Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation
2.3. Methods
2.3.1. Catalyst Characterization
2.3.2. In Situ Catalytic Pyrolysis Experiment
2.4. Upgraded Bio-Oil Characterization
2.4.1. Fractionations of Bio-Oil
2.4.2. GCMS Analysis of Upgraded Bio-Oil Fractionations
2.4.3. Water Content, Viscosity, pH, and Heating Values
2.4.4. Elemental Analysis (CHNO)
2.4.5. Thermogravimetric Analysis
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Product Yields
3.3. Physical Properties of Upgraded Bio-Oil
3.3.1. Elemental Analysis
3.3.2. Water Content, Viscosity, pH, and Heating Values
3.4. GCMS Analysis of Different Fractions of Upgraded Bio-Oil Samples
3.5. Thermogravimetric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Echresh, Z.; Abdulkhani, A.; Saha, B. A comparative structural characterisation of different lignin biomass. In Proceedings of the ECOS 2019—32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wrocław, Poland, 23–28 June 2019. [Google Scholar]
- Jeong, Y.W.; Choi, S.K.; Choi, Y.S.; Kim, S.J. Production of biocrude-oil from swine manure by fast pyrolysis and analysis of its characteristics. Renew. Energy 2015, 79, 14–19. [Google Scholar] [CrossRef]
- Zadeh, Z.E.; Abdulkhani, A.; Saha, B. Characterization of fast pyrolysis bio-oil from hardwood and softwood lignin. Energies 2020, 13, 887. [Google Scholar] [CrossRef] [Green Version]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 116, 32–46. [Google Scholar] [CrossRef]
- Caroca, E.; Serrano, A.; Borja, R.; Jiménez, A.; Carvajal, A.; Braga, A.; Rodriguez-Gutierrez, G.; Fermoso, F.G. Influence of phenols and furans released during thermal pretreatment of olive mill solid waste on its anaerobic digestion. Waste Manag. 2021, 120, 202–208. [Google Scholar] [CrossRef]
- Xu, D.; Lin, J.; Ma, R.; Hou, J.; Sun, S.; Ma, N. Fast pyrolysis of algae model compounds for bio-oil: In-depth insights into the volatile interaction mechanisms based on DFT calculations. Fuel 2023, 333, 126449. [Google Scholar] [CrossRef]
- Zeumer, R.; Galhano, V.; Monteiro, M.S.; Knopf, B.; Meisterjahn, B.; Amadeu, M.M.; Loureiro, S.; Lopes, I.; Schlechtriem, C. Jo l P. Sci. Total Environ. 2020, 723, 137974. [Google Scholar] [CrossRef]
- Li, P.; Shi, X.; Jiang, L.; Wang, X.; Song, J.; Fang, S.; Bai, J.; Chang, C.; Pang, S. Synergistic enhancement of bio-oil quality through hydrochloric or acetic acid-washing pretreatment and catalytic fast pyrolysis of biomass. Ind. Crops Prod. 2022, 187, 115474. [Google Scholar] [CrossRef]
- Li, C.; Nishu; Yellezuome, D.; Li, Y.; Liu, R.; Cai, J. Enhancing bio-aromatics yield in bio-oil from catalytic fast pyrolysis of bamboo residues over bi-metallic catalyst and reaction mechanism based on quantum computing. Fuel 2023, 336, 127158. [Google Scholar] [CrossRef]
- Alcazar-Ruiz, A.; Dorado, F.; Sanchez-Silva, L. Bio-phenolic compounds production through fast pyrolysis: Demineralizing olive pomace pretreatments. Food. Bioprod. Process. 2023, 137, 200–213. [Google Scholar] [CrossRef]
