Determination of Heat and Mass Transport Correlations for Hollow Membrane Distillation Modules
Abstract
:1. Introduction
2. Materials and Methods
2.1. MD Test
2.2. Model Development
- Heat transfer from the feed bulk to the membrane surface with the rate Qf;
- Heat transfer across the membrane with the rate Qm;
- Heat transfer from the boundary layer to the bulk solution on the permeate side is at a rate of Qp.
2.3. Variable Parameters
3. Results and Discussion
3.1. Experimental Mass Fluxes and Outlet Temperatures
3.2. Evaluation of the Model Predictions
3.3. Selection of the Best Fitting Model
4. Observed Tendencies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Math symbols | |
Tortuosity | |
Thermal conductivity | |
Thermal conductivity of polymer | |
Thermal conductivity of air | |
Mass flux | |
Vapour pressure | |
Membrane characteristic parameter | |
Nominal pore size | |
Mean free path of water vapour molecules | |
Knudsen number | |
Membrane thickness | |
Membrane porosity | |
Pore radius | |
Gas constant | |
Temperature | |
Diffusivity of water vapour | |
Molecular weight | |
Antoine’s equation coefficients | |
Heat flux | |
Heat transfer coefficient | |
Equivalent diameter | |
Outer fiber diameter | |
Average distance between fibers | |
Latent heat of water vapour | |
Module length | |
Isobaric heat capacity |
Appendix A
MODEL NO. | R2(J) | R2(Tf,out) | R2(Tp,out) | |
---|---|---|---|---|
231 | 0.970 | 0.976 | 0.951 | 0.966 |
131 | 0.911 | 0.976 | 0.948 | 0.945 |
251 | 0.951 | 0.973 | 0.907 | 0.944 |
151 | 0.880 | 0.973 | 0.903 | 0.918 |
691 | 0.942 | 0.970 | 0.805 | 0.906 |
621 | 0.905 | 0.971 | 0.838 | 0.905 |
233 | 0.989 | 0.965 | 0.758 | 0.904 |
681 | 0.923 | 0.970 | 0.817 | 0.903 |
661 | 0.892 | 0.970 | 0.836 | 0.899 |
491 | 0.908 | 0.970 | 0.808 | 0.895 |
641 | 0.924 | 0.966 | 0.783 | 0.891 |
133 | 0.959 | 0.964 | 0.746 | 0.890 |
481 | 0.880 | 0.970 | 0.820 | 0.890 |
421 | 0.856 | 0.971 | 0.840 | 0.889 |
611 | 0.939 | 0.964 | 0.756 | 0.886 |
461 | 0.837 | 0.970 | 0.839 | 0.882 |
441 | 0.880 | 0.966 | 0.785 | 0.877 |
411 | 0.901 | 0.965 | 0.758 | 0.875 |
253 | 0.984 | 0.959 | 0.657 | 0.866 |
671 | 0.971 | 0.959 | 0.658 | 0.863 |
471 | 0.952 | 0.959 | 0.660 | 0.857 |
261 | 0.780 | 0.969 | 0.809 | 0.853 |
153 | 0.941 | 0.958 | 0.645 | 0.848 |
221 | 0.760 | 0.970 | 0.811 | 0.847 |
791 | 0.756 | 0.970 | 0.815 | 0.847 |
781 | 0.701 | 0.970 | 0.827 | 0.833 |
281 | 0.737 | 0.969 | 0.791 | 0.832 |
721 | 0.657 | 0.971 | 0.847 | 0.825 |
771 | 0.846 | 0.959 | 0.666 | 0.824 |
711 | 0.739 | 0.965 | 0.766 | 0.823 |
241 | 0.745 | 0.965 | 0.756 | 0.822 |
741 | 0.700 | 0.966 | 0.792 | 0.820 |
291 | 0.699 | 0.969 | 0.779 | 0.816 |
761 | 0.623 | 0.970 | 0.846 | 0.813 |
