Progress of Photovoltaic DC Fault Arc Detection Based on VOSviewer Bibliometric Analysis
Abstract
:1. Introduction
2. Bibliometrics Analysis of PV DC Arc
2.1. Methodological Framework Using VOSviewer
- (1)
- Select WoS Database: Start by accessing the WOS database, which serves as the primary source for retrieving scholarly articles;
- (2)
- Perform ‘Advanced Search’: Use the ‘Advanced Search’ option in the Web of Science to precisely locate relevant articles. This step focuses on filtering and collecting data that will be pertinent to the analysis;
- (3)
- Use Keywords: Employ specific search keywords (TS = Topic Search) to refine the search further. In this context, the keywords target studies related to PV DC arc, ensuring that the retrieved data are highly relevant to the research focus;
- (4)
- Retrieve and Screen Results: After conducting the search, the results are retrieved and then screened based on criteria such as author affiliation and country, which helps in identifying the most relevant and significant studies for further analysis;
- (5)
- Open VOSviewer Source Software: Launch the VOSviewer software, which is utilized for analyzing and visualizing bibliometric networks. VOSviewer is capable of handling large sets of bibliographic data;
- (6)
- Create a Map Based on Bibliographic Data: In VOSviewer, create a new map file that will visually represent the bibliographic data. This map is crucial for understanding the relationships and patterns within the data;
- (7)
- Select Co-occurrence (All Keywords): Choose the co-occurrence analysis option in VOSviewer, focusing on all keywords. This step involves analyzing how frequently different keywords appear together in the same articles, which helps in identifying key themes and trends in the literature;
- (8)
- Detailed Graph Showing Co-occurrences of Keywords: VOSviewer then generates a detailed graph or network map showing the co-occurrences of keywords. This visual representation allows researchers to easily identify and interpret the main research hotspots, trends, and the interconnections among various fields within the dataset.
2.2. Global Annual Publication Trend of Photovoltaic Direct Current Arc Fault
2.3. Distribution of Author Cooperation by Country/Region
2.4. Analysis of Institution Cooperation
2.5. The Most Productive Author
2.6. Keyword Cluster Analysis
3. Materials and Methods
3.1. Feature Extraction and Classifier-Based Fault Detection
3.2. Data-Driven Fault Detection
3.3. Artificial Intelligence-Based Fault Detection
Detection Method | Key Techniques | Pros | Cons | Applicability | Hardware/ Software | Numerical Accuracies | References |
---|---|---|---|---|---|---|---|
Feature Extraction- and Classifier-Based Fault Detection | Frequency-domain features | Captures frequency variations | May require advanced processing | Detailed frequency analysis | Moderate | High | [15] |
Time-domain features | Simple implementation | Limited in capturing frequency | Real-time monitoring | Basic | Moderate | [16] | |
Wavelet transform features | Excellent time-frequency resolution | Complex implementation | Non-stationary signal analysis | Advanced | High | [47] | |
Data-Driven Fault Detection | Support vector machine | Effective for classification | Sensitive to parameter tuning | Fault pattern classification | Moderate to advanced | High | [50] |
Decision tree | Simple interpretation | Prone to overfitting | Decisionmaking | Basic to moderate | Moderate to high | [51] | |
Random forest | Handles high-dimensional data | May require large training set | Classification tasks | Moderate | High | [51] | |
Data-Driven Fault Detection | Neural network | Complex patterns recognition | Requires large training data | Pattern recognition | Advanced | High | [53] |
