An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Thermochemical Properties
Species | Method | ∆f,298 KH° kcal/mol | S°298 K cal/mol/K |
---|---|---|---|
2MTHF | CBS-QB3 W1U CCSD(T)//M06-2X Simmie Auzmendi-Murua et al. Wijaya et al. | −52.6 [a]; (−53.5 ± 0.2) [b] −54.7 [a]; (−53.4 ± 0.2) [b] −17.0 [a]; (−53.8 ± 0.2) [b] (−53.6 ± 0.4); (−54.0 ± 0.3) −52.23, −53.58 −54.58 | 79.5 80.2 81.0 -- 80.86 |
OH | CBS-QB3 W1U CCSD(T)//M06-2X ATcT NIST | 8.9 [a] 8.6 [a] 13.1 (8.967 ± 0.006) 9.3 | 42.7 42.7 42.7 43.9 43.9 |
H2O | CBS-QB3 W1U CCSD(T)//M06-2X ATcT NIST | −58.1 [a] −58.4 [a] −50.2 (−57.791 ± 0.006) −57.8 | 45.2 45.2 45.2 45.1 45.1 |
P1 (α-THFyl radical) | CBS-QB3 W1U CCSD(T)//M06-2X Simmie Auzmendi-Murua et al. | −11.9 [a]; (−13.2 ± 0.1) [c] −14.2 [a]; (−12.8 ± 0.1) [c] 23.0 [a]; (−12.8 ± 0.1) [c] (−13.4 ± 0.4) −13.52, −12.51 | 80.2 80.3 80.3 -- |
P2 (β-THFyl radical) | CBS-QB3 W1U CCSD(T)//M06-2X Simmie 2012 Auzmendi-Murua et al. | −6.2 [a]; (−7.5 ± 0.1) [c] −8.6 [a]; (−7.2 ± 0.1) [c] 28.0 [a]; (−7.8 ± 0.1) [c] (−7.0 ± 0.4) −6.75, −7.20 | 81.5 81.5 82.1 -- |
P3 (γ-THFyl radical) | CBS-QB3 W1U CCSD(T)//M06-2X Simmie Auzmendi-Murua et al. | −6.7 [a]; (−8.0 ± 0.1) [c] −9.1 [a]; (−7.7 ± 0.1) [c] 28.1 [a]; (−7.7 ± 0.1) [c] (−8.1 ± 0.5) −7.55, −6.72 | 81.3 81.4 81.7 -- |
P4 (δ-THFyl radical) | CBS-QB3 W1U CCSD(T)//M06-2X Simmie Auzmendi-Murua et al. | −10.4 [a]; (−11.7 ± 0.1) [c] −12.7 [a]; (−11.3 ± 0.1) [c] 24.2 [a]; (−11.6 ± 0.1) [c] (−12.6 ± 0.4) −11.79, −11.34 | 80.6 80.8 80.1 -- |
P5 (β’-THFyl radical) | CBS-QB3 W1U CCSD(T)//M06-2X Simmie Auzmendi-Murua et al. | −1.8 [a]; (−3.1 ± 0.1) [c] −4.2 [a]; (−2.8 ± 0.1) [c] 32.5 [a]; (−3.3 ± 0.1) [c] (−3.3 ± 0.6) −2.89, −2.83 | 83.4 83.6 83.5 -- |
3.2. Potential Energy Surface (PES)
3.3. Kinetic Analysis
3.4. Kinetic Modeling Implications
4. Conclusions
- The presence of heteroatom “O” weakened the adjacent C-H bond with the calculated bond dissociation energies in the order CH2-H (~93) > Cβ-H ≈ Cγ-H (~98) > Cδ-H (~94) > Cα-H (~93), in the unit of kcal/mol.
- Our isodesmic values based on CBS-QB3 and W1U model chemistries for the heat of formation of various species (reactants and products) showed excellent agreement with the literature data.
- The reaction of OH radicals with 2MTHF occurred via multiple steps in an overall exothermic process, and pre-reaction and post-reaction complexes existed at the entrance and exit channels.