161 | 0.664 | 0.969 | 0.805 | 0.813 |
651 | 0.524 | 0.974 | 0.933 | 0.811 |
121 | 0.642 | 0.970 | 0.807 | 0.806 |
211 | 0.722 | 0.964 | 0.730 | 0.806 |
181 | 0.615 | 0.969 | 0.787 | 0.790 |
391 | 0.569 | 0.970 | 0.821 | 0.787 |
263 | 0.882 | 0.952 | 0.516 | 0.783 |
141 | 0.624 | 0.965 | 0.752 | 0.780 |
223 | 0.867 | 0.953 | 0.519 | 0.780 |
371 | 0.703 | 0.959 | 0.671 | 0.778 |
631 | 0.388 | 0.976 | 0.965 | 0.776 |
693 | 0.834 | 0.954 | 0.538 | 0.775 |
191 | 0.573 | 0.969 | 0.775 | 0.772 |
623 | 0.768 | 0.956 | 0.584 | 0.769 |
683 | 0.797 | 0.954 | 0.556 | 0.769 |
451 | 0.387 | 0.974 | 0.936 | 0.766 |
283 | 0.851 | 0.952 | 0.491 | 0.765 |
381 | 0.488 | 0.970 | 0.832 | 0.763 |
111 | 0.599 | 0.964 | 0.726 | 0.763 |
663 | 0.745 | 0.954 | 0.583 | 0.761 |
311 | 0.543 | 0.965 | 0.772 | 0.760 |
493 | 0.768 | 0.954 | 0.544 | 0.755 |
643 | 0.798 | 0.950 | 0.512 | 0.753 |
591 | 0.463 | 0.970 | 0.823 | 0.752 |
243 | 0.858 | 0.948 | 0.448 | 0.751 |
571 | 0.620 | 0.959 | 0.674 | 0.751 |
613 | 0.825 | 0.948 | 0.478 | 0.750 |
341 | 0.486 | 0.966 | 0.798 | 0.750 |
293 | 0.824 | 0.951 | 0.474 | 0.750 |
321 | 0.425 | 0.971 | 0.853 | 0.750 |
163 | 0.790 | 0.952 | 0.506 | 0.749 |
483 | 0.721 | 0.954 | 0.562 | 0.746 |
271 | 0.642 | 0.959 | 0.636 | 0.746 |
123 | 0.772 | 0.953 | 0.508 | 0.744 |
423 | 0.684 | 0.956 | 0.591 | 0.744 |
213 | 0.842 | 0.946 | 0.416 | 0.735 |
463 | 0.656 | 0.955 | 0.589 | 0.733 |
673 | 0.897 | 0.941 | 0.362 | 0.733 |
361 | 0.376 | 0.970 | 0.852 | 0.733 |
443 | 0.721 | 0.950 | 0.518 | 0.730 |
413 | 0.755 | 0.948 | 0.484 | 0.729 |
183 | 0.752 | 0.951 | 0.481 | 0.728 |
581 | 0.369 | 0.970 | 0.835 | 0.725 |
511 | 0.433 | 0.965 | 0.774 | 0.724 |
431 | 0.225 | 0.976 | 0.966 | 0.722 |
473 | 0.847 | 0.941 | 0.368 | 0.719 |
143 | 0.760 | 0.947 | 0.438 | 0.715 |
193 | 0.720 | 0.951 | 0.464 | 0.712 |
541 | 0.367 | 0.966 | 0.801 | 0.711 |
521 | 0.296 | 0.971 | 0.855 | 0.708 |
171 | 0.510 | 0.959 | 0.632 | 0.700 |
113 | 0.740 | 0.945 | 0.406 | 0.697 |
561 | 0.241 | 0.970 | 0.854 | 0.688 |
793 | 0.521 | 0.955 | 0.561 | 0.679 |
273 | 0.783 | 0.940 | 0.307 | 0.677 |
773 | 0.654 | 0.942 | 0.383 | 0.660 |
783 | 0.444 | 0.955 | 0.580 | 0.660 |
653 | 0.272 | 0.962 | 0.733 | 0.656 |
723 | 0.385 | 0.956 | 0.609 | 0.650 |
713 | 0.498 | 0.949 | 0.501 | 0.649 |
743 | 0.444 | 0.951 | 0.535 | 0.643 |
173 | 0.672 | 0.939 | 0.298 | 0.636 |
633 | 0.109 | 0.968 | 0.830 | 0.636 |
763 | 0.341 | 0.955 | 0.607 | 0.634 |
232 | 0.965 | 0.918 | −0.037 | 0.615 |
751 | −0.082 | 0.974 | 0.942 | 0.611 |
132 | 0.986 | 0.916 | −0.071 | 0.610 |
453 | 0.095 | 0.962 | 0.741 | 0.599 |
393 | 0.248 | 0.955 | 0.575 | 0.593 |
373 | 0.433 | 0.942 | 0.395 | 0.590 |
252 | 0.978 | 0.911 | −0.154 | 0.578 |
433 | −0.095 | 0.968 | 0.837 | 0.570 |
