Thermal Environment and Animal Comfort of Aviary Prototypes with Photovoltaic Solar Panel on the Roof
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effect of the Photovoltaic Solar Panel on the Prototype’s Thermal Environment
2.2. Effect of a Photovoltaic Panel on Animal Thermal Comfort
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effect of the Photovoltaic Panel on the Thermal Environment of the Prototypes
3.1.1. Air Temperature Inside the Prototypes
3.1.2. Surface Temperatures of the Prototype Roofs
3.2. Effect of the Photovoltaic Panel on the Thermal Comfort of the Prototypes
3.2.1. Temperature and Humidity Index (THI)
3.2.2. Black Globe Humidity Index (BGHI)
3.2.3. Radiation Heat Load (RHL)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Conference of the Parties. Adoption of the Paris Agreement. Proposal by the President; United Nations; 2015; FCCC/CP/2015/L.9/Rev.1; pp. 1–32. Available online: https://unfccc.int/documents/9064 (accessed on 10 October 2022).
- Dos Santos, Í.P.; Rüther, R. The Potential of Building-Integrated (BIPV) and Building-Applied Photovoltaics (BAPV) in Single-Family, Urban Residences at Low Latitudes in Brazil. Energy Build. 2012, 50, 290–297. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhary, R.; Karthick, A. Review on the Progress of Building-Applied/Integrated Photovoltaic System. Environ. Sci. Pollut. Res. 2021, 28, 47689–47724. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.A.; Yanagi Junior, T.; Teixeira, V.H.; Ferreira, L. Ambiente Térmico No Interior de Modelos de Galpões Avícolas Em Escala Reduzida Com Ventilação Natural e Artificial Dos Telhados. Eng. Agrícola 2005, 25, 575–584. [Google Scholar] [CrossRef]
- Tinôco, I. Avicultura Industrial: Novos Conceitos de Materiais, Concepções e Técnicas Construtivas Disponíveis Para Galpões Avícolas Brasileiros. Rev. Bras. Cienc. Avic. 2001, 3, 1–26. [Google Scholar] [CrossRef]
- Awan, A.B.; Alghassab, M.; Zubair, M.; Bhatti, A.R.; Uzair, M.; Abbas, G. Comparative Analysis of Ground-Mounted vs. Rooftop Photovoltaic Systems Optimized for Interrow Distance between Parallel Arrays. Energies 2020, 13, 3639. [Google Scholar] [CrossRef]
- Kapsalis, V.; Karamanis, D. On the Effect of Roof Added Photovoltaics on Building’s Energy Demand. Energy Build. 2015, 108, 195–204. [Google Scholar] [CrossRef]
- Shen, L.; Li, H.; Guo, L.; He, B.-J. Thermal and Energy Benefits of Rooftop Photovoltaic Panels in a Semi-Arid City during an Extreme Heatwave Event. Energy Build. 2022, 275, 112490. [Google Scholar] [CrossRef]
- Bhuvad, S.S. Udayraj Investigation of Annual Performance of a Building Shaded by Rooftop PV Panels in Different Climate Zones of India. Renew. Energy 2022, 189, 1337–1357. [Google Scholar] [CrossRef]
- Abuseif, M.; Gou, Z. A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness. Energies 2018, 11, 3196. [Google Scholar] [CrossRef] [Green Version]
- Dehwah, A.H.A.; Krarti, M. Energy Performance of Integrated Adaptive Envelope Systems for Residential Buildings. Energy 2021, 233, 121165. [Google Scholar] [CrossRef]