Convolutional neural networks | Effective for image processing | Requires large datasets | Image-based fault | Advanced | High | [54] | |
Recurrent neural networks | Captures temporal dependencies | Complex architecture | Time-series data analysis | Advanced | High | [55] | |
Image processing-based advanced methods | Effective for visual analysis | Requires specialized algorithms | Image-based fault detection | Advanced | High | [57] |
4. Challenges and Prospects of Photovoltaic DC Arc Fault Detection Technology
4.1. Technical Challenges and Bottlenecks
4.2. Future Trends and Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pillai, D.S.; Blaabjerg, F.; Rajasekar, N. A comparative evaluation of advanced fault detection approaches for PV systems. IEEE J. Photovolt. 2019, 9, 513–527. [Google Scholar] [CrossRef]
- Rivas, A.E.L.; Abrao, T. Faults in smart grid systems: Monitoring, detection and classification. Electr. Power Syst. Res. 2020, 189, 106602. [Google Scholar] [CrossRef]
- Twaisan, K.; Barışçı, N. Integrated distributed energy resources (DER) and microgrids: Modeling and optimization of DERs. Electronics 2022, 11, 2816. [Google Scholar] [CrossRef]
- dos Santos, S.A.A.; Torres, J.P.N.; Fernandes, C.A.F.; Lameirinhas, R.A.M. The impact of aging of solar cells on the performance of photovoltaic panels. Energy Convers. Manag. X 2021, 10, 100082. [Google Scholar] [CrossRef]
- Libra, M.; Petrík, T.; Poulek, V.; Tyukhov, I.I.; Kouřím, P. Changes in the efficiency of photovoltaic energy conversion in temperature range with extreme limits. IEEE J. Photovolt. 2021, 11, 1479–1484. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K. A review of dust accumulation and cleaning methods for solar photovoltaic systems. J. Clean. Prod. 2020, 276, 123187. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Wu, L.; Huang, Q.; Chen, Z.; Hu, W. Risk-averse based optimal operational strategy of grid-connected photovoltaic/wind/battery/diesel hybrid energy system in the electricity/hydrogen markets. Int. J. Hydrogen Energy 2023, 48, 4631–4648. [Google Scholar] [CrossRef]
- Lu, S.; Phung, B.T.; Zhang, D. A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems. Renew. Sustain. Energy Rev. 2018, 89, 88–98. [Google Scholar] [CrossRef]
- Nowak, K.; Janiszewski, J.; Dombek, G. A new short-circuit hybrid device for the protection of low-voltage networks from the effects of an arc fault. IEEE Access 2022, 10, 88678–88691. [Google Scholar] [CrossRef]
- Xiong, Q.; Ji, S.; Zhu, L.; Zhong, L.; Liu, Y. A novel DC arc fault detection method based on electromagnetic radiation signal. IEEE Trans. Plasma Sci. 2017, 45, 472–478. [Google Scholar] [CrossRef]
- Babrauskas, V. Electric arc explosions—A review. Fire Saf. J. 2017, 89, 7–15. [Google Scholar] [CrossRef]
- Xiong, Q.; Gattozzi, A.L.; Feng, X.; Penney, C.E.; Zhang, C.; Ji, S.; Strank, S.M.; Hebner, R.E. Development of a Fault Detection and Localization Algorithm for Photovoltaic Systems. IEEE J. Photovolt. 2023, 13, 958–967. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, F.; Ren, Z.; Wang, P.; Nguyen, T.N.; Zheng, J.; Zhang, X. Feature analysis in time-domain and fault diagnosis of series arc fault. In Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts, Denver, CO, USA, 10–13 September 2017; pp. 306–311. [Google Scholar]
- Rong, F.; Huang, C.; Chen, Z.; Liu, H.; Zhang, Y.; Zhang, C. Detection of arc grounding fault based on the features of fault voltage. Electr. Power Syst. Res. 2023, 221, 109459. [Google Scholar] [CrossRef]