- Trubetskaya, A.; von Berg, L.; Johnson, R.; Moore, S.; Leahy, J.J.; Han, Y.; Lange, H.; Anca-Couce, A. Production and characterization of bio-oil from fluidized bed pyrolysis of olive stones, pinewood, and torrefied feedstock. J. Anal. Appl. Pyrolysis 2023, 169, 105841. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, B.; Liu, C.; Aldeen, A.S.; Mwenya, S.; Zhang, H. A minireview on catalytic fast co-pyrolysis of lignocellulosic biomass for bio-oil upgrading via enhancing monocyclic aromatics. J. Anal. Appl. Pyrolysis 2022, 164, 105544. [Google Scholar] [CrossRef]
- Gao, W.; Wan, Y.; Zhao, S.; Akhtar, M.A.; Ding, K.; Li, B.; Wu, Y.; Zhang, S.; Zhang, S. Effects of furanic compounds from biomass pyrolysis on ketonization reaction: The role of oxygenated side groups. Fuel 2023, 332, 1371–1380. [Google Scholar] [CrossRef]
- Douvartzides, S.; Charisiou, N.D.; Wang, W.; Papadakis, V.G.; Polychronopoulou, K.; Goula, M.A. Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research, Renew. Energy 2022, 189, 315–338. [Google Scholar] [CrossRef]
- Mendoza-Martinez, C.; Sermyagina, E.; Saari, J.; Ramos, V.; Vakkilainen, E.; Cardoso, M.; Rocha, E.A. Fast Oxidative Pyrolysis of Eucalyptus Wood Residues to Replace Fossil Oil in Pulp Industry. SSRN Electron. J. 2022, 263, 126076. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Khan, M.M.K. Fast pyrolysis of macadamia nutshell in an auger reactor: Process optimization using response surface methodology (RSM) and oil characterization. Fuel 2022, 333, 123708. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Jiang, Y.; Zhang, L.; Zhang, S.; Ding, K.; Li, B.; Wang, S.; Hu, X. Staged pyrolysis of biomass to probe the evolution of fractions of bio-oil. Energy 2023, 263, 125873. [Google Scholar] [CrossRef]
- Qing, M.; Long, Y.; Liu, L.; Yi, Y.; Li, W.; He, R.; Yin, Y.; Tian, H.; He, J.; Cheng, S.; et al. Pyrolysis of the food waste collected from catering and households under different temperatures: Assessing the evolution of char structure and bio-oil composition. J. Anal. Appl. Pyrolysis 2022, 164, 105543. [Google Scholar] [CrossRef]
- Tran, Q.K.; Le, M.L.; Ly, H.V.; Woo, H.C.; Kim, J.; Kim, S.S. Fast pyrolysis of pitch pine biomass in a bubbling fluidized-bed reactor for bio-oil production. J. Ind. Eng. Chem. 2021, 98, 168–179. [Google Scholar] [CrossRef]
- Taib, R.M.; Abdullah, N.; Aziz, N.S.M. Bio-oil derived from banana pseudo-stem via fast pyrolysis process. Biomass Bioenergy 2021, 148, 106034. [Google Scholar] [CrossRef]
- Shah, M.A.; Khan, N.S.; Kumar, V.; Qurashi, A. Pyrolysis of walnut shell residues in a fixed bed reactor: Effects of process parameters, chemical and functional properties of bio-oil. J. Environ. Chem. Eng. 2021, 9, 11–13. [Google Scholar] [CrossRef]
- Hernando, H.; Gómez-Pozuelo, G.; Botas, J.A.; Serrano, D.P. Evaluating fractional pyrolysis for bio-oil speciation into holocellulose and lignin derived compounds. J. Anal. Appl. Pyrolysis 2021, 154, 105019. [Google Scholar] [CrossRef]
- Li, Y.; Shaheen, S.M.; Rinklebe, J.; Ma, N.L.; Yang, Y.; Ashraf, M.A.; Chen, X.; Peng, W.X. Pyrolysis of Aesculus chinensis Bunge Seed with Fe2O3/NiO as nanocatalysts for the production of bio-oil material. J. Hazard. Mater. 2021, 416, 126012. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, R.I.; Yeguerman, C.; Jesser, E.; Gutierrez, V.S.; Volpe, M.A.; González, J.O.W. Sunflower seed hulls waste as a novel source of insecticidal product: Pyrolysis bio-oil bioactivity on insect pests of stored grains and products. J. Clean. Prod. 2021, 287, 125000. [Google Scholar] [CrossRef]