- The reaction displayed complex U-shaped kinetics. Interestingly, pressure dependence was observed at low temperatures, highlighting the importance of the pre-reaction complex in the proper RRKM-ME treatment of the OH + 2MTHF system. At T > 500 K, no discernible p-dependence was observed. It indicates that RC cannot be stabilized by pressure at high temperatures, even at extremely high pressures.
- The P1 + H2O channel dominates at low temperatures (~80% at 200 K and 760 Torr). Since the transition state for the P1 + H2O channel was submerged below the reactants’ energy, k(T, p) showed a negative T-dependence for this channel. Above 700 K, the P5 + H2O channel was dominant (~60% at 2000 K and 760 Torr).
- The updated kinetic model with the newly derived rate coefficients from this work showed remarkable performance capturing the ignition delay times behavior of 2MTHF at low temperatures. The weak NTC behavior was predicted well with the updated kinetic model.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rotavera, B.; Taatjes, C.A. Influence of functional groups on low-temperature combustion chemistry of biofuels. Prog. Energy Combust. Sci. 2021, 86, 100925. [Google Scholar] [CrossRef]
- Tran, L.-S.; Herbinet, O.; Carstensen, H.-H.; Battin-Leclerc, F. Chemical kinetics of cyclic ethers in combustion. Prog. Energy Combust. Sci. 2022, 92, 101019. [Google Scholar] [CrossRef]
- Rudolph, T.W.; Thomas, J.J. NOx, NMHC and CO emissions from biomass derived gasoline extenders. Biomass 1988, 16, 33–49. [Google Scholar] [CrossRef]
- Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010, 12, 1493–1513. [Google Scholar] [CrossRef]
- Janssen, A.J.; Kremer, F.W.; Baron, J.H.; Muether, M.; Pischinger, S.; Klankermayer, J. Tailor-Made Fuels from Biomass for Homogeneous Low-Temperature Diesel Combustion. Energy Fuels 2011, 25, 4734–4744. [Google Scholar] [CrossRef]
- Tuan Hoang, A.; Viet Pham, V. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sust. Energ. Rev. 2021, 148, 111265. [Google Scholar] [CrossRef]
- Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L.T.; Horváth, I.T. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Top. Catal. 2008, 48, 49–54. [Google Scholar] [CrossRef]
- Wright, W.R.; Palkovits, R. Development of heterogeneous catalysts for the conversion of levulinic acid to gamma-valerolactone. ChemSusChem 2012, 5, 1657–1667. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013, 15, 584–595. [Google Scholar] [CrossRef]
- Sims, R.E.; Mabee, W.; Saddler, J.N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef]
- Tripathi, R.; Lee, C.; Fernandes, R.X.; Olivier, H.; Curran, H.J.; Mani Sarathy, S.; Pitsch, H. Ignition characteristics of 2-methyltetrahydrofuran: An experimental and kinetic study. Proc. Combust. Inst. 2017, 36, 587–595. [Google Scholar] [CrossRef]
- Fenard, Y.; Boumehdi, M.A.; Vanhove, G. Experimental and kinetic modeling study of 2-methyltetrahydrofuran oxidation under engine-relevant conditions. Combust. Flame 2017, 178, 168–181. [Google Scholar] [CrossRef]
- Moshammer, K.; Vranckx, S.; Chakravarty, H.K.; Parab, P.; Fernandes, R.X.; Kohse-Höinghaus, K. An experimental and kinetic modeling study of 2-methyltetrahydrofuran flames. Combust. Flame 2013, 160, 2729–2743. [Google Scholar] [CrossRef]
- Chakravarty, H.K.; Fernandes, R.X. Reaction kinetics of hydrogen abstraction reactions by hydroperoxyl radical from 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran. J. Phys. Chem. A 2013, 117, 5028–5041. [Google Scholar] [CrossRef]