- Ferraz, R.G.; Iurinic, L.U.; Filomena, A.D.; Gazzana, D.S.; Bretas, A.S. Arc fault location: A nonlinear time varying fault model and frequency domain parameter estimation approach. Int. J. Electr. Power Energy Syst. 2016, 80, 347–355. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Xiong, J. Series arc fault identification for photovoltaic system based on time-domain and time-frequency-domain analysis. IEEE J. Photovolt. 2017, 7, 1105–1114. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Park, K.-C.; Motai, Y.; Yoon, J.R. Acoustic fault detection technique for high-power insulators. IEEE Trans. Ind. Electron. 2017, 64, 9699–9708. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Chen, K.-L.; Rau, S.-H.; Lee, W.-J. High-speed arcing fault detection: Using the light spectrum. IEEE Ind. Appl. Mag. 2020, 26, 29–36. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Z.; Balog, R.S. Real time arc fault detection in PV systems using wavelet decomposition. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1761–1766. [Google Scholar]
- Ahmadi, M.; Samet, H.; Ghanbari, T. Series arc fault detection in photovoltaic systems based on signal-to-noise ratio characteristics using cross-correlation function. IEEE Trans. Ind. Inform. 2019, 16, 3198–3209. [Google Scholar] [CrossRef]
- Hategekimana, P.; Ferre, A.J.; Bernuz, J.M.R.; Ntagwirumugara, E. Fault detecting and isolating schemes in a low-voltage DC microgrid network from a remote village. Energies 2022, 15, 4460. [Google Scholar] [CrossRef]
- Osmani, K.; Haddad, A.; Lemenand, T.; Castanier, B.; Alkhedher, M.; Ramadan, M. A critical review of PV systems’ faults with the relevant detection methods. Energy Nexus 2023, 12, 100257. [Google Scholar] [CrossRef]
- Dołęgowski, M.; Szmajda, M. A novel algorithm for fast DC electric arc detection. Energies 2021, 14, 288. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, C.; Qian, X.; Liu, W.; Zhu, C.; Ge, L. A DC series arc fault detection method based on a lightweight convolutional neural network used in photovoltaic system. Energies 2022, 15, 2877. [Google Scholar] [CrossRef]
- Ong, N.A.F.M.N.; Tohir, M.Z.M.; Said, M.S.M.; Nasif, M.S.; Alias, A.H.; Ramali, M.R. Development of fire safety best practices for rooftops grid-connected photovoltaic (PV) systems installation using systematic review methodology. Sustain. Cities Soc. 2022, 78, 103637. [Google Scholar]
- Xia, K.; He, S.; Tan, Y.; Jiang, Q.; Xu, J.; Yu, W. Wavelet packet and support vector machine analysis of series DC ARC fault detection in photovoltaic system. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 192–200. [Google Scholar] [CrossRef]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Lu, S.; Phung, B.T.; Zhang, D. Study on DC series arc fault in photovoltaic systems for condition monitoring purpose. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Murtadho, M.; Prasetyono, E.; Anggriawan, D.O. Detection of parallel arc fault on photovoltaic system based on fast Fourier Transform. In Proceedings of the 2020 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020; pp. 21–25. [Google Scholar]
- Armijo, K.M.; Johnson, J.; Harrison, R.K.; Thomas, K.E.; Hibbs, M.; Fresquez, A. Quantifying photovoltaic fire danger reduction with arc-fault circuit interrupters. Prog. Photovolt. Res. Appl. 2016, 24, 507–516. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Chen, C.-I.; Fu, W.-C.; Lee, Y.-D.; Cheng, C.-C.; Chen, Y.-F. A hybrid approach for low-voltage AC series arc fault detection. Energies 2023, 16, 1256. [Google Scholar] [CrossRef]
- Omran, A.H.; Said, D.M.; Hussin, S.M.; Abdulhussain, S.H. A Comprehensive Study of Various DC Faults and Detection Methods in Photovoltaic System. In Computer Networks, Big Data and IoT, Proceedings of the ICCBI 2021, Nadu, India, 9–10 December 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 657–676. [Google Scholar]
- Wang, Y.; Li, X.; Ban, Y.; Ma, X.; Hao, C.; Zhou, J.; Cai, H. A DC Arc Fault Detection Method Based on AR Model for Photovoltaic Systems. Appl. Sci. 2022, 12, 10379. [Google Scholar] [CrossRef]
