Production of Alternative Fuels Based on Sewage Sludge
Abstract
:1. Introduction
2. Materials
3. Methods
4. Results and Discussion
5. Summary of Conclusions
- The use of sewage sludge in the fuel mixture should constitute up to 25% of its total weight;
- The use of sewage sludge for the production of granulated fuel does not require additional drying or pre-drying;
- The obtained granulated fuel is an excellent alternative for the management of sewage sludge unsuitable for agricultural use;
- Replacing fossil fuels with granular fuels can reduce carbon dioxide emissions and reduce dependence on natural fuels;
- The obtained fuel parameters confirm its high quality;
- The produced granulated fuel can be used for energy production.
6. Patents
Funding
Data Availability Statement
Conflicts of Interest
References
- Wojtkowska-Łodej, G. Transformacja Rynków Energii. Gospodarka—Klimat—Technologia—Regulacje; Wydawnictwo: SGH: Warszawa, Poland, 2022; pp. 8–17. [Google Scholar]
- Chena, L.; Hea, L.; Zhenga, B.; Weib, G.; Lia, H.; Zhang, H.; Yang, S. Bifunctional acid-activated montmorillonite enables efficient catalytic biodiesel production from non-food oil: Characterization, optimization, kinetic and thermodynamic studies. Fuel Process. Technol. 2023, 250, 107903. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Yan, Q.; Wu, X.; Zhang, H. Superparamagnetic nanospheres with efficient bifunctional acidic sites enable sustainable production of biodiesel from budget non-edible oils. Energy Convers. Manag. 2023, 297, 117758. [Google Scholar] [CrossRef]
- He, J.; Chen, L.; Zheng, B.; Zhou, H.; Wang, H.; Li, H.; Zhang, H.; Xu, C.C.; Yang, S. Deep eutectic solvents for catalytic biodiesel production from liquid biomass and upgrading of solid biomass into 5-hydroxymethylfurfural. Green Chem. 2023, 25, 7410–7440. [Google Scholar] [CrossRef]
- Jaworski, T.; Wajda, A. Wykorzystanie paliw z odpadów, biomasy oraz osadów ściekowych w ciepłownictwie. Nowa Energ. 2022, 4, 42–51. Available online: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-4520ee1b-85c7-4b33-aed3-074c69d7321b (accessed on 5 June 2023).
- Topare, N.S.; Jogdand, R.I.; Shinde, H.P.; More, R.S.; Khan, A.; Asiri, A.M. A short review on approach for biodiesel production: Feedstock’s, properties, process parameters and environmental sustainability. Mater. Today Proc. 2022, 57, 1605–1612. [Google Scholar] [CrossRef]
- Wasilewski, R.; Stelmach, S.; Sobolewski, A. Wytwarzanie i wykorzystanie stałych paliw Wtórnych. Chemik 2011, 65, 572–579. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPP2-0012-0009/c/Wasilewski_pol.pdf (accessed on 5 June 2023).
- Sarquah, K.; Narra, S.; Beck, G.; Bassey, U.; Antwi, E.; Hartmann, M.; Derkyi, N.S.A.; Awafo, E.A.; Nelles, M. Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies 2023, 16, 200. [Google Scholar] [CrossRef]
- Ustawa o Odpadach z Dnia 14 Grudnia 2012 r. (Dz. U. z 2022 r. Poz. 699 z Późn. zm. Available online: https://ppiop.rcl.gov.pl/index.php?r=skorowidz/view&id=47065&prev=32295 (accessed on 7 June 2023).
- Ulewicz, M.; Maciejewski, P. Ekologiczne korzyści ze spalania paliw alternatywnych. Zesz. Nauk. WSOWL 2011, 2, 384–402. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATA-0013-0084 (accessed on 12 June 2023).
- Eriksson, O.; Finnvedena, G. Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2. Energies 2017, 10, 539. [Google Scholar] [CrossRef]
- Vávrová, K.; Králík, T.; Janota, L.; Šolcová, O.; Čárský, M.; Soukup, K.; Vítek, M. Process Economy of Alternative Fuel Production from Sewage Sludge and Waste Celluloses Biomass. Energies 2023, 16, 518. [Google Scholar] [CrossRef]
- Available online: https://www.europarl.europa.eu/news/pl/headlines/economy/20151201STO05603/gospodarka-o-obiegu-zamknietym-definicja-znaczenie-i-korzysci-wideo (accessed on 16 June 2023).
- Nowak, M.; Szul, M. Possibilities for application of alternative fuels in Poland. Arch. Waste Manag. Environ. Prot. 2016, 18, 33–44. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-288e0725-4fb4-4b62-982e-1384e4e2944e (accessed on 16 June 2023).