152 | 0.985 | 0.910 | −0.187 | 0.569 |
383 | 0.142 | 0.956 | 0.594 | 0.564 |
313 | 0.216 | 0.949 | 0.515 | 0.560 |
573 | 0.311 | 0.942 | 0.401 | 0.551 |
343 | 0.142 | 0.951 | 0.549 | 0.547 |
323 | 0.062 | 0.957 | 0.623 | 0.547 |
593 | 0.100 | 0.955 | 0.582 | 0.546 |
731 | −0.323 | 0.976 | 0.968 | 0.541 |
363 | 0.002 | 0.956 | 0.622 | 0.527 |
262 | 0.968 | 0.903 | −0.306 | 0.522 |
222 | 0.962 | 0.904 | −0.305 | 0.520 |
583 | −0.020 | 0.956 | 0.600 | 0.512 |
513 | 0.065 | 0.949 | 0.521 | 0.512 |
282 | 0.955 | 0.903 | −0.333 | 0.508 |
292 | 0.943 | 0.902 | −0.354 | 0.497 |
162 | 0.922 | 0.902 | −0.334 | 0.497 |
242 | 0.960 | 0.899 | −0.372 | 0.496 |
543 | −0.020 | 0.951 | 0.556 | 0.496 |
122 | 0.913 | 0.903 | −0.333 | 0.494 |
523 | −0.111 | 0.957 | 0.629 | 0.492 |
212 | 0.954 | 0.897 | −0.402 | 0.483 |
182 | 0.902 | 0.902 | −0.360 | 0.481 |
142 | 0.908 | 0.898 | −0.399 | 0.469 |
563 | −0.178 | 0.956 | 0.628 | 0.469 |
192 | 0.884 | 0.901 | −0.381 | 0.468 |
112 | 0.898 | 0.896 | −0.429 | 0.455 |
351 | −0.570 | 0.974 | 0.947 | 0.451 |
272 | 0.929 | 0.892 | −0.505 | 0.439 |
692 | 0.522 | 0.910 | −0.186 | 0.415 |
753 | −0.492 | 0.963 | 0.761 | 0.411 |
172 | 0.860 | 0.891 | −0.529 | 0.407 |
682 | 0.461 | 0.910 | −0.162 | 0.403 |
622 | 0.414 | 0.912 | −0.131 | 0.399 |
672 | 0.633 | 0.898 | −0.353 | 0.393 |
612 | 0.505 | 0.904 | −0.238 | 0.390 |
642 | 0.461 | 0.906 | −0.203 | 0.388 |
662 | 0.381 | 0.911 | −0.130 | 0.387 |
492 | 0.398 | 0.910 | −0.169 | 0.380 |
551 | −0.827 | 0.974 | 0.949 | 0.366 |
482 | 0.325 | 0.911 | −0.145 | 0.364 |
472 | 0.529 | 0.898 | −0.338 | 0.363 |
422 | 0.271 | 0.913 | −0.113 | 0.357 |
412 | 0.377 | 0.905 | −0.221 | 0.353 |
331 | −0.887 | 0.976 | 0.969 | 0.353 |
733 | −0.766 | 0.969 | 0.855 | 0.352 |
442 | 0.326 | 0.907 | −0.186 | 0.349 |
462 | 0.231 | 0.912 | −0.112 | 0.343 |
772 | 0.176 | 0.900 | −0.297 | 0.260 |
792 | −0.019 | 0.912 | −0.123 | 0.257 |
531 | −1.183 | 0.977 | 0.969 | 0.254 |
652 | −0.222 | 0.920 | 0.050 | 0.249 |
632 | −0.411 | 0.927 | 0.177 | 0.231 |
782 | −0.126 | 0.913 | −0.099 | 0.230 |
712 | −0.050 | 0.907 | −0.177 | 0.227 |
353 | −1.087 | 0.963 | 0.777 | 0.218 |
742 | −0.125 | 0.909 | −0.141 | 0.214 |
722 | −0.206 | 0.915 | −0.066 | 0.214 |
762 | −0.263 | 0.914 | −0.065 | 0.195 |
452 | −0.465 | 0.921 | 0.071 | 0.175 |
372 | −0.186 | 0.901 | −0.264 | 0.150 |
432 | −0.684 | 0.928 | 0.198 | 0.147 |
333 | −1.444 | 0.969 | 0.869 | 0.131 |
392 | −0.444 | 0.914 | −0.087 | 0.128 |
553 | −1.396 | 0.964 | 0.784 | 0.117 |
312 | −0.483 | 0.908 | −0.141 | 0.095 |
572 | −0.375 | 0.902 | −0.249 | 0.092 |
382 | −0.583 | 0.915 | −0.062 | 0.090 |
342 | −0.580 | 0.910 | −0.105 | 0.075 |
322 | −0.687 | 0.916 | −0.029 | 0.067 |
592 | −0.666 | 0.915 | −0.071 | 0.059 |