- Rahman, T.; Mansur, A.A.; Hossain Lipu, M.S.; Rahman, M.S.; Ashique, R.H.; Houran, M.A.; Elavarasan, R.M.; Hossain, E. Investigation of degradation of solar photovoltaics: A review of aging factors, impacts, and future directions toward sustainable energy management. Energies 2023, 16, 3706. [Google Scholar] [CrossRef]
- Lazzaretti, A.E.; Costa, C.H.d.; Rodrigues, M.P.; Yamada, G.D.; Lexinoski, G.; Moritz, G.L.; Oroski, E.; Goes, R.E.d.; Linhares, R.R.; Stadzisz, P.C. A monitoring system for online fault detection and classification in photovoltaic plants. Sensors 2020, 20, 4688. [Google Scholar] [CrossRef]
- Navid, Q.; Hassan, A.; Fardoun, A.A.; Ramzan, R.; Alraeesi, A. Fault diagnostic methodologies for utility-scale photovoltaic power plants: A state of the art review. Sustainability 2021, 13, 1629. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y. Identification and detection of dc arc fault in photovoltaic power generation system. In Proceedings of the 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Vientiane, Laos, 11–12 January 2020; pp. 440–444. [Google Scholar]
- Manno, D.; Cipriani, G.; Ciulla, G.; Di Dio, V.; Guarino, S.; Brano, V.L. Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images. Energy Convers. Manag. 2021, 241, 114315. [Google Scholar] [CrossRef]
- Gudivada, V.; Apon, A.; Ding, J. Data quality considerations for big data and machine learning: Going beyond data cleaning and transformations. Int. J. Adv. Softw. 2017, 10, 1–20. [Google Scholar]
- Ninkov, A.; Frank, J.R.; Maggio, L.A. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ. 2022, 11, 173–176. [Google Scholar] [CrossRef]
- Zhou, J.; Shen, Y.; Pantelous, A.A.; Liu, Y. Quality function deployment: A bibliometric-based overview. IEEE Trans. Eng. Manag. 2022, 71, 1180–1201. [Google Scholar] [CrossRef]
- McAllister, J.T.; Lennertz, L.; Atencio Mojica, Z. Mapping a discipline: A guide to using VOSviewer for bibliometric and visual analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- Sepúlveda-Oviedo, E.H.; Travé-Massuyès, L.; Subias, A.; Pavlov, M.; Alonso, C. Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach. Heliyon 2023, 9, e21491. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, A.; Milimonfared, J.; Aghaei, M. Fault detection and classification for photovoltaic systems based on hierarchical classification and machine learning technique. IEEE Trans. Ind. Electron. 2020, 68, 12750–12759. [Google Scholar] [CrossRef]
- Pan, J.; Chen, J.; Zi, Y.; Li, Y.; He, Z. Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment. Mech. Syst. Signal Process. 2016, 72, 160–183. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Wang, X.; Zhang, Y. Rolling bearing fault diagnosis based on improved adaptive parameterless empirical wavelet transform and sparse denoising. Measurement 2020, 152, 107392. [Google Scholar] [CrossRef]
- Hamad, R. An assessment of artificial neural networks, support vector machines and decision trees for land cover classification using sentinel-2A data. Sciences 2020, 8, 459–464. [Google Scholar] [CrossRef]
- Mansouri, M.; Trabelsi, M.; Nounou, H.; Nounou, M. Deep learning-based fault diagnosis of photovoltaic systems: A comprehensive review and enhancement prospects. IEEE Access 2021, 9, 126286–126306. [Google Scholar] [CrossRef]
- Zhou, C.; Li, H.; Yang, J.; Yang, Q.; Yang, L.; He, S.; Yuan, X. Fuzzy regular least squares twin support vector machine and its application in fault diagnosis. Expert Syst. Appl. 2023, 231, 120804. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Wu, L.; Yu, J.; Cheng, S.; Lin, P.; Chen, H. Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents. Energy Convers. Manag. 2018, 178, 250–264. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Zhang, S. A new methodology for identifying arc fault by sparse representation and neural network. IEEE Trans. Instrum. Meas. 2018, 67, 2526–2537. [Google Scholar] [CrossRef]