- Rozporządzenie Ministra Gospodarki z Dnia 16 Lipca 2015 r. w Sprawie Dopuszczania Odpadów do Składowania na Składowiskach (Dz. U. 2015 Poz. 1277). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001277 (accessed on 16 June 2023).
- Kuklis, I.; Mazurek, I.; Jagustyn, B. Parametry klasyfikacyjne stałych paliw wtórnych wytwarzanych z komunalnych osadów ściekowych. Ochr. Sr. 2014, 36, 51–56. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-f0fcd551-efea-402a-a0b0-1216c2699c98 (accessed on 17 June 2023).
- Koc-Jurczyk, J.; Jurczyk, Ł. Gospodarka Osadami Ściekowymi jako Narzędzie Gospodarki o Obiegu Zamkniętym; IGSMIE PAN: Kraków, Poland, 2020; pp. 35–45. Available online: https://min-pan.krakow.pl/wydawnictwo/wp-content/uploads/sites/4/2021/09/Strategie-Wdra%25C5%25BCania-Zielonego-%25C5%2581adu-2000.pdf (accessed on 17 June 2023).
- Siebielec, S.; Urbaniak, M.; Siebielec, G. Zanieczyszczenia i Metody Uzdatniania Komunalnych Osadów Ściekowych. Stud. I Rap. Iung-Pib 2015, 46, 45–64. [Google Scholar] [CrossRef]
- Strategia Postępowania z Komunalnymi Osadami Ściekowymi na Lata 2019–2022, Ministerstwo Środowiska, 18.11.2018 r. Available online: https://www.gov.pl/attachment/2846e2b3-68c7-46eb-b36e-7643e81efd9a (accessed on 5 June 2023).
- Kubonova, L.; Janakova, I.; Malikova, P.; Drabinova, S.; Dej, M.; Smelik, R.; Skalny, P.; Heviankova, S. Evaluation of Waste Blends with Sewage Sludge as a Potential Material Input for Pyrolysis. Appl. Sci. 2021, 11, 1610. [Google Scholar] [CrossRef]
- Rećko, K. Termiczna utylizacja osadów ściekowych. Arch. Gospod. Odpad. I Ochr. Sr. 2005, 2, 17–24. [Google Scholar]
- Michalski, R.; Wojciechowski, A. Paliwa alternatywne z odpadów z PWZE. Autobusy: Technika, eksploatacja, systemy transportowe. Inst. Nauk.-Wydawniczy Spatium. Sp. Z O.O. 2017, 18, 342–346. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-27753c68-cc43-4221-98d8-35a6dcf605cc (accessed on 20 June 2023).
- Osiński, J.; Żach, P. Wybrane Zagadnienia Recyklingu Samochodów; WKŁ: Warszawa, Poland, 2006; pp. 71–77. [Google Scholar]
- Parasiewicz, W.; Pyskło, L. Guma w samochodach—Odzysk i recykling. Recykling 2005, 11, 52–53. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BOS5-0017-0042 (accessed on 20 June 2023).
- Wojciechowski, A.; Michalski, R. Zastosowanie gumy w pojazdach samochodowych. Recyklinggumy. Transp. Samoch. 2012, 4, 57–68. Available online: https://ts.publisherspanel.com/resources/html/cms/MAINPAGE (accessed on 20 June 2023).