- Espino-Reyes, C.A.; Ortega-Avila, N.; Rodriguez-Muñoz, N.A. Energy Savings on an Industrial Building in Different Climate Zones: Envelope Analysis and PV System Implementation. Sustainability 2020, 12, 1391. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, A.; Kleissl, J.; Luvall, J.C. Effects of Solar Photovoltaic Panels on Roof Heat Transfer. Sol. Energy 2011, 85, 2244–2255. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.A.; Nguyen, T.K. Impacts of Roof-Top Solar Photovoltaic Modules on Building Energy Performance: Case Study of a Residence in HCM City, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2020, 505, 012014. [Google Scholar] [CrossRef]
- Pandiaraj, S.; Abdul Jaffar, A.; Muthusamy, S.; Panchal, H.; Pandiyan, S. A Study of Solar Heat Gain Variation in Building Applied Photovoltaic Buildings and Its Impact on Environment and Indoor Air Quality. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 6192–6212. [Google Scholar] [CrossRef]
- Rahmani, F.; Robinson, M.A.; Barzegaran, M.R. Cool Roof Coating Impact on Roof-Mounted Photovoltaic Solar Modules at Texas Green Power Microgrid. Int. J. Electr. Power Energy Syst. 2021, 130, 106932. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhary, R. Impact of Roof Attached Photovoltaic Modules on Building Material Performance. Mater. Today Proc. 2021, 46, 445–450. [Google Scholar] [CrossRef]
- Baêta, F.; Souza, C. Ambiência Em Edificações Rurais, 2nd ed.; Editora UFV: Viçosa, Brazil, 2010; Volume 1, ISBN 9788572693936. [Google Scholar]
- Damasceno, F.A.; Shiassi, L.; Yanagi Junior, T.; Osorio Saraz, J.A.; de Oliveira, J.L. Evaluación Térmica de Tejas Ecologicas En Modelos Físicos de Galpones Avicolas. Dyna 2016, 83, 114. [Google Scholar] [CrossRef]
- Bilčík, M.; Božiková, M.; Čimo, J. Influence of Roof Installation of PV Modules on the Microclimate Conditions of Cattle Breeding Objects. Appl. Sci. 2021, 11, 2140. [Google Scholar] [CrossRef]
- Carneiro, T.A.; Guiselini, C.; Pandorfi, H.; Lopes Neto, J.P.; Loges, V.; Souza, R.F.L. de Condicionamento Térmico Primário de Instalações Rurais Por Meio de Diferentes Tipos de Cobertura. Rev. Bras. De Eng. Agrícola E Ambient. 2015, 19, 1086–1092. [Google Scholar] [CrossRef]
- Maia, A.S.C.; de AndradeCulhari, E.; Fonsêca, V.D.F.C.; Milan, H.F.M.; Gebremedhin, K.G. Photovoltaic Panels as Shading Resources for Livestock. J. Clean. Prod. 2020, 258, 120551. [Google Scholar] [CrossRef]
- Jentzsch, R.; Baêta, F.d.C.; Tinôco, Í.d.F.; Damasceno, F.A.; Cecon, P.R.; Saraz, J.A.O. Predição de Parametros Térmicos Ambientais No Interior de Modelos Físicos Em Escalas Reduzidas de Galpões Avicolas. Interciencia 2011, 36, 738–742. [Google Scholar]
- Murphy, G. Similitude in Engineering; The Tonald Press Company: New York, NY, USA, 1950. [Google Scholar]
