Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission
Abstract
:1. Introduction
2. Theoretical Model
2.1. Structure and Principle
2.2. Calculation Model
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schwartz, R.J. Photovoltaic power generation. Proc. IEEE 1993, 81, 355–364. [Google Scholar] [CrossRef]
- Sukhatme, S.P. Solar thermal power generation. J. Chem. Sci. 1997, 109, 521–531. [Google Scholar] [CrossRef]
- Luque, A.; Marti, A. Limiting efficiency of coupled thermal and photovoltaic converters. Sol. Energy Mater. Sol. Cells 1999, 58, 147–165. [Google Scholar] [CrossRef]
- Green, M.A. General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovolt. 2003, 11, 333–340. [Google Scholar] [CrossRef]
- Kribus, A.; Mittelman, G. Potential of polygeneration with solar thermal and photovoltaic systems. J. Sol. Energy Eng. 2008, 130, 011001. [Google Scholar] [CrossRef]
- Smestad, G.P. Conversion of heat and light simultaneously using a vacuum photodiode and the thermionic and photoelectric effects. Sol. Energy Mater. Sol. Cells 2004, 82, 227–240. [Google Scholar] [CrossRef]
- Schwede, J.W.; Bargatin, I.; Riley, D.C.; Hardin, B.E.; Rosenthal, S.J.; Sun, Y.; Schmitt, F.; Pianetta, P.; Howe, R.T.; Shen, Z.; et al. Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 2010, 9, 762–767. [Google Scholar] [CrossRef]
- Khalid, K.A.A.; Leong, T.J.; Mohamed, K. Review on Thermionic Energy Converters. IEEE Trans. Electron. Devices 2016, 63, 2231–2241. [Google Scholar] [CrossRef]
- Segev, G.; Kribus, A.; Rosenwaks, Y. High performance isothermal photo-thermionic solar converters. Sol. Energy Mater. Sol. Cells 2013, 113, 114–123. [Google Scholar] [CrossRef]
- Segev, G.; Rosenwaks, Y.; Kribus, A. Limit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion. Sol. Energy Mater. Sol. Cells 2015, 140, 464–476. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, T.; Zhang, Y.; Chen, X.; Su, S.; Chen, J. Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices. J. Appl. Phys. 2016, 119, 45106. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Hao, H.; Chen, J.; Su, S. Optimal design of the interelectrode space in a photon-enhanced thermionic emission solar cell. Appl. Therm. Eng. 2019, 157, 113758. [Google Scholar] [CrossRef]
- Qiu, H.; Xu, H.; Ni, M.; Xiao, G. Photo-thermo-electric modeling of photon-enhanced thermionic emission with concentrated solar power. Sol. Energy Mater. Sol. Cells 2022, 246, 111922. [Google Scholar] [CrossRef]
- Schwede, J.W.; Sarmiento, T.; Narasimhan, V.K.; Rosenthal, S.J.; Riley, D.C.; Schmitt, F.; Bargatin, I.; Sahasrabuddhe, K.; Howe, R.T.; Harris, J.S.; et al. Photon-enhanced thermionic emission from heterostructures with low interface recombination. Nat. Commun. 2013, 4, 1576. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yang, W.; Yang, Y.; Sun, C.; Cai, Z. GaAs film for photon-enhanced thermionic emission solar harvesters. Mater. Sci. Semicond. Process. 2014, 25, 143–147. [Google Scholar] [CrossRef]
- Diao, Y.; Liu, L.; Xia, S. Theoretical analysis and modeling of photoemission ability and photoelectric conversion characteristics of GaAs nanowire cathodes based on photon-enhanced thermionic emission. Sol. Energy 2019, 194, 510–518. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, P.; Cao, W.; Zhu, B.; Wang, B.; Bai, Y.; Qin, J.; Bai, X.; Chen, Z. High-performance solid-state photon-enhanced thermionic emission solar energy converters with graded bandgap window-layer. J. Phys. D Appl. Phys. 2020, 54, 55502. [Google Scholar] [CrossRef]
- Yang, N.; Xie, L.; Wang, P.; Xu, Y.; Li, S.; Shen, X.; Fu, Y.; He, H. Theoretical analysis and experimental research of photon-enhanced thermionic emission solar energy converters with InN photocathode. Sol. Energy Mater. Sol. Cells 2022, 242, 111766. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 2003, 94, 3675–3696. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W. Band gaps of InN and group III nitride alloys. Superlattices Microstruct. 2003, 34, 63–75. [Google Scholar] [CrossRef]
- Huang, X.; Li, W.; Fu, H.; Li, D.; Zhang, C.; Chen, H.; Fang, Y.; Fu, K.; DenBaars, S.P.; Nakamura, S.; et al. High-Temperature Polarization-Free III-Nitride Solar Cells with Self-Cooling Effects. ACS Photonics 2019, 6, 2096–2103. [Google Scholar] [CrossRef]
- Moses, G.; Huang, X.; Zhao, Y.; Auf Der Maur, M.; Katz, E.A.; Gordon, J.M. InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants. Prog. Photovolt. 2020, 28, 1167–1174. [Google Scholar] [CrossRef]
- Bhuiyan, A.G.; Sugita, K.; Hashimoto, A.; Yamamoto, A. InGaN Solar Cells: Present State of the Art and Important Challenges. IEEE J. Photovolt. 2012, 2, 276–293. [Google Scholar] [CrossRef]