- Pitz, W.J.; Naik, C.V.; Mhaoldúin, T.N.; Westbrook, C.K.; Curran, H.J.; Orme, J.P.; Simmie, J.M. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proc. Combust. Inst. 2007, 31, 267–275. [Google Scholar] [CrossRef]
- Wallington, T.J.; Siegl, W.O.; Liu, R.; Zhang, Z.; Huie, R.E.; Kurylo, M.J. The atmospheric reactivity of α-methyltetrahydrofuran. Environ. Sci. Technol. 1990, 24, 1596–1599. [Google Scholar] [CrossRef]
- Illés, Á.; Farkas, M.; Zügner, G.L.; Novodárszki, G.; Mihályi, M.; Dóbé, S. Direct and relative rate coefficients for the gas-phase reaction of OH radicals with 2-methyltetrahydrofuran at room temperature. React. Kinet. Mech. Catal. 2016, 119, 5–18. [Google Scholar] [CrossRef]
- Illés, Á.; Nagy, M.; Novodárszki, G.; Mihályi, M.; Dóbé, S. Temperature dependent rate coefficient for the reaction of oh radicals with 2-methyltetrahydrofuran in gas phase. Oxid. Commun. 2018, 41, 189–194. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Alecu, I.M.; Zheng, J.; Zhao, Y.; Truhlar, D.G. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. J. Chem. Theory Comput. 2010, 6, 2872–2887. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161. [Google Scholar] [CrossRef]
- Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
- Huber, K.-P. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Hoy, A.R.; Bunker, P.R. A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule. J. Mol. Spectrosc. 1979, 74, 1–8. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules; Van Nostrand Reinhold Co.: Washington, DC, USA, 1979. [Google Scholar] [CrossRef]
- Robinson, R.K.; Lindstedt, R.P. A comparative ab initio study of hydrogen abstraction from n-propyl benzene. Combust. Flame 2013, 160, 2642–2653. [Google Scholar] [CrossRef]
- Yin, G.; Hu, E.; Zhou, M.; Zhan, H.; Huang, Z. Kinetic Study on the Isomerization and Decomposition of the Alkenyl Radicals of 2,4,4-Trimethyl-1-pentene. Energy Fuels 2020, 34, 14757–14767. [Google Scholar] [CrossRef]
- Mai, T.V.; Huynh, L.K. Comment on “Atmospheric oxidation reactions of imidazole initiated by hydroxyl radicals: Kinetics and mechanism of reactions and atmospheric implications” by Safaei et al., Phys. Chem. Chem. Phys., 2019, 21, 8445. Phys. Chem. Chem. Phys. 2019, 21, 21162–21165. [Google Scholar] [CrossRef]
- Mai, T.V.T.; Nguyen, H.T.; Huynh, L.K. Ab Initio Kinetic Mechanism of OH-Initiated Atmospheric Oxidation of Pyrrole. Chemosphere 2020, 263, 127850. [Google Scholar] [CrossRef]
- Mai, T.V.T.; Huynh, L.K. Detailed Kinetics of Hydrogen Abstraction from trans-Decalin by OH Radicals: The Role of Hindered Internal Rotation Treatment. Phys. Chem. Chem. Phys. 2020, 22, 25740–25746. [Google Scholar] [CrossRef]
- Mai, T.V.T.; Huynh, L.K. Comment on “Atmospheric chemistry of oxazole: The mechanism and kinetic studies on oxidation reaction initiated by OH radicals” by A. Shiroudi, M.A. Abdel-Rahman, A.M. El-Nahas and M. Altarawneh, New J. Chem., 2021, 45, 2237. New J. Chem. 2021, 45, 13644–13648. [Google Scholar] [CrossRef]
- Mai, T.V.-T.; Nguyen, T.T.-D.; Nguyen, H.T.; Nguyen, T.T.; Huynh, L.K. New Mechanistic Insights into Atmospheric Oxidation of Aniline Initiated by OH Radicals. Environ. Sci. Technol. 2021, 55, 7858–7868. [Google Scholar] [CrossRef] [PubMed]
- Giri, B.R.; Mai, T.V.T.; Assali, M.; Nguyen, T.T.; Nguyen, H.T.; Szori, M.; Huynh, L.K.; Fittschen, C.; Farooq, A. Reaction kinetics of 1,4-cyclohexadienes with OH radicals: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2022, 24, 7836–7847. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.V.T.; Nguyen, H.D.; Nguyen, P.-D.; Nguyen, H.T.; Na, O.M.; Le, T.H.M.; Huynh, L.K. Ab initio kinetics of OH-initiated oxidation of cyclopentadiene. Fuel 2022, 317, 123305. [Google Scholar] [CrossRef]
