production and Supply of Gas |
26 | Manufacture of Raw Chemical Materials and Chemical Products | 46 | Production and Supply of Water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Ci, H.; Zhang, T.; Tang, Y.; Wei, J.; Yang, H.; Feng, G.; Yan, Z. Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong. Energies 2023, 16, 2249. https://doi.org/10.3390/en16052249
Wang R, Ci H, Zhang T, Tang Y, Wei J, Yang H, Feng G, Yan Z. Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong. Energies. 2023; 16(5):2249. https://doi.org/10.3390/en16052249
Chicago/Turabian StyleWang, Ran, Hui Ci, Ting Zhang, Yuxin Tang, Jinyuan Wei, Hui Yang, Gefei Feng, and Zhaojin Yan. 2023. "Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong" Energies 16, no. 5: 2249. https://doi.org/10.3390/en16052249
APA StyleWang, R., Ci, H., Zhang, T., Tang, Y., Wei, J., Yang, H., Feng, G., & Yan, Z. (2023). Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong. Energies, 16(5), 2249. https://doi.org/10.3390/en16052249