- Syazaidah, I.; Bakar, M.S.A.; Reza, M.S.; Azad, A.K. Ex-situ catalytic pyrolysis of chicken litter for bio-oil production: Experiment and characterization. J. Environ. Manag. 2021, 297, 113407. [Google Scholar] [CrossRef] [PubMed]
- Church, A.L.; Hu, M.Z.; Lee, S.J.; Wang, H.; Liu, J. Selective adsorption removal of carbonyl molecular foulants from real fast pyrolysis bio-oils. Biomass Bioenergy 2020, 136, 105522. [Google Scholar] [CrossRef]
- Soka, O.; Oyekola, O. A feasibility assessment of the production of char using the slow pyrolysis process. Heliyon 2020, 6, e04346. [Google Scholar] [CrossRef]
- Kim, Y.M.; Jae, J.; Myung, S.; Sung, B.H.; Dong, J.I.; Park, Y.K. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata. Bioresour. Technol. 2016, 219, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Patel, S.K.S.; Shanmugam, R.; Lee, J.K. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresour. Technol. 2021, 326, 124737. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Zadeh, Z.E.; Abdulkhani, A.; Aboelazayem, O.; Saha, B. Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading. Processes 2020, 8, 799. [Google Scholar] [CrossRef]
- Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B.; Rahimpour, M. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ. Sci. 2014, 7, 103–129. [Google Scholar] [CrossRef]
- Liu, S.; Wu, G.; Gao, Y.; Li, B.; Feng, Y.; Zhou, J.; Hu, X.; Huang, Y.; Zhang, S.; Zhang, H. Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar. Renew. Energy 2021, 174, 517–535. [Google Scholar] [CrossRef]
- Ansari, K.B.; Kamal, B.; Beg, S.; Khan, M.W.; Khan, M.S.; Al Mesfer, M.K.; Danish, M. Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review. Renew. Sustain. Energy Rev. 2021, 150, 111454. [Google Scholar] [CrossRef]
- Dorado, C.; Mullen, C.A.; Boateng, A.A. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics. ACS Sustain. Chem. Eng. 2014, 2, 301–311. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, Z.; Sun, J.; Wang, Q. Recent progress of catalytic pyrolysis of biomass by HZSM-5. Cuihua Xuebao/Chin. J. Catal. 2013, 34, 641–650. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, D.; Lei, H.; Villota, E.; Ruan, R. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Appl. Energy 2019, 251, 113337. [Google Scholar] [CrossRef]
- Apunda, M.O.; Ogenga, D. Catalytic hydrothermal upgrading of pyrolysis oil. Open Sci. J. 2016, 1, 28–36. [Google Scholar] [CrossRef]
- Sharma, R.K.; Bakhshi, N.N. Catalytic Upgrading of Pyrolysis Oil. Energy Fuels 1993, 7, 306–314. [Google Scholar] [CrossRef]
- Stephanidis, S.; Nitsos, C.; Kalogiannis, K.; Iliopoulou, E.F.; Lappas, A.A.; Triantafyllidis, K.S. Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: Effect of hydrothermal pre-treatment of biomass. Catal. Today 2011, 167, 37–45. [Google Scholar] [CrossRef]
- Tursunov, O.; Kustov, L.; Tilyabaev, Z. Catalytic activity of H-ZSM-5 and Cu-HZSM-5 zeolites of medium SiO2/Al2O3 ratio in conversion of n-hexane to aromatics. J. Pet. Sci. Eng. 2019, 180, 773–778. [Google Scholar] [CrossRef]