- Giri, B.R.; Mai, T.V.-T.; Nguyen, T.T.-D.; Szőri, M.; Huynh, L.K.; Farooq, A. Kinetic Insights into the Reaction of Hydroxyl Radicals with 1,4-Pentadiene: A Combined Experimental and Theoretical Study. Combust. Flame 2022, 241, 112153. [Google Scholar] [CrossRef]
- Xie, H.B.; Li, C.; He, N.; Wang, C.; Zhang, S.; Chen, J. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: Mechanistic and kinetic study. Environ. Sci. Technol. 2014, 48, 1700–1706. [Google Scholar] [CrossRef]
- Arathala, P.; Musah, R.A. Computational Study Investigating the Atmospheric Oxidation Mechanism and Kinetics of Dipropyl Thiosulfinate Initiated by OH Radicals, and the Fate of Propanethiyl Radical. J. Phys. Chem. A 2020, 124, 8292–8304. [Google Scholar] [CrossRef]
- Purvis, G.D.; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Scuseria, G.E.; Janssen, C.L.; Schaefer, H.F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 1988, 89, 7382–7387. [Google Scholar] [CrossRef]
- Scuseria, G.E.; Schaefer, H.F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J. Chem. Phys. 1989, 90, 3700–3703. [Google Scholar] [CrossRef]
- Lee, T.J.; Taylor, P.R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. [Google Scholar] [CrossRef]
- Jayatilaka, D.; Lee, T.J. Open-shell coupled-cluster theory. J. Chem. Phys. 1993, 98, 9734–9747. [Google Scholar] [CrossRef]
- Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Gillespie, D.T.; Hellander, A.; Petzold, L.R. Perspective: Stochastic algorithms for chemical kinetics. J. Chem. Phys. 2013, 138, 170901–170914. [Google Scholar] [CrossRef] [PubMed]
- Duong, M.V.; Nguyen, H.T.; Truong, N.; Le, T.N.M.; Huynh, L.K. Multi-Species Multi-Channel (MSMC): An Ab Initio-based Parallel Thermodynamic and Kinetic Code for Complex Chemical Systems. Int. J. Chem. Kinet. 2015, 47, 564–575. [Google Scholar] [CrossRef]
- Duong, M.V.; Nguyen, H.T.; Mai, T.V.; Huynh, L.K. Global minimum profile error (GMPE)—A least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions. Phys. Chem. Chem. Phys. 2018, 20, 1231–1239. [Google Scholar] [CrossRef]
- Mai, T.V.T.; Duong, M.V.; Le, X.T.; Huynh, L.K.; Ratkiewicz, A. Direct ab initio dynamics calculations of thermal rate constants for the CH4 + O2 = CH3 + HO2 reaction. Struct. Chem. 2014, 25, 1495–1503. [Google Scholar] [CrossRef]
- Le, T.H.M.; Do, S.T.; Huynh, L.K. Algorithm for auto-generation of hindered internal rotation parameters for complex chemical systems. Comput. Theor. Chem. 2017, 1100, 61–69. [Google Scholar] [CrossRef]
- Le, T.H.M.; Tran, T.T.; Huynh, L.K. Identification of hindered internal rotational mode for complex chemical species: A data mining approach with multivariate logistic regression model. Chemom. Intell. Lab. Syst. 2018, 172, 10–16. [Google Scholar] [CrossRef]
- Beyer, T.; Swinehart, D.F. Algorithm 448: Number of multiply-restricted partitions. Commun. ACM 1973, 16, 379. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Eckart, C. The Penetration of a Potential Barrier by Electrons. Phys. Rev. 1930, 35, 1303–1309. [Google Scholar] [CrossRef]
- Coxon, J.A.; Foster, S.C. Radial dependence of spin-orbit and Λ-doubling parameters in the X2Π ground state of hydroxyl. J. Mol. Spectrosc. 1982, 91, 243–254. [Google Scholar] [CrossRef]
- Mai, T.V.T.; Huynh, L.K. The role of low-lying conformers and pressure effect in kinetic modeling of hydrogen abstraction of tertiary amyl methyl ether by OH radicals. Fuel 2020, 260, 116313. [Google Scholar] [CrossRef]