- Su, S.; Wang, Y.; Wang, J.; Xu, Z.; Chen, J. Material optimum choices and parametric design strategies of a photon-enhanced solar cell hybrid system. Sol. Energy Mater. Sol. Cells 2014, 128, 112–118. [Google Scholar] [CrossRef]
- Varpula, A.; Tappura, K.; Prunnila, M. Si, GaAs, and InP as cathode materials for photon-enhanced thermionic emission solar cells. Sol. Energy Mater. Sol. Cells 2015, 134, 351–358. [Google Scholar] [CrossRef]
- Varpula, A.; Prunnila, M. Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters. J. Appl. Phys. 2012, 112, 044506. [Google Scholar] [CrossRef]
- Brown, G.F.; Ager, J.W.; Walukiewicz, W.; Wu, J. Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 478–483. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Ager, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J. Small band gap bowing in In1−xGaxN alloys. Appl. Phys. Lett. 2002, 80, 4741–4743. [Google Scholar] [CrossRef]
- Muth, J.F.; Lee, J.H.; Shmagin, I.K.; Kolbas, R.M.; Casey, H.C.; Keller, B.P.; Mishra, U.K.; DenBaars, S.P. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 1997, 71, 2572–2574. [Google Scholar] [CrossRef]
- Mesrane, A.; Rahmoune, F.; Mahrane, A.; Oulebsir, A. Design and Simulation of InGaN 𝑝-𝑛 Junction Solar Cell. Int. J. Photoenergy 2015, 2015, 594858. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W.; Tang, W.; Sun, C. High-temperature solar cell for concentrated solar-power hybrid systems. Appl. Phys. Lett. 2013, 103, 083902. [Google Scholar] [CrossRef]
- Chang, C.; Tang, T.; Chang, P.; Chen, N.; Liang, C. Magnesium Doping of In-rich InGaN. Jpn. J. Appl. Phys. 2007, 46, 2840–2843. [Google Scholar] [CrossRef]
- Jeng, M. Simulation of Nonpolar p-GaN/i-N/n-GaN Solar Cells. Int. J. Photoenergy 2012, 2012, 910256. [Google Scholar] [CrossRef]
- Feng, S.; Lai, C.; Tsai, C.; Su, Y.; Tu, L. Modeling of InGaN p-n junction solar cells. Opt. Mater. Express 2013, 3, 1777–1788. [Google Scholar] [CrossRef]
- Chen, K.; Hung, C. Numerical study of InGaN tandem solar cells with intermediate bands. Phys. Status Solidi RRL 2017, 11, 1600429. [Google Scholar] [CrossRef]
- Cuscó, R.; Ibáñez, J.; Alarcón-Lladó, E.; Artús, L.; Yamaguchi, T.; Nanishi, Y. Photoexcited carriers and surface recombination velocity in InN epilayers: A Raman scattering study. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 155204. [Google Scholar] [CrossRef]
- Aleksiejūnas, R.; Sūdžius, M.; Malinauskas, T.; Vaitkus, J.; Jarašiūnas, K.; Sakai, S. Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers. Appl. Phys. Lett. 2003, 83, 1157–1159. [Google Scholar] [CrossRef]
- Sahasrabuddhe, K.; Schwede, J.W.; Bargatin, I.; Jean, J.; Howe, R.T.; Shen, Z.; Melosh, N.A. A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission. J. Appl. Phys. 2012, 112, 094907. [Google Scholar] [CrossRef]
- Koeck, F.A.M.; Nemanich, R.J.; Lazea, A.; Haenen, K. Thermionic electron emission from low work-function phosphorus doped diamond films. Diamond Relat. Mater. 2009, 18, 789–791. [Google Scholar] [CrossRef]
- Kazazis, S.A.; Papadomanolaki, E.; Iliopoulos, E. Polarization-Engineered InGaN/GaN Solar Cells: Realistic Expectations for Single Heterojunctions. IEEE J. Photovolt. 2018, 8, 118–124. [Google Scholar] [CrossRef]
- Marouf, Y.; Dehimi, L.; Bouzid, F.; Pezzimenti, F.; Corte, F.G.D. Theoretical design and performance of InxGa1-xN single junction solar cell. Optik 2018, 163, 22–32. [Google Scholar] [CrossRef]
- Parajuli, D.; Shah, D.K.; KC, D.; Kumar, S.; Park, M.; Pant, B. Influence of Doping Concentration and Thickness of Regions on the Performance of InGaN Single Junction-Based Solar Cells: A Simulation Approach. Electrochem 2022, 3, 407–415. [Google Scholar] [CrossRef]
Tc (K) | Vfb (V) | Vm (V) |
---|---|---|
600 | 0.794 | 0.794 |
700 | 0.684 | 0.684 |
800 | 0.569 | 0.699 |
900 | 0.450 | 0.730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Yang, N.; Xie, L.; Xu, Y.; He, H.; Fu, Y.; Shen, X. Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission. Energies 2023, 16, 3483. https://doi.org/10.3390/en16083483
Wang P, Yang N, Xie L, Xu Y, He H, Fu Y, Shen X. Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission. Energies. 2023; 16(8):3483. https://doi.org/10.3390/en16083483
Chicago/Turabian StyleWang, Pingan, Ning Yang, Liubing Xie, Yanpeng Xu, Huan He, Yuechun Fu, and Xiaoming Shen. 2023. "Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission" Energies 16, no. 8: 3483. https://doi.org/10.3390/en16083483
APA StyleWang, P., Yang, N., Xie, L., Xu, Y., He, H., Fu, Y., & Shen, X. (2023). Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission. Energies, 16(8), 3483. https://doi.org/10.3390/en16083483