- Zadeh, Z.E.; Abdulkhani, A.; Saha, B. A comparative production and characterisation of fast pyrolysis bio-oil from Populus and Spruce woods. Energy 2021, 214, 118930. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, F.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z.; Gu, J. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. J. Anal. Appl. Pyrolysis 2017, 134, 641–646. [Google Scholar] [CrossRef]
- Casoni, A.I.; Hoch, P.M.; Volpe, M.A.; Gutierrez, V.S. Catalytic conversion of furfural from pyrolysis of sunflower seed hulls for producing bio-based furfuryl alcohol. J. Clean. Prod. 2018, 178, 237–246. [Google Scholar] [CrossRef]
- Rollmann, L.D.; Walsh, D.E. Shape Selectivity and Carbon Formation in Zeolites. J. Catal. 1979, 56, 139–140. [Google Scholar] [CrossRef]
- Csicsery, S.M. Shape-selective catalysis in zeolites. Zeolites 1984, 4, 116–126. [Google Scholar] [CrossRef]
- Corma, A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chem. Rev. 1995, 95, 559–614. [Google Scholar] [CrossRef]
- Chen, N.Y.; Garwood, W.E. Industrial Application of Shape-Selective Catalysis. Catal. Rev. Eng. 1986, 28, 185–264. [Google Scholar] [CrossRef]
- Guda, V.K.; Toghiani, H. Altering bio-oil composition by catalytic treatment of pine wood pyrolysis vapors over zeolites using an auger—Packed bed integrated reactor system. Biofuel Res. J. 2016, 3, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Farizul, H.K.; Amin, N.A.S.; Suhardy, D.; Azhar, S.S. Catalytic Conversion of RBD Palm Oil to Gasoline: The Effect of Silica–alumina Ratio in HZSM–5. J. Teknol. 2007, 47, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Dorrestijn, E.; Kranenburg, M.; Poinsot, D.; Mulder, P. Lignin depolymerization in hydrogen-donor solvents. Holzforschung 1999, 53, 611–616. [Google Scholar] [CrossRef]
- Pin, T.C.; Nascimento, V.M.; Costa, A.C.; Pu, Y.; Ragauskas, A.J.; Rabelo, S.C. Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renew. Energy. 2020, 161, 579–592. [Google Scholar] [CrossRef]
- Abdulkhani, A.; Siahrang, M.; Zadeh, Z.E.; Hedjazi, S.; Torkameh, S.; Faezipour, M. Direct catalytic conversion of bagasse fibers to furan building blocks in organic and ionic solvents. Biomass Convers. Biorefinery 2021, 1–29. [Google Scholar] [CrossRef]
- Ha, J.M.; Hwang, K.R.; Kim, Y.M.; Jae, J.; Kim, K.H.; Lee, H.W.; Kim, J.Y.; Park, Y.K. Recent progress in the thermal and catalytic conversion of lignin. Renew. Sustain. Energy Rev. 2019, 111, 422–441. [Google Scholar] [CrossRef]
No. | Feedstock | Temperature (°C) | Bio-Oil Yield | Catalyst | Composition | Reference |
---|---|---|---|---|---|---|
1 | Algal biomass | - | - | - | pyrazines, furans, and pyridines | [6] |
2 | Sisal residue | 450 | - | - | fats, waxes, alkaloids, proteins, phenolics, simple sugars, pectins, gums, and resins | [7] |
3 | Peanut shells | 600 | - | - | ketones and anhydro sugars, aromatics | [8] |
4 | Bamboo residues | - | 93.83 mg/g | H-ZSM-5 | Aromatics (2-Methoxy-4-vinylphenol) | [9] |
5 | Olive pomace | 340 | 36.9 wt% | - | Phenolics | [10] |
6 | Olive stones | 600 | - | - | Guaiacol and 2-methoxy-4-methyl substituted phenol | [11] |
7 | Lignocellulosic biomass | - | - | H-ZSM-5 | monocyclic aromatics | [12] |
8 | Biomass | - | 47–52 wt% | CeO2 | Furfural, furfur alcohol, furan | [13] |
9 | Agricultural residues | - | - | - | benzene, toluene, xylene, ethene, propene | [14] |
10 | Eucalyptus residues | 480 | 30 wt% | - | Hydrocarbons | [15] |