362 | −0.761 | 0.915 | −0.027 | 0.042 |
512 | −0.708 | 0.909 | −0.125 | 0.025 |
582 | −0.820 | 0.916 | −0.045 | 0.017 |
533 | −1.796 | 0.970 | 0.875 | 0.016 |
542 | −0.817 | 0.911 | −0.088 | 0.002 |
522 | −0.937 | 0.917 | −0.011 | −0.010 |
562 | −1.019 | 0.916 | −0.010 | −0.037 |
752 | −1.250 | 0.923 | 0.125 | −0.067 |
732 | −1.560 | 0.931 | 0.254 | −0.125 |
352 | −2.023 | 0.925 | 0.169 | −0.309 |
332 | −2.422 | 0.933 | 0.300 | −0.397 |
552 | −2.419 | 0.926 | 0.189 | −0.435 |
532 | −2.866 | 0.934 | 0.320 | −0.537 |
References
- Alklaibi, A.M.; Lior, N. Membrane-Distillation Desalination: Status and Potential. Desalination 2005, 171, 111–131. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Hilal, N. Membrane Distillation—Principles, Applications, Configurations, Design, and Implementation. In Emerging Technologies for Sustainable Desalination Handbook; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 55–106. [Google Scholar]
- Khayet, M. Membranes and Theoretical Modeling of Membrane Distillation: A Review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [Google Scholar] [CrossRef]
- Wu, Y.; Kong, Y.; Liu, J.; Zhang, J.; Xu, J. An Experimental Study on Membrane Distillation-Crystallization for Treating Waste Water in Taurine Production. Desalination 1991, 80, 235–242. [Google Scholar] [CrossRef]
- Edwie, F.; Chung, T.-S. Development of Simultaneous Membrane Distillation–Crystallization (SMDC) Technology for Treatment of Saturated Brine. Chem. Eng. Sci. 2013, 98, 160–172. [Google Scholar] [CrossRef]
- Ali, A.; Quist-Jensen, C.A.; Jørgensen, M.K.; Siekierka, A.; Christensen, M.L.; Bryjak, M.; Hélix-Nielsen, C.; Drioli, E. A Review of Membrane Crystallization, Forward Osmosis and Membrane Capacitive Deionization for Liquid Mining. Resour. Conserv. Recycl. 2021, 168, 105273. [Google Scholar] [CrossRef]
- Bouchrit, R.; Boubakri, A.; Mosbahi, T.; Hafiane, A.; Bouguecha, S.A.T. Membrane Crystallization for Mineral Recovery from Saline Solution: Study Case Na2SO4 Crystals. Desalination 2017, 412, 1–12. [Google Scholar] [CrossRef]
- Simoni, G.; Kirkebæk, B.S.; Quist-Jensen, C.A.; Christensen, M.L.; Ali, A. A Comparison of Vacuum and Direct Contact Membrane Distillation for Phosphorus and Ammonia Recovery from Wastewater. J. Water Process Eng. 2021, 44, 102350. [Google Scholar] [CrossRef]
- Khayet, M.; Matsuura, T. Membrane Distillation: Principles and Applications; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2011. [Google Scholar]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane Distillation: Recent Developments and Perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Laganà, F.; Barbieri, G.; Drioli, E. Direct Contact Membrane Distillation: Modelling and Concentration Experiments. J. Memb. Sci. 2000, 166, 1–11. [Google Scholar] [CrossRef]