- Eckelkamp, E.A.; Taraba, J.L.; Akers, K.A.; Harmon, R.J.; Bewley, J.M. Sand Bedded Freestall and Compost Bedded Pack Effects on Cow Hygiene, Locomotion, and Mastitis Indicators. Livest. Sci. 2016, 190, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Cassuce, D.C.; Tinôco, I.d.F.F.; Baêta, F.C.; Zolnier, S.; Cecon, P.R.; VIeira, M.d.F.A. Thermal Comfort Temperature Update for Broiler Chickens up to 21 Days of Age. Eng. Agrícola 2013, 33, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Abreu, V.M.N.; Abreu, P.G. Os Desafios Da Ambiência Sobre Os Sistemas de Aves No Brasil. Rev. Bras. De Zootec. 2011, 40, 1–14. [Google Scholar]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows. Trans. ASAE 1981, 24, 0711–0714. [Google Scholar] [CrossRef]
- Kelly, C.F.; Bond, T.E.; Ittner, N.R. Thermal Desing of Livestock Shades. Agric. Eng. 1950, 31, 601–606. [Google Scholar]
- da Silva, E.T.; Leite, D.G.; Manabu Yuri, F.; Nery, F.d.S.G.; Rego, J.C.C.; Zanatta, R.d.A.; dos Santos, S.A.; Moura, V.V. Determinação Do Índice de Temperatura e Umidade (ITU) Para Produção de Aves Na Mesorregião Metropolitana de Curitiba—PR. Rev. Acadêmica Ciência Anim. 2004, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, R.F.M.; Donzele, J.L.; de Abreu, M.L.T.; Ferreira, R.A.; Vaz, R.G.M.V.; Cella, P.S. Efeitos Da Temperatura e Da Umidade Relativa Sobre o Desempenho e o Rendimento de Cortes Nobres de Frangos de Corte de 1 a 49 Dias de Idade. Rev. Bras. De Zootec. 2006, 35, 797–803. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; 4.0.4 “Los.; R Foundation for Statistica Computing: Viena, Ausria, 2021. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS, 1st ed.; Springer, Ed.; Statistics and Computing; Springer: New York, NY, USA, 2000; ISBN 0-387-98957-9. [Google Scholar]
- Santos, R.C.; Tinôco, I.d.F.F.; de Paulo, M.O.; Cordeiro, M.B.; Silva, J.N. da Análise de Coberturas Com Telhas de Barro e Alumínio, Utilizadas Em Instalações Animais Para Duas Distintas Alturas de Pé-Direito. Rev. Bras. De Eng. Agrícola E Ambient. 2002, 6, 142–146. [Google Scholar] [CrossRef]
- Sampaio, C.A.d.P.; Cardoso, C.O.; de Souza, G.P. Temperaturas Superficiais de Telhas e Sua Relação Com o Ambiente Térmico. Eng. Agrícola 2011, 31, 230–236. [Google Scholar] [CrossRef]
- da Silva, M.G.; Martin, S.; Oliveira, C.E.G.; Moscon, E.S.; Damasceno, F.A. Desempenho Térmico de Tipos de Cobertura No Interior de Modelos Reduzido de Galpões Avícolas. Energ. Agric. 2015, 30, 269. [Google Scholar] [CrossRef]
- Fiorelli, J.; da Fonseca, R.; Morceli, J.A.B.; Dias, A.A. Influência de Diferentes Materiais de Cobertura No Conforto Térmico de Instalações Para Frangos de Corte No Oeste Paulista. Eng. Agrícola 2010, 30, 986–992. [Google Scholar] [CrossRef]
- Sevegnani, K.B.; Ghelfi Filho, H.; da Silva, I.J.O. Comparação de Vários Materiais de Cobertura Através de Índices de Conforto Térmico. Sci. Agric. 1994, 51, 1–7. [Google Scholar] [CrossRef]
- Lima, K.R.d.S.; Alves, J.A.K.; Araújo, C.V.; Manno, M.C.; de Jesus, M.L.C.; Fernandes, D.L.; Tavares, F. Avaliação Do Ambiente Térmico Interno Em Galpões de Frango de Corte Com Diferentes Materiais de Cobertura Na Mesorregião Metropolitana de Belém. Rev. De Ciências Agrárias Amazon. J. Agric. Environ. Sci. 2009, 51, 37–50. [Google Scholar]