- Mai, T.V.; Nguyen, H.T.; Huynh, L.K. Ab initio dynamics of hydrogen abstraction from N2H4 by OH radicals: An RRKM-based master equation study. Phys. Chem. Chem. Phys. 2019, 21, 23733–23741. [Google Scholar] [CrossRef]
- Mai, T.V.T.; Nguyen, H.T.; Huynh, L.K. Atmospheric chemistry of the reaction between propylene carbonate and OH radical: An ab initio RRKM-based master equation study. Chem. Phys. Lett. 2020, 739, 137020. [Google Scholar] [CrossRef]
- Mai, T.V.T.; Nguyen, H.T.; Huynh, L.K. Kinetics of hydrogen abstraction from CH3SH by OH radicals: An ab initio RRKM-based master equation study. Atmos. Environ. 2020, 242, 117833. [Google Scholar] [CrossRef]
- Hippler, H. Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene. J. Chem. Phys. 1983, 78, 6709. [Google Scholar] [CrossRef]
- Somers, K.P.; Simmie, J.M.; Metcalfe, W.K.; Curran, H.J. The pyrolysis of 2-methylfuran: A quantum chemical, statistical rate theory and kinetic modelling study. Phys. Chem. Chem. Phys. 2014, 16, 5349–5367. [Google Scholar] [CrossRef]
- Robertson, S.H.; Pilling, M.J.; Baulch, D.L.; Green, N.J.B. Fitting of pressure-dependent kinetic rate data by master equation/inverse Laplace transform analysis. J. Phys. Chem. 1995, 99, 13452–13460. [Google Scholar] [CrossRef]
- Georgievskii, Y.; Klippenstein, S.J. Long-range transition state theory. J. Chem. Phys. 2005, 122, 194103–194117. [Google Scholar] [CrossRef]
- Simmie, J.M. Kinetics and thermochemistry of 2,5-dimethyltetrahydrofuran and related oxolanes: Next next-generation biofuels. J. Phys. Chem. A 2012, 116, 4528–4538. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Montgomery, J.A., Jr.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999, 110, 2822–2827. [Google Scholar] [CrossRef]
- Andersson, K.; Malmqvist, P.-A.K.; Roos, B.R.O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 1992, 96, 1218. [Google Scholar] [CrossRef]
- Celani, P.; Werner, H.-J. Multireference perturbation theory for large restricted and selected active space reference wave functions. J. Chem. Phys. 2000, 112, 5546. [Google Scholar] [CrossRef]
- Werner, H.-J. Third-order multireference perturbation theory The CASPT3 method. Mol. Phys. 1996, 89, 645–661. [Google Scholar] [CrossRef]
- Auzmendi-Murua, I.; Charaya, S.; Bozzelli, J.W. Thermochemical properties of methyl-substituted cyclic alkyl ethers and radicals for oxiranes, oxetanes, and oxolanes: C-H bond dissociation enthalpy trends with ring size and ether site. J. Phys. Chem. A 2013, 117, 378–392. [Google Scholar] [CrossRef]
- Wijaya, C.D.; Sumathi, R.; Green, W.H. Thermodynamic Properties and Kinetic Parameters for Cyclic Ether Formation from Hydroperoxyalkyl Radicals. J. Phys. Chem. A 2003, 107, 4908–4920. [Google Scholar] [CrossRef]
- Goos, E.; Burcat, A.; Ruscic, B. Extended Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables; Argonne National Laboratory: Lemont, IL, USA, 2010. [Google Scholar]
- Chase, M.W., Jr. NIST-JANAF Thermochemical Tables, 4th ed.; American Institute of Physics: College Park, MD, USA, 1998; 1951p. [Google Scholar]
- Ochterski, J.W. Thermochemistry in Gaussian; Gaussian Inc.: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Hehre, W.J.; Ditchfield, R.; Radom, L.; Pople, J.A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796–4801. [Google Scholar] [CrossRef]
- Ruscic, B.; Bross, D.H. Active Thermochemical Tables (ATcT) Values Based on Ver. 1.122d of the Thermochemical Network; Argonne National Laboratory: Lemont, IL, USA, 2018. [Google Scholar]