- Mart, L.; Rodr, J.M. On Transport Resistances in Direct Contact Membrane Distillation. J. Memb. Sci. 2007, 295, 28–39. [Google Scholar] [CrossRef]
- Qtaishat, M.; Matsuura, T.; Kruczek, B.; Khayet, M. Heat and Mass Transfer Analysis in Direct Contact Membrane Distillation. Desalination 2008, 219, 272–292. [Google Scholar] [CrossRef]
- Thomas, L.C. Heat Transfer; Prentice-Hall: Englewood Cliffs, NJ, USA, 1992. [Google Scholar]
- Curcino, I.V.; Júnior, P.R.S.C.; Gómez, A.O.C.; Chenche, L.E.P.; Lima, J.A.; Naveira-Cotta, C.P.; Cotta, R.M. Analysis of Effective Thermal Conductivity and Tortuosity Modeling in Membrane Distillation Simulation. Micro Nano Eng. 2022, 17, 100165. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, P.; Chen, J. Modeling and Optimization of Hollow Fiber DCMD Module for Desalination. J. Memb. Sci. 2008, 318, 154–166. [Google Scholar] [CrossRef]
- Olatunji, S.O.; Camacho, L.M. Heat and Mass Transport in Modeling Membrane Distillation Configurations: A Review. Front. Energy Res. 2018, 6, 130. [Google Scholar] [CrossRef]
- Lin, S.; Yip, N.Y.; Elimelech, M. Direct Contact Membrane Distillation with Heat Recovery : Thermodynamic Insights from Module Scale Modeling. J. Memb. Sci. 2014, 453, 498–515. [Google Scholar] [CrossRef]
- Tewodros, B.N.; Yang, D.R.; Park, K. Design Parameters of a Direct Contact Membrane Distillation and a Case Study of Its Applicability to Low-Grade Waste Energy. Membranes 2022, 12, 1279. [Google Scholar] [CrossRef]
- Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. On Designing of Membrane Thickness and Thermal Conductivity for Large Scale Membrane Distillation Modules. J. Membr. Sci. Res. 2016, 2, 179–185. [Google Scholar]
- Hitsov, I.; Eykens, L.; de Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. Calibration and analysis of a direct contact membrane distillation model using Monte Carlo filtering. J. Memb. Sci. 2016, 515, 63–78. [Google Scholar] [CrossRef]
- Nagaraj, N.; Patil, G.; Babu, B.R.; Hebbar, U.H.; Raghavarao, K.S.M.S.; Nene, S. Mass Transfer in Osmotic Membrane Distillation. J. Memb. Sci. 2006, 268, 48–56. [Google Scholar] [CrossRef]
- Gryta, M.; Tomaszewska, M. Heat Transport in the Membrane Distillation Process. J. Memb. Sci. 1998, 144, 211–222. [Google Scholar] [CrossRef]
- Alklaibi, A.M.; Lior, N. Heat and Mass Transfer Resistance Analysis of Membrane Distillation. J. Memb. Sci. 2006, 282, 362–369. [Google Scholar] [CrossRef]
- Gryta, M.; Tomaszewska, M.; Morawski, A.W. Membrane Distillation with Laminar Flow. Sep. Purif. Technol. 1997, 5866, 2–6. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Jiraratananon, R.; Fane, A.G. Heat Transport and Membrane Distillation Coefficients in Direct Contact Membrane Distillation. J. Memb. Sci. 2003, 212, 177–193. [Google Scholar] [CrossRef]