- Velásquez, J.D.; Cadavid, L.; Franco, C.J. Intelligence techniques in sustainable energy: Analysis of a decade of advances. Energies 2023, 16, 6974. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2017, 65, 5990–5998. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Q.; Tang, L.; Yuan, T.; Zhou, T. Fault type identification of arc grounding based on time-frequency domain characteristics of zero sequence current. Electr. Power Syst. Res. 2023, 223, 109689. [Google Scholar] [CrossRef]
- Dang, H.-L.; Kwak, S.; Choi, S. Parallel DC arc failure detecting methods based on artificial intelligent techniques. IEEE Access 2022, 10, 26058–26067. [Google Scholar] [CrossRef]
- Appiah, A.Y.; Zhang, X.; Ayawli, B.B.K.; Kyeremeh, F. Review and performance evaluation of photovoltaic array fault detection and diagnosis techniques. Int. J. Photoenergy 2019, 2019, 6953530. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Fan, T.; Wang, J.; Lin, Z.; Shen, Y.; Su, J.; Zhang, P. DC Series Arc Fault Detection Method in Photovoltaic System Based on Multiple Frequency Selections for Common-Mode Conductive Voltage. IEEE Trans. Power Electron. 2022, 37, 15538–15553. [Google Scholar] [CrossRef]
- Xu, W.; Wu, X.; Li, Y.; Wang, H.; Lu, L.; Ouyang, M. A comprehensive review of DC arc faults and their mechanisms, detection, early warning strategies, and protection in battery systems. Renew. Sustain. Energy Rev. 2023, 186, 113674. [Google Scholar] [CrossRef]
- Lohrasbinasab, I.; Shahraki, A.; Taherkordi, A.; Delia Jurcut, A. From statistical-to machine learning-based network traffic prediction. Trans. Emerg. Telecommun. Technol. 2022, 33, e4394. [Google Scholar] [CrossRef]
- Shi, H.; Li, R.; Bai, X.; Zhang, Y.; Min, L.; Wang, D.; Lu, X.; Yan, Y.; Lei, Y. A review for control theory and condition monitoring on construction robots. J. Field Robot. 2023, 40, 934–954. [Google Scholar] [CrossRef]
- Lu, S.; Sirojan, T.; Phung, T.; Zhang, D.; Ambikairajah, E. DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems. IEEE Access 2019, 7, 45831–45840. [Google Scholar] [CrossRef]
- Lu, S.; Sahoo, A.; Ma, R.; Phung, T. DC Series Arc Fault Detection Using Machine Learning in Photovoltaic Systems: Recent Developments and Challenges. In Proceedings of the 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD), Phuket, Thailand, 25–28 October 2020. [Google Scholar]
- Gong, Q.; Peng, K.; Wang, W.; Xu, B.; Zhang, X.; Chen, Y. Series arc fault identification method based on multi-feature fusion. Front. Energy Res. 2022, 9, 824414. [Google Scholar] [CrossRef]
- Li, Q.; Long, R.; Chen, H.; Chen, F.; Wang, J. Visualized analysis of global green buildings: Development, barriers and future directions. J. Clean. Prod. 2020, 245, 118775. [Google Scholar] [CrossRef]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Omran, A.H.; Said, D.M.; Abdulhussain, S.H.; Hussin, S.M.; Ahmad, N. Models, detection methods, and challenges in DC arc fault: A review. J. Teknol. 2021, 83, 1–16. [Google Scholar] [CrossRef]
- Dang, H.-L.; Kwak, S.; Choi, S. DC Series Arc Fault Diagnosis Scheme Based on Hybrid Time and Frequency Features Using Artificial Learning Models. Machines 2024, 12, 102. [Google Scholar] [CrossRef]
- Dang, H.-L.; Kwak, S.; Choi, S. Advanced Learning Technique Based on Feature Differences of Moving Intervals for Detecting DC Series Arc Failures. Machines 2024, 12, 167. [Google Scholar] [CrossRef]
- Direct-Current Arc Detector Market Size, Future Growth: Shaping the Future with Forecasted Growth and Trends for 2024–2031. Available online: https://www.linkedin.com/pulse/direct-current-arc-detector-market-size-future-n4bvf (accessed on 4 March 2024).