- Pilcher, G.; Pell, A.S.; Coleman, D.J. Measurements of heats of combustion by flame calorimetry. Part 2.—Dimethyl ether, methyl ethyl ether, methyl n-propyl ether, methyl isopropyl ether. Trans. Faraday Soc. 1964, 60, 499–505. [Google Scholar] [CrossRef]
- Good, W.D.; Smith, N.K. Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane. J. Chem. Eng. Data 1969, 14, 102–106. [Google Scholar] [CrossRef]
- Pittam, D.A.; Pilcher, G. Measurements of heats of combustion by flame calorimetry. Part 8.—Methane, ethane, propane, n-butane and 2-methylpropane. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 1972, 68, 2224–2229. [Google Scholar] [CrossRef]
- Giri, B.R.; Khaled, F.; Szőri, M.; Viskolcz, B.; Farooq, A. An experimental and theoretical kinetic study of the reaction of OH radicals with tetrahydrofuran. Proc. Combust. Inst. 2016, 36, 143–150. [Google Scholar] [CrossRef]
- Illés, Á.; Borbála Rózsa, Z.; Thangaraj, R.; Décsiné Gombos, E.; Dóbé, S.; Raj Giri, B.; Szőri, M. An experimental and theoretical kinetic study of the reactions of hydroxyl radicals with tetrahydrofuran and two deuterated tetrahydrofurans. Chem. Phys. Lett. 2021, 776, 138698. [Google Scholar] [CrossRef]
- Khaled, F.; Giri, B.R.; Szori, M.; Mai, T.V.T.; Huynh, L.K.; Farooq, A. A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals. Phys. Chem. Chem. Phys. 2017, 19, 7147–7157. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wang, W.; Shi, B.; Chen, Y.; Wang, K.; Zhang, W.; Sun, Z.; Ge, M. A Combined Experimental and Theoretical Study on the Gas Phase Reaction of OH Radicals with Ethyl Propyl Ether. J. Phys. Chem. A 2020, 124, 721–730. [Google Scholar] [CrossRef]
- Shannon, R.J.; Blitz, M.A.; Goddard, A.; Heard, D.E. Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat. Chem. 2013, 5, 745–749. [Google Scholar] [CrossRef]
- Gao, L.G.; Zheng, J.; Fernandez-Ramos, A.; Truhlar, D.G.; Xu, X. Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures. J. Am. Chem. Soc. 2018, 140, 2906–2918. [Google Scholar] [CrossRef]
- Galano, A.; Raúl Alvarez-Idaboy, J. Chapter 12—Atmospheric Reactions of Oxygenated Volatile Organic Compounds + OH Radicals: Role of Hydrogen-Bonded Intermediates and Transition States. In Advances in Quantum Chemistry; Academic Press: Cambridge, MA, USA, 2008; Volume 55. [Google Scholar]
- Arathala, P.; Tangtartharakul, C.B.; Sinha, A. Atmospheric Ring-Closure and Dehydration Reactions of 1,4-Hydroxycarbonyls in the Gas Phase: The Impact of Catalysts. J. Phys. Chem. A 2021, 125, 5963–5975. [Google Scholar] [CrossRef]
- Liu, D.; Giri, B.R.; Mai, T.V.T.; Huynh, L.K.; Farooq, A. Reaction kinetics of OH radicals with 1,3,5-trimethyl benzene: An experimental and theoretical study. Proc. Combust. Inst. 2022, in press. [Google Scholar] [CrossRef]
- Tran, L.-S.; Verdicchio, M.; Monge, F.; Martin, R.C.; Bounaceeur, R.; Sirjean, B.; Glaude, P.-A.; Alzueta, M.U.; Battin-Leclerc, F. An experimental and modeling study of the combustion of tetrahydrofuran. Combust. Flame 2015, 162, 1899–1918. [Google Scholar] [CrossRef]
- Cai, L.; Pitsch, H.; Mohamed, S.Y.; Raman, V.; Bugler, J.; Curran, H.; Sarathy, S.M. Optimized reaction mechanism rate rules for ignition of normal alkanes. Combust. Flame 2016, 173, 468–482. [Google Scholar] [CrossRef]
- Wang, X.; Fan, X.; Yang, K.; Wang, J.; Jiao, X.; Guo, Z. Laminar flame characteristics and chemical kinetics of 2-methyltetrahydrofuran and the effect of blending with isooctane. Combust. Flame 2018, 191, 213–225. [Google Scholar] [CrossRef]
- Shimanouchi, T. Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/NSRDS/nbsnsrds39.pdf (accessed on 1 March 2022).