- Kim, W.J.; Campanella, O.; Heldman, D.R. Predicting the Performance of Direct Contact Membrane Distillation (DCMD): Mathematical Determination of Appropriate Tortuosity Based on Porosity. J. Food Eng. 2021, 294, 110400. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Wang, R.; Fane, A.G. Analysis of Heat and Mass Transfer by CFD for Performance Enhancement in Direct Contact Membrane Distillation. J. Memb. Sci. 2012, 405–406, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Imdakm, A.O.; Matsuura, T. A Monte Carlo Simulation Model for Membrane Distillation Processes: Direct Contact (MD). J. Memb. Sci. 2004, 237, 51–59. [Google Scholar] [CrossRef]
- Tsai, J.H.; Quist-Jensen, C.; Ali, A. Multipass Hollow Fiber Membrane Modules for Membrane Distillation. Desalination 2023, 548, 116239. [Google Scholar] [CrossRef]
- Quist-jensen, C.A.; Ali, A.; Mondal, S.; Macedonio, F.; Drioli, E. A Study of Membrane Distillation and Crystallization for Lithium Recovery from High-Concentrated Aqueous Solutions. J. Memb. Sci. 2016, 505, 167–173. [Google Scholar] [CrossRef]
- Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Application of Membrane Crystallization for Minerals’ Recovery from Produced Water. Membranes 2015, 5, 772. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Quist-Jensen, C.A.A.; Macedonio, F.; Drioli, E. Optimization of Module Length for Continuous Direct Contact Membrane Distillation Process. Chem. Eng. Process. Process Intensif. 2016, 110, 188–200. [Google Scholar] [CrossRef]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0471390151. [Google Scholar]
- Schofield, R.W.; Fane, A.G. Heat and Mass Transfer in Membrane Distillation. J. Memb. Sci. 1987, 33, 299–313. [Google Scholar] [CrossRef]
- Ali, A.; Tsai, J.-H.; Tung, K.-L.; Drioli, E.; Macedonio, F. Designing and Optimization of Continuous Direct Contact Membrane Distillation Process. Desalination 2018, 426, 97–107. [Google Scholar] [CrossRef]
- Banat, F.A.; Simandl, J. Desalination by Membrane Distillation: A Parametric Study. Sep. Sci. Technol. 1998, 33, 201–226. [Google Scholar] [CrossRef]
No. | Feed Inlet Temperature (°C) | Permeate Inlet Temperature (°C) | Feed Flow Rate (Lh−1) | Permeate Flow Rate (Lh−1) |
---|---|---|---|---|
1 | 35 | 12 | 99 | 29 |
2 | 39 | 13 | 99 | 29 |
3 | 44 | 14 | 99 | 29 |
4 | 48 | 15 | 99 | 29 |
5 | 49 | 18 | 99 | 29 |
6 | 49 | 22 | 99 | 29 |
7 | 57 | 17 | 99 | 29 |
8 | 65 | 16 | 99 | 29 |
9 | 48 | 14 | 68 | 29 |
10 | 48 | 14 | 43 | 29 |
11 | 47 | 14 | 29 | 29 |
12 | 49 | 14 | 99 | 23 |
13 | 48 | 15 | 99 | 32 |