- Zhang, W.; Xu, P.; Wang, Y.; Li, D.; Liu, B. A DC arc detection method for photovoltaic (PV) systems. Results Eng. 2024, 21, 101807. [Google Scholar] [CrossRef]
Article Title | Source Title | Times Cited | Publication Year |
---|---|---|---|
A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques | IEEE JOURNAL OF PHOTOVOLTAICS | 1218 | 2014 |
Fault detection and diagnosis methods for photovoltaic systems: A review | RENEWABLE AND SUSTAINABLE ENERGY REVIEWS | 315 | 2016 |
A comprehensive review on protection challenges and fault diagnosis in PV systems | RENEWABLE AND SUSTAINABLE ENERGY REVIEWS | 259 | 2019 |
Fault Detection and Location of Photovoltaic Based DC Microgrid Using Differential Protection Strategy | IEEE TRANSACTIONS ON SMART GRID | 254 | 2018 |
The Detection of Series Arc Fault in Photovoltaic Systems Based on the Arc Current Entropy | IEEE TRANSACTIONS ON POWER ELECTRONICS | 240 | 2014 |
Arc Fault and Flash Signal Analysis in DC Distribution Systems Using Wavelet Transformation | IEEE TRANSACTIONS ON SMART GRID | 201 | 2014 |
A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems | RENEWABLE AND SUSTAINABLE ENERGY REVIEWS | 199 | 2018 |
A Comparative Evaluation of Advanced Fault Detection Approaches for PV Systems | IEEE JOURNAL OF PHOTOVOLTAICS | 199 | 2017 |
Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions | RENEWABLE AND SUSTAINABLE ENERGY REVIEWS | 193 | 2016 |
DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems | IEEE ACCESS | 193 | 2015 |
Rank | Country/Region | Publications | Citations | Category Normalized Citation Impact |
---|---|---|---|---|
1 | CHINA | 553 | 5890 | 0.94 |
2 | USA | 382 | 6438 | 1.36 |
3 | INDIA | 174 | 1997 | 0.91 |
4 | GERMANY | 133 | 1782 | 1.10 |
5 | FRANCE | 119 | 1484 | 0.99 |
Rank | Institution | Publications | Citations | Category Normalized Citation Impact |
---|---|---|---|---|
1 | Xi’an Jiaotong University | 77 | 865 | 0.98 |
2 | Centre National de la Recherche Scientifique (CNRS) | 75 | 1085 | 1.09 |
3 | Chinese Academy of Sciences | 42 | 764 | 1.51 |
4 | National Institute of Technology (NIT System) | 37 | 415 | 1.15 |
5 | Indian Institute of Technology System (IIT System) | 36 | 330 | 0.73 |
Rank | Author | Publications | Citations | Affiliated Institution |
---|---|---|---|---|
1 | Schweitzer, Patrick | 15 | 214 | Universite de Lorraine |
2 | Liu, Zhiyuan | 13 | 93 | Xi’an Jiaotong University |
3 | Geng, Yingsan | 13 | 93 | Xi’an Jiaotong University |
4 | Wang, Jianhua | 13 | 93 | Xi’an Jiaotong University |
5 | Ji, Shengchang | 11 | 317 | Xi’an Jiaotong University |
6 | Xiong, Qing | 11 | 173 | Xi’an Jiaotong University |
7 | Weber, Serge | 10 | 104 | Universite de Lorraine |
8 | Lehtonen, Matti | 10 | 68 | Aalto University |
9 | Kwak, Sangshin | 10 | 67 | Chung Ang University |
10 | Wu, Yi | 10 | 61 | Xi’an Jiaotong University |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Lu, C.; Li, C.; Xu, Y.; Liu, L.; Wang, X. Progress of Photovoltaic DC Fault Arc Detection Based on VOSviewer Bibliometric Analysis. Energies 2024, 17, 2450. https://doi.org/10.3390/en17112450
Song L, Lu C, Li C, Xu Y, Liu L, Wang X. Progress of Photovoltaic DC Fault Arc Detection Based on VOSviewer Bibliometric Analysis. Energies. 2024; 17(11):2450. https://doi.org/10.3390/en17112450
Chicago/Turabian StyleSong, Lei, Chunguang Lu, Chen Li, Yongjin Xu, Lin Liu, and Xianbo Wang. 2024. "Progress of Photovoltaic DC Fault Arc Detection Based on VOSviewer Bibliometric Analysis" Energies 17, no. 11: 2450. https://doi.org/10.3390/en17112450
APA StyleSong, L., Lu, C., Li, C., Xu, Y., Liu, L., & Wang, X. (2024). Progress of Photovoltaic DC Fault Arc Detection Based on VOSviewer Bibliometric Analysis. Energies, 17(11), 2450. https://doi.org/10.3390/en17112450