- Greinert, A.; Mrówczyńska, M.; Szefner, W. The Use of Waste Biomass from the Wood Industry and Municipal Sources for Energy Production. Sustainability 2019, 11, 3083. [Google Scholar] [CrossRef]
- Varma, A.K.; Thakur, L.S.; Shankar, R.; Mondal, P. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Waste Manag. 2019, 89, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Morales-Máximo, M.; García, C.A.; Pintor-Ibarra, L.F.; Alvarado-Flores, J.J.; Velázquez-Martí, B.; Rutiaga-Quiñones, J.G. Evaluation and Characterization of Timber Residues of Pinus spp. as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico. Forests 2021, 12, 977. [Google Scholar] [CrossRef]
- Morales-Máximo, M.; Ruíz-García, V.M.; López-Sosa, L.B.; Rutiaga-Quiñones, J.G. Exploitation of Wood Waste of Pinus. Appl. Sci. 2020, 10, 2933. [Google Scholar] [CrossRef]
- Alizadeh, P.; Tabil, L.G.; Adapa, P.K.; Cree, D.; Mupondwa, E.; Emadi, B. Torrefaction and Densification of Wood Sawdust for Bioenergy Applications. Fuels 2022, 3, 152–175. [Google Scholar] [CrossRef]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Modification of Energy Parameters in Wood Pellets with the Use of Waste Cooking Oil. Energies 2021, 14, 6486. [Google Scholar] [CrossRef]
- Ali, L.; Baloch, K.A.; Palamanit, A.; Raza, S.A.; Laohaprapanon, S.; Techato, K. Physicochemical Characterisation and the Prospects of Biofuel Production from Rubberwood Sawdust and Sewage Sludge. Sustainability 2021, 13, 5942. [Google Scholar] [CrossRef]
- Alizadeh, P.; Dumonceaux, T.; Tabil, L.G.; Mupondwa, E.; Soleimani, M.; Cree, D. Steam Explosion Pre-Treatment of Sawdust for Biofuel Pellets. Clean Technol. 2022, 4, 1175–1192. [Google Scholar] [CrossRef]
- Bożym, M. Wymagania jakościowe stawiane osadom ściekowym spalanym w krajowych cementowniach. Chemik 2013, 67, 1019–1024. Available online: https://bibliotekanauki.pl/articles/1208283.pdf (accessed on 7 July 2023).
- Wzorek, M.; Król, A. Niskotemperaturowe suszenia paliw z osadów ściekowych z wykorzystaniem energii słonecznej. Pr. Inst. Ceram. Mater. Bud. 2014, 18, 198–210. Available online: https://bibliotekanauki.pl/articles/391959.pdf (accessed on 7 July 2023).
- PN-EN ISO 5667-13:2011; Jakość Wody—Pobieranie Próbek—Część 13: Wytyczne Dotyczące Pobierania Próbek Osadów. Wydawnictwa Normalizacyjne: Warszawa, Poland, 2011.
- PN-ISO 587:2000; Paliwa Stałe—Oznaczanie Zawartości Chloru. Wydawnictwa Normalizacyjne: Warszawa, Poland, 2000.
- ISO 19579:2006; Stałe Paliwa Mineralne—Oznaczanie Siarki. Wydawnictwa Normalizacyjne: Warszawa, Poland, 2006.
- ISO 1928:2009; Stałe Paliwa Mineralne—Oznaczanie Wartości Opałowej. ISO: Geneva, Switzerland, 2009.
- ISO 29541:2010; Stałe Paliwa Mineralne—Oznaczanie Całkowitej Zawartości Węgla, Wodoru i Azotu. Wydawnictwa Normalizacyjne: Warszawa, Poland, 2010.
- PN-EN 15414-3:2011; Stałe Paliwa Wtórne—Oznaczanie Zawartości Wilgoci Metodą Suszarkową˛—Cześć 3: Wilgotność w Ogólnej Próbce Analitycznej. Wydawnictwa Normalizacyjne: Warszawa, Poland, 2011.
- PN-EN 15402:2011; Stałe Paliwa Wtórne—Oznaczanie Zawartości Części lotnych. Wydawnictwa Normalizacyjne: Warszawa, Poland, 2011.
- PN-EN 15403:2011; Stałe Paliwa Wtórne—Oznaczanie Zawartości Popiołu. Wydawnictwa Normalizacyjne: Warszawa, Poland, 2011.
- Lisý, M.; Lisá, H.; Jecha, D.; Baláš, M.; Križan, P. Characteristic Properties of Alternative Biomass Fuels. Energies 2020, 13, 1448. [Google Scholar] [CrossRef]
- Pastorek, Z.; Kára, J.; Jević, P. Biomasa Obnovitelnyadruj Energie; Publisher FCC PUBLIC: Prague, Czech Republic, 2004. [Google Scholar]
- Wang, C.; Wang, X.; Jiang, X.; Li, F.; Lei, Y.; Lin, O. The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw. Fuel Process. Technol. 2019, 189, 1–14. [Google Scholar] [CrossRef]
- Król, D. Recykling energetyczny odpadów. Czas. Apar. Badaw. Dydakt. 2012, 17, 41–47. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-AGHM-0047-0006 (accessed on 7 July 2023).
- Standardy Jakościowe w Badaniu Odpadów Palnych. Blog/2021/03/30. Available online: http://www.ichpw.pl/blog/2021/03/30/standard-jakościowe-w-badaniu-odpadów-palnych/ (accessed on 7 July 2023).