- Bonifacius, N.; Ekasiwi, S.N.N. Small Scale Experiment: Thermal Performance Comparison Between Fiber-Cement Roof and Photovoltaic Roof in Malang, Indonesia. Makara J. Technol. Ser. 2013, 16, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Zhou, J.; Feng, Z. Effects of Mounting Geometries on Photovoltaic Module Performance Using CFD and Single-Diode Model. Sol. Energy 2014, 103, 541–549. [Google Scholar] [CrossRef]
- Brinkworth, B.J.; Cross, B.M.; Marshall, R.H.; Yang, H. Thermal Regulation of Photovoltaic Cladding. Sol. Energy 1997, 61, 169–178. [Google Scholar] [CrossRef]
- Chow, T.T. A Review on Photovoltaic/Thermal Hybrid Solar Technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Rivero, R. Arquitetura e Clima: Acondicionamento Térmico Natural, 1st ed.; Luzzatto Editores: Porto Alegre, Brazil, 1985. [Google Scholar]
- Medeiros, C.M.; Baêta, F.d.C.; Oliveira, R.F.M.; Tinôco, I.d.F.F.; Albino, L.F.T.; Cecon, P.R. Efeitos Da Temperatura, Umidade Relativa e Velocidade Do Ar Em Frangos de Corte. Eng. Agric. 2005, 13, 277–286. [Google Scholar]
- Queiroz, M.L.d.V.; Barbosa Filho, J.A.D.; Sales, F.A.d.L.; de Lima, L.R.; Duarte, L.M. Spatial Variability in a Broiler Shed Environment with Fogging System. Resvista Ciência Agronômica 2017, 48, 586–595. [Google Scholar] [CrossRef]
- Furtado, D.A.; de Azevedo, P.V.; Tinôco, I.d.F.F. Análise Do Conforto Térmico Em Galpões Avícolas Com Diferentes Sistemas de Acondicionamento. Rev. Bras. De Eng. Agrícola E Ambient. 2003, 7, 559–564. [Google Scholar] [CrossRef]
- Tuck, N.W.; Zaki, S.A.; Hagishima, A.; Rijal, H.B.; Yakub, F. Affordable Retrofitting Methods to Achieve Thermal Comfort for a Terrace House in Malaysia with a Hot–Humid Climate. Energy Build. 2020, 223, 110072. [Google Scholar] [CrossRef]
- Zingre, K.T.; Wan, M.P.; Wong, S.K.; Toh, W.B.T.; Lee, I.Y.L. Modelling of Cool Roof Performance for Double-Skin Roofs in Tropical Climate. Energy 2015, 82, 813–826. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.P.; Sousa, F.C.d.; Dallago, G.M.; Silva, J.R.; Campos, P.H.R.F.; Guimarães, M.C.d.C.; Baêta, F.d.C. Thermal Environment and Animal Comfort of Aviary Prototypes with Photovoltaic Solar Panel on the Roof. Energies 2023, 16, 2504. https://doi.org/10.3390/en16052504
Oliveira CP, Sousa FCd, Dallago GM, Silva JR, Campos PHRF, Guimarães MCdC, Baêta FdC. Thermal Environment and Animal Comfort of Aviary Prototypes with Photovoltaic Solar Panel on the Roof. Energies. 2023; 16(5):2504. https://doi.org/10.3390/en16052504
Chicago/Turabian StyleOliveira, Charles Paranhos, Fernanda Campos de Sousa, Gabriel Machado Dallago, Jocássia Reis Silva, Paulo Henrique Reis Furtado Campos, Maria Clara de Carvalho Guimarães, and Fernando da Costa Baêta. 2023. "Thermal Environment and Animal Comfort of Aviary Prototypes with Photovoltaic Solar Panel on the Roof" Energies 16, no. 5: 2504. https://doi.org/10.3390/en16052504
APA StyleOliveira, C. P., Sousa, F. C. d., Dallago, G. M., Silva, J. R., Campos, P. H. R. F., Guimarães, M. C. d. C., & Baêta, F. d. C. (2023). Thermal Environment and Animal Comfort of Aviary Prototypes with Photovoltaic Solar Panel on the Roof. Energies, 16(5), 2504. https://doi.org/10.3390/en16052504