11 | Macadamia Nutshell | 471.21 | 43.37 wt% | - | phenol, aromatics, and alcohol | [16] |
12 | Poplar sawdust, cellulose, and lignin | 250–550 | - | - | anhydrate sugars, ketones, aldehydes, and phenolics | [17] |
13 | Food waste | 400 | 34.90 wt% | - | N-compounds, hydrocarbons, and carboxylic acid | [18] |
14 | Pitch pine biomass | 500 | 65.5 wt% | - | levoglucosan, furfural, and guaiacol | [19] |
15 | Banana pseudo-stem | 500 | 39.4 wt% | - | phenols | [20] |
16 | Walnut shells (WS) | 550 | 44.7 wt% | - | feedstock for furnaces | [21] |
17 | lignocellulosic biomass | 700 | - | - | aromatics | [22] |
18 | Aesculus chinensis Bunge Seed | - | - | Fe2O3 and NiO | 1-hydroxy-2-propanone, acetic acid, and furfural | [23] |
19 | sunflower seed hulls (SSH) | 450 | 33 wt% | furfural enriched bio-liquid | [24] | |
20 | Chicken litter | 500 | - | dolomite and ZSM-5 | phenolic compounds | [25] |
Sample ID | Product Yields (%) | |||||
---|---|---|---|---|---|---|
Bio-Oil | Biochar | Syngas | ||||
NC | C | NC | C | NC | C | |
Lignin-673 K | 24.3 | 30.1 | 56.2 | 51.7 | 19.4 | 18.1 |
Lignin-773 K | 30.2 | 31.4 | 58.0 | 53.5 | 11.7 | 15.0 |
Lignin-873 K | 26.0 | 25.5 | 52.2 | 50.8 | 21.7 | 23.6 |
S-wood-673 K | 57.4 | 50.9 | 23.2 | 24.3 | 19.3 | 24.7 |
S-wood-773 K | 65.4 | 61.3 | 18.5 | 18.2 | 16.0 | 20.4 |
S-wood-873 K | 71.1 | 69.9 | 11.4 | 13.0 | 17.3 | 17.0 |
Sample ID | C | H | S | O | C/H | O/C | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | C | NC | C | NC | NC | C | NC | C | NC | C | |
Lignin-673 K | 47.7 | 35.6 | 6.9 | 5.4 | 1.1 | 44.3 | 29.5 | 6.9 | 6.6 | 0.9 | 0.8 |
Lignin-773 K | 68.5 | 63.8 | 6.6 | 6.9 | 2.0 | 22.9 | 14.6 | 10.3 | 9.2 | 0.3 | 0.2 |
Lignin-873 K | 60.8 | 64.4 | 7.1 | 7.0 | 1.5 | 30.5 | 28.6 | 8.5 | 9.2 | 0.5 | 0.4 |
S-wood-673 K | 32.5 | 50.0 | 6.6 | 7.4 | 0.6 | 60.4 | 42.6 | 5.0 | 6.8 | 1.9 | 0.9 |
S-wood-773 K | 30.3 | 47.2 | 6.5 | 7.1 | 0.4 | 62.8 | 45.7 | 4.7 | 6.6 | 2.1 | 1.0 |
S-wood-873 K | 55.8 | 46.3 | 6.3 | 7.3 | 0.7 | 37.2 | 36.4 | 8.9 | 6.3 | 0.7 | 0.8 |
Sample ID | Water Content (%) | pH | Viscosity (cP) | |||
---|---|---|---|---|---|---|
NC | C | NC | C | NC | C | |
Lignin-673 K | 5.3 | 11.2 | 5.0 | 5.6 | 20.4 | 33.6 |
Lignin-773 K | 4.8 | 10.4 | 5.3 | 5.7 | 28.4 | 36.2 |
Lignin-873 K | 7.2 | 14.2 | 5.6 | 6.2 | 74.9 | 58.9 |
S-wood-673 K | 32.5 | 56.7 | 2.3 | 2.6 | 80.5 | 37.1 |
S-wood-773 K | 26.5 | 48.6 | 2.4 | 2.7 | 86.6 | 28.3 |
S-wood-873 K | 31.2 | 41.8 | 2.5 | 3.0 | 95.4 | 21.9 |
No. | Retention Time | Relative Intensity | Compound | Chemical Structure | ||
---|---|---|---|---|---|---|
673 K | 773 K | 873 K | ||||
1 | 14.3 | 17.5 | 8.6 | 5.1 | Guaiacol | |
2 | 16.4 | 1.4 | 11.4 | 6.4 | p-Creosol | |
3 | 17.6 | 20.3 | 4.8 | 1.7 | o-Xylenol | |
4 | 19.5 | 14.7 | 7.7 | 2.2 | p-Ethylguaiacol | |
5 | 21.7 | 4.1 | 1.8 | - | Cerulignol | |
6 | 22.3 | 1.8 | 2.8 | - | 3,4-Dimethoxyphenol | |
7 | 24.2 | 4.9 | 3.4 | 1.9 | Eugenol | |
8 | 26.6 | 2.1 | 1.6 | - | Vanillin | |
9 | 27.7 | 2.9 | 2.2 | - | Guaiacylacetone | |
10 | 30.5 | 2.6 | 2.0 | 1.0 | Mandelic acid | |
11 | 43.2 | 2.2 | 1.5 | - | Vanillyl alcohol |
No. | Retention Time | Relative Intensity | Compound | Chemical Structure | ||
---|---|---|---|---|---|---|
673 K | 773 K | 873 K | ||||
1 | 3.6 | 21.5 | - | - | Fumaric acid | |
2 | 14.0 | 2.4 | 5.1 | 6.9 | Rosolic acid | |