p Torr | A1 cm3/Molecule/s | n1 | E1 K | A2 cm3/Molecule/s | n2 | E2 K | Fitting Error% |
---|---|---|---|---|---|---|---|
0.76 | 126 | −4.9 | 418 | 7.1 × 10−23 | 3.51 | −945.2 | 0.7 |
7.6 | 97.2 | −4.87 | 406.6 | 7.09 × 10−23 | 3.51 | −945.2 | 0.7 |
76 | 94.5 | −4.86 | 402.2 | 6.88 × 10−23 | 3.51 | −950.7 | 0.7 |
760 | 35.5 | −4.72 | 340.0 | 8.21 × 10−23 | 3.49 | −918.8 | 0.7 |
7600 | 1.96 | −4.33 | 104.5 | 6.95 × 10−23 | 3.51 | −941.9 | 1.1 |
2MTHF + OH → P1 + H2O | |
---|---|
p = 0.76 Torr | kP1(T) = 3.78 × 10−1 × T−4.09 × exp (−123.2 K/T) (error fitting ~ 1.2%) |
p = 7.6 Torr | kP1(T) = 3.31 × 10−1 × T−4.07 × exp (−115.2 K/T) (error fitting ~ 1.4%) |
p = 76 Torr | kP1(T) = 2.88 × 10−1 × T−4.05 × exp (−104.8 K/T) (error fitting ~ 1.4%) |
p = 760 Torr | kP1(T) = 2.53 × 10−1 × T−4.04 × exp (−83.3 K/T) (error fitting ~ 1.3%) |
p = 7600 Torr | kP1(T) = 1.23 × 10−1 × T−3.95 × exp (14.7 K/T) (error fitting ~ 1.3%) |
p = 76,000 Torr | kP1(T) = 9.92 × 10−1 × T−4.22 × exp (−144.5 K/T) (error fitting ~ 3.2%) |
2MTHF + OH → P2 + H2O | |
p = 0.76 Torr | kP2(T) = 2.90 × 10−22 × T3.09 × exp (782.5 K/T) (error fitting ~ 0.4%) |
p = 7.6 Torr | kP2(T) = 2.93 × 10−22 × T3.09 × exp (781.5 K/T) (error fitting ~ 0.4%) |
p = 76 Torr | kP2(T) = 2.79 × 10−22 × T3.09 × exp (784.3 K/T) (error fitting ~ 0.4%) |
p = 760 Torr | kP2(T) = 3.17 × 10−22 × T3.08 × exp (774.4 K/T) (error fitting ~ 0.4%) |
p = 7600 Torr | kP2(T) = 2.94 × 10−22 × T3.08 × exp (783.0 K/T) (error fitting ~ 0.4%) |
p = 76,000 Torr | kP2(T) = 3.00 × 10−22 × T3.08 × exp (778.3 K/T) (error fitting ~ 0.4%) |
2MTHF + OH → P3 + H2O | |
p = 0.76 Torr | kP3(T) = 1.20 × 10−22 × T3.18 × exp (818.3 K/T) (error fitting ~ 0.5%) |
p = 7.6 Torr | kP3(T) = 1.26 × 10−22 × T3.18 × exp (813.4 K/T) (error fitting ~ 0.5%) |
p = 76 Torr | kP3(T) = 1.18 × 10−22 × T3.19 × exp (818.1 K/T) (error fitting ~ 0.4%) |
p = 760 Torr | kP3(T) = 1.23 × 10−22 × T3.18 × exp (815.6 K/T) (error fitting ~ 0.4%) |
p = 7600 Torr | kP3(T) = 1.16 × 10−22 × T3.19 × exp (820.2 K/T) (error fitting ~ 0.4%) |
p = 76,000 Torr | kP3(T) = 1.17 × 10−22 × T3.19 × exp (817.6 K/T) (error fitting ~ 0.4%) |