14 | 48 | 15 | 99 | 50 |
Tortuosity | |
[27] | |
[28] | |
[30] | |
[27] | |
[30] | |
[30] | |
[30] | |
Nusselt number () | |
[31] | |
[31] | |
[32] | |
[33] | |
[34] | |
[33] | |
[35] | |
[36] | |
—feed, —permeate | [36] |
Membrane thermal conductivity | |
[37] | |
[37] | |
[37] |
No. | Tf,in [°C] | Tf,out [°C] | Tp,in [°C] | Tp,out [°C] | Qf [L/h] | Qp [L/h] | J [kg m−2h−1] |
---|---|---|---|---|---|---|---|
1 | 35 | 34 | 12 | 18 | 99 | 29 | 1.05 |
2 | 39 | 38 | 13 | 20 | 99 | 29 | 1.35 |
3 | 44 | 42 | 14 | 21 | 99 | 29 | 1.84 |
4 | 48 | 46 | 15 | 24 | 99 | 29 | 2.35 |
5 | 49 | 47 | 18 | 27 | 99 | 29 | 2.27 |
6 | 49 | 47 | 22 | 29 | 99 | 29 | 2.38 |
7 | 57 | 54 | 17 | 29 | 99 | 29 | 3.76 |
8 | 65 | 60 | 16 | 32 | 99 | 29 | 6.07 |
9 | 48 | 42 | 14 | 23 | 68 | 29 | 2.13 |
10 | 48 | 42 | 14 | 23 | 43 | 29 | 2.15 |
11 | 47 | 38 | 14 | 22 | 29 | 29 | 1.84 |
12 | 49 | 47 | 14 | 25 | 99 | 23 | 2.45 |
13 | 48 | 47 | 15 | 23 | 99 | 32 | 2.43 |
14 | 48 | 46 | 15 | 22 | 99 | 50 | 2.48 |
τ | Nu | |||||
---|---|---|---|---|---|---|
2 | 3 | 1 | 0.970 | 0.976 | 0.951 | 0.966 |
1 | 3 | 1 | 0.911 | 0.976 | 0.948 | 0.945 |
2 | 5 | 1 | 0.951 | 0.973 | 0.907 | 0.944 |
1 | 5 | 1 | 0.880 | 0.973 | 0.903 | 0.918 |
6 | 9 | 1 | 0.942 | 0.970 | 0.805 | 0.906 |
τ | Nu | |||||
---|---|---|---|---|---|---|
2 | 3 | 3 | 0.989 | 0.965 | 0.758 | 0.904 |
1 | 3 | 2 | 0.986 | 0.916 | −0.071 | 0.610 |
1 | 5 | 2 | 0.985 | 0.910 | −0.187 | 0.569 |
2 | 5 | 3 | 0.984 | 0.959 | 0.657 | 0.866 |
2 | 5 | 2 | 0.978 | 0.911 | −0.154 | 0.578 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hylle, P.M.; Falden, J.T.; Rauff, J.L.; Rasmussen, P.; Moltzen-Juul, M.; Trudslev, M.L.; Quist-Jensen, C.A.; Ali, A. Determination of Heat and Mass Transport Correlations for Hollow Membrane Distillation Modules. Energies 2023, 16, 3447. https://doi.org/10.3390/en16083447
Hylle PM, Falden JT, Rauff JL, Rasmussen P, Moltzen-Juul M, Trudslev ML, Quist-Jensen CA, Ali A. Determination of Heat and Mass Transport Correlations for Hollow Membrane Distillation Modules. Energies. 2023; 16(8):3447. https://doi.org/10.3390/en16083447
Chicago/Turabian StyleHylle, Peter M., Jeppe T. Falden, Jeppe L. Rauff, Philip Rasmussen, Mads Moltzen-Juul, Maja L. Trudslev, Cejna Anna Quist-Jensen, and Aamer Ali. 2023. "Determination of Heat and Mass Transport Correlations for Hollow Membrane Distillation Modules" Energies 16, no. 8: 3447. https://doi.org/10.3390/en16083447
APA StyleHylle, P. M., Falden, J. T., Rauff, J. L., Rasmussen, P., Moltzen-Juul, M., Trudslev, M. L., Quist-Jensen, C. A., & Ali, A. (2023). Determination of Heat and Mass Transport Correlations for Hollow Membrane Distillation Modules. Energies, 16(8), 3447. https://doi.org/10.3390/en16083447