3 | 14.3 | - | 7.6 | 6.2 | Mequinol | |
4 | 16.3 | - | - | 4.4 | m-Cresol | |
5 | 17.2 | 9.1 | 10.5 | 8.7 | 4-Ethylcatechol | |
6 | 17.6 | - | 5.1 | 6.2 | o-Xylenol | |
7 | 19.5 | 5.2 | 6.5 | 4.7 | p-Ethylguaiacol | |
8 | 19.9 | - | 2.0 | 1.9 | Ethyl-m-cresol | |
9 | 22.4 | - | 6.9 | 3.7 | Syringol | |
10 | 24.3 | 1.9 | 3.1 | 4.9 | Eugenol | |
11 | 26.7 | - | 1.8 | 1.1 | Acetophenone | |
12 | 27.7 | - | 1.5 | 1.4 | p-Propylguaiacol | |
13 | 30.5 | - | 2.9 | 1.8 | Mandelic acid |
No. | Retention Time | Relative Intensity | Compound | Chemical Structure | ||
---|---|---|---|---|---|---|
673 K | 773 K | 873 K | ||||
1 | 5.9 | 4.3 | - | - | m-Xylol | |
2 | 6.9 | 4.8 | 1.7 | 5.2 | Hydroxymethylfurfural | |
3 | 8.3 | 1.9 | - | 1.9 | Pyruvic acid | |
4 | 13.2 | 1.8 | 2.5 | Octene | ||
5 | 14.2 | 5.4 | 8.4 | 6.8 | p-Guaiacol | |
6 | 16.4 | 4.2 | 1.4 | 5.6 | m-Cresol | |
7 | 17.0 | - | 3.0 | 1.5 | Cyclopentane | |
8 | 17.1 | 11.3 | 13.5 | - | p-Cresol | |
9 | 19.4 | 4.8 | 7.7 | - | p-Ethylguaiacol | |
10 | 24.2 | 3.0 | 4.8 | 1.3 | Eugenol | |
11 | 26.6 | - | 1.6 | - | Vanillin | |
12 | 27.7 | - | 2.3 | - | Guaiacylacetone | |
13 | 30.1 | - | 2.3 | - | Levoglucosan |
No. | Retention Time | Relative Intensity | Compound | Chemical Structure | ||
---|---|---|---|---|---|---|
673 K | 773 K | 873 K | ||||
1 | 3.4 | - | - | 2.7 | Acetic acid | |
2 | 6.6 | - | 1.3 | - | Glutaric acid | |
3 | 13.3 | 4.1 | 3.5 | 2.0 | Cyclopentanone | |
4 | 14.0 | 2.0 | 2.1 | 4.3 | Phenol | |
5 | 14.3 | 4.6 | 3.7 | 2.1 | 5-Ethylfurfural | |
6 | 15.7 | 1.2 | - | - | 4-Ethylcyclohexanone | |
7 | 16.4 | 1.4 | - | 2.4 | m-Cresol | |
8 | 17.2 | 12.9 | 12.0 | 4.9 | 4-Ethylcatechol | |
9 | 19.4 | 3.5 | 2.5 | 2.2 | p-Ethylguaiacol | |
10 | 20.3 | 1.5 | 1.7 | - | Pentenoic acid | |
11 | 22.0 | 1.3 | 1.4 | - | Furfural | |
12 | 27.7 | 1.7 | 1.8 | - | Guaiacylacetone | |
13 | 29.6 | 1.5 | 2.3 | - | Levulinic acid | |
14 | 30.4 | 2.1 | 6.2 | 2.6 | Levoglucosan |
Sample ID | Onset Temperature (K) | Endset Temperature (K) | Max Degradation Temperature (K) | Residual Mass (%) |
---|---|---|---|---|
Lignin | 445 | 863 | 668 | 40 |
Lignin-673 K | 563 | 704 | 616 | 30 |
Lignin-773 K | 461 | 562 | 491 | 37 |
Lignin-873 K | 401 | 528 | 453 | 24 |
Softwood chips | 393 | 864 | 643 | 33 |
S-wood-673 K | 562 | 678 | 597 | 40 |
S-wood-773 K | 426 | 652 | 459 | 33 |
S-wood-873 K | 401 | 606 | 447 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkhani, A.; Zadeh, Z.E.; Bawa, S.G.; Sun, F.; Madadi, M.; Zhang, X.; Saha, B. Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass. Energies 2023, 16, 2715. https://doi.org/10.3390/en16062715
Abdulkhani A, Zadeh ZE, Bawa SG, Sun F, Madadi M, Zhang X, Saha B. Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass. Energies. 2023; 16(6):2715. https://doi.org/10.3390/en16062715
Chicago/Turabian StyleAbdulkhani, Ali, Zahra Echresh Zadeh, Solomon Gajere Bawa, Fubao Sun, Meysam Madadi, Xueming Zhang, and Basudeb Saha. 2023. "Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass" Energies 16, no. 6: 2715. https://doi.org/10.3390/en16062715
APA StyleAbdulkhani, A., Zadeh, Z. E., Bawa, S. G., Sun, F., Madadi, M., Zhang, X., & Saha, B. (2023). Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass. Energies, 16(6), 2715. https://doi.org/10.3390/en16062715