2MTHF + OH → P4 + H2O | |
p = 0.76 Torr | kP4(T) = 3.47 × 10−24 × T3.61 × exp (1953.3 K/T) (error fitting ~ 3.6%) |
p = 7.6 Torr | kP4(T) = 3.43 × 10−24 × T3.61 × exp (1955.0 K/T) (error fitting ~ 3.6%) |
p = 76 Torr | kP4(T) = 3.33 × 10−24 × T3.61 × exp (1957.7 K/T) (error fitting ~ 3.6%) |
p = 760 Torr | kP4(T) = 2.86 × 10−24 × T3.63 × exp (1974.0 K/T) (error fitting ~ 3.6%) |
p = 7600 Torr | kP4(T) = 2.19 × 10−24 × T3.66 × exp (2013.1 K/T) (error fitting ~ 3.7%) |
p = 76,000 Torr | kP4(T) = 1.80 × 10−23 × T3.39 × exp (1848.4 K/T) (error fitting ~ 6.0%) |
2MTHF + OH → P5 + H2O | |
p = 0.76 Torr | kP5(T) = 1.31 × 10−24 × T3.95 × exp (966.8 K/T) (error fitting ~ 0.8%) |
p = 7.6 Torr | kP5(T) = 1.24 × 10−24 × T3.96 × exp (969.2 K/T) (error fitting ~ 0.7%) |
p = 76 Torr | kP5(T) = 1.33 × 10−24 × T3.95 × exp (966.1 K/T) (error fitting ~ 0.8%) |
p = 760 Torr | kP5(T) = 1.33 × 10−24 × T3.95 × exp (964.7 K/T) (error fitting ~ 0.8%) |
p = 7600 Torr | kP5(T) = 1.31 × 10−24 × T3.95 × exp (966.6 K/T) (error fitting ~ 0.8%) |
p = 76,000 Torr | kP5(T) = 1.33 × 10−24 × T3.95 × exp (962.8 K/T) (error fitting ~ 0.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, T.V.-T.; Bui, T.Q.; Nhung, N.T.A.; Quy, P.T.; Shrestha, K.P.; Mauss, F.; Giri, B.R.; Huynh, L.K. An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling. Energies 2023, 16, 3730. https://doi.org/10.3390/en16093730
Mai TV-T, Bui TQ, Nhung NTA, Quy PT, Shrestha KP, Mauss F, Giri BR, Huynh LK. An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling. Energies. 2023; 16(9):3730. https://doi.org/10.3390/en16093730
Chicago/Turabian StyleMai, Tam V.-T., Thanh Q. Bui, Nguyen Thi Ai Nhung, Phan Tu Quy, Krishna Prasad Shrestha, Fabian Mauss, Binod Raj Giri, and Lam K. Huynh. 2023. "An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling" Energies 16, no. 9: 3730. https://doi.org/10.3390/en16093730
APA StyleMai, T. V. -T., Bui, T. Q., Nhung, N. T. A., Quy, P. T., Shrestha, K. P., Mauss, F., Giri, B. R., & Huynh, L. K. (2023). An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling. Energies, 16(9), 3730. https://doi.org/10.3390/en16093730