- Wasilewski, R.; Stelmach, S.; Piotrowski, O. Comparative analysis of energy values of coal and waste used for heat and/or electricity production. Arch. Waste Manag. Environ. Prot. 2015, 17, 115–122. [Google Scholar]
- Kijo-Kleczkowska, A.; Szumera, M.; Środa, K.; Richter, D. Analysis of sewage sludge TG/DSC regardling to hard coal and energetic willow. Arch. Waste Manag. Environ. Prot. 2015, 17, 39–50. Available online: https://bibliotekanauki.pl/articles/357172 (accessed on 7 July 2023).
- Chen, G.B.; Chatelier, S.; Lin, H.T.; Wu, F.H.; Lin, T.H. A Study of Sewage Sludge Co-Combustion with Australian Black Coal and Shiitake Substrate. Energies 2018, 11, 3436. [Google Scholar] [CrossRef]
- Smoliński, A.; Karwot, J.; Bondaruk, J.; Bąk, A. The bioconversion of sewage sludge to bio-fuel: The environmental and economic benefits. Materials 2019, 12, 2417. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Chang, F.C.; Shen, Y.H.; Tsai, M.S. The characteristics of organic sludge/sawdust derived fuel. Bioresour. Technol. 2011, 102, 5406–5410. [Google Scholar] [CrossRef]
- Jelonek, I.; Jelonek, Z.; Nocuń, A. Ocena jakości paliw na przykładzie węgli kamiennych i pelletów drzewnych. Górnictwo Odkryw. 2018, 59, 69–77. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-ca418e3c-fff5-4dc9-867c-ef098d4cb973 (accessed on 7 July 2023).
Test | Percentage Proportions of Fuel Mixtures |
---|---|
I | 50% sewage sludge |
25% rubber waste | |
25% sawdust | |
II | 40% sewage sludge |
20% rubber waste | |
40% sawdust | |
III | 30% sewage sludge |
30% rubber waste | |
40% sawdust | |
IV | 25% sewage sludge |
25% rubber waste | |
50% sawdust |
Determined Parameter | Sewage Sludge |
---|---|
Moisture content W [%] | 80.22 |
Volatile parts V [%] | 59.75 |
Ash A [%] | 33.54 |
Carbon C [%] | 30.50 |
Hydrogen H [%] | 3.60 |
Sulphur S [%] | 1.36 |
Chlorine Cl [%] | 0.08 |
Calorific value Qi [MJ/kg] | 0.89 |
Determined Parameter | Rubber Waste |
---|---|
Moisture content W [%] | 0.78 |
Volatile parts V [%] | 73.21 |
Ash A [%] | 18.23 |
Carbon C [%] | 56.12 |
Hydrogen H [%] | 4.94 |
Sulphur S [%] | 1.21 |
Chlorine Cl [%] | 0.19 |
Calorific value Qi [MJ/kg] | 31.56 |
Determined Parameter | Wood Waste |
---|---|
Moisture content W [%] | 7.79 |
Volatile parts V [%] | 92.97 |
Ash A [%] | 0.89 |
Carbon C [%] | 54.98 |
Hydrogen H [%] | 6.29 |
Sulphur S [%] | 0.05 |
Chlorine Cl [%] | 0.01 |
Calorific value Qi [MJ/kg] | 17.45 |
Test | Moisture Content W | Volatile Parts V | Ash A | Carbon C | Hydrogen H | Sulphur S | Chlorine Cl | Calorific Value Qi |
---|---|---|---|---|---|---|---|---|
Unit | ||||||||
[%] | [%] | [%] | [%] | [%] | [%] | [%] | [MJ/kg] | |
I | 41.57 | 76.40 | 15.15 | 34.04 | 7.29 | 0.55 | 0.03 | 13.92 |
II | 31.78 | 76.53 | 17.40 | 37.41 | 6.97 | 0.48 | 0.02 | 17.75 |
III | 22.54 | 77.45 | 14.82 | 42.64 | 6.71 | 0.41 | 0.02 | 19.66 |
IV | 18.36 | 78.36 | 16.46 | 47.88 | 6.81 | 0.32 | 0.01 | 22.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rećko, K. Production of Alternative Fuels Based on Sewage Sludge. Energies 2024, 17, 48. https://doi.org/10.3390/en17010048
Rećko K. Production of Alternative Fuels Based on Sewage Sludge. Energies. 2024; 17(1):48. https://doi.org/10.3390/en17010048
Chicago/Turabian StyleRećko, Krzysztof. 2024. "Production of Alternative Fuels Based on Sewage Sludge" Energies 17, no. 1: 48. https://doi.org/10.3390/en17010048
APA StyleRećko, K. (2024). Production of Alternative Fuels Based on Sewage Sludge. Energies, 17(1), 48. https://doi.org/10.3390/en17010048