Site Selection of Wind Farms in Poland: Combining Theory with Reality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. The AHP Method
2.3.2. The TOPSIS Method
2.4. Semiautomated Spatial Analysis Method
2.4.1. Semiautomated Spatial Analysis
3. Results
3.1. Mathematical Modelling and Preliminary Results
3.2. Semiautomated Spatial Analysis
3.3. Suitable Area Map for Wind Farm Construction in Poland
4. Discussion
5. Conclusions
- The selection of 7555.91 km2 (2.34% of Poland) as potential wind farm areas.
- The proposed method provides a comprehensive and empirical data-driven approach to wind farm site selection, considering economic, social, and environmental factors.
- The identified potential areas offer the possibility of increasing Poland’s wind power capacity by over 11 times, contributing to national and EU renewable energy targets.
- The proposed method has been validated for practical applications through the spatial overlap observed between potential areas and existing wind farms.
- Valuable insights for policymakers and decision-makers in spatial energy planning and wind farm development.
- A replicable and adaptable methodology for other regions and renewable energy project types.
- A foundation for further research on optimising wind farm placement and maximising renewable energy potential.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ari, A.; Arregui, N.; Black, S.; Celasun, O.; Iakova, D.M.; Mineshima, A.; Mylonas, V.; Parry, I.W.H.; Teodoru, I.; Zhunussova, K. Surging Energy Prices in Europe in the Aftermath of the War: How to Support the Vulnerable and Speed up the Transition Away from Fossil Fuels; IMF Working Papers; Volume 2022, International Monetary Fund: Washington, DC, USA, 2022. [Google Scholar]
- Eurostat. Electricity Prices for Household Consumers. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_204/default/map?lang=en (accessed on 16 January 2024).
- European Commission. The EU Aims to Be Climate-Neutral by 2050. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (accessed on 16 January 2024).
- Garegnani, G.; Sacchelli, S.; Balest, J.; Zambelli, P. GIS-Based Approach for Assessing the Energy Potential and the Financial Feasibility of Run-off-River Hydro-Power in Alpine Valleys. Appl. Energy 2018, 216, 709–723. [Google Scholar] [CrossRef]
- Laks, I.; Walczak, Z.; Walczak, N. Fuzzy Analytical Hierarchy Process Methods in Changing the Damming Level of a Small Hydropower Plant: Case Study of Rosko SHP in Poland. Water Resour. Ind. 2023, 29, 100204. [Google Scholar] [CrossRef]
- Tercan, E.; Eymen, A.; Urfalı, T.; Saracoglu, B.O. A Sustainable Framework for Spatial Planning of Photovoltaic Solar Farms Using GIS and Multi-Criteria Assessment Approach in Central Anatolia, Turkey. Land Use Policy 2021, 102, 105272. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Alhuyi Nazari, M.; Kumar, R.; Naeimi, A.; Ming, T. Solar Power Technology for Electricity Generation: A Critical Review. Energy Sci. Eng. 2018, 6, 340–361. [Google Scholar] [CrossRef]
- Amsharuk, A.; Łaska, G. The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland. Energies 2023, 16, 7107. [Google Scholar] [CrossRef]
- Amsharuk, A.; Łaska, G. A Review: Existing Methods for Solving Spatial Planning Problems for Wind Turbines in Poland. Energies 2022, 15, 8957. [Google Scholar] [CrossRef]
- Ghazvini, M.; Sadeghzadeh, M.; Ahmadi, M.H.; Moosavi, S.; Pourfayaz, F. Geothermal Energy Use in Hydrogen Production: A Review. Int. J. Energy Res. 2019, 43, 7823–7851. [Google Scholar] [CrossRef]
- Sowizdzal, A. Geothermal Energy Resources in Poland—Overview of the Current State of Knowledge. Renew. Sustain. Energy Rev. 2018, 82, 4020–4027. [Google Scholar] [CrossRef]
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G.; Andreopoulou, Z.; Zafeiriou, E. A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece. Sustainability 2018, 10, 531. [Google Scholar] [CrossRef]
- Dzikuć, M.; Piwowar, A. Ecological and Economic Aspects of Electric Energy Production Using the Biomass Co-Firing Method: The Case of Poland. Renew. Sustain. Energy Rev. 2016, 55, 856–862. [Google Scholar] [CrossRef]
- Vasileiou, M.; Loukogeorgaki, E.; Vagiona, D.G. GIS-Based Multi-Criteria Decision Analysis for Site Selection of Hybrid Offshore Wind and Wave Energy Systems in Greece. Renew. Sustain. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Henfridsson, U.; Neimane, V.; Strand, K.; Kapper, R.; Bernhoff, H.; Danielsson, O.; Leijon, M.; Sundberg, J.; Thorburn, K.; Ericsson, E.; et al. Wave Energy Potential in the Baltic Sea and the Danish Part of the North Sea, with Reflections on the Skagerrak. Renew. Energy 2007, 32, 2069–2084. [Google Scholar] [CrossRef]
- Statistics Explained. Renewable Energy Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics (accessed on 15 January 2024).
- WindEurope. Wind Energy in Europe: 2022 Statistics and the Outlook for 2023–2027. Available online: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/ (accessed on 15 January 2024).
- SolarPower Europe. EU Market Outlook for Solar Power 2022–2026. Available online: https://www.solarpowereurope.org/insights/market-outlooks/eu-market-outlook-for-solar-power-2022-2026-2 (accessed on 16 January 2024).
- European Commission. Renewable Energy Targets. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en (accessed on 16 January 2024).
- Ustawa z Dnia 9 Marca 2023 r. o Zmianie Ustawy o Inwestycjach w Zakresie Elektrowni Wiatrowych Oraz Niektórych Innych Ustaw. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230000553 (accessed on 19 July 2023).
- OZE w 2023 Roku. Co Czeka Nas w Najbliższych Miesiącach? Available online: https://www.green-news.pl/3859-OZE-podsumowanie-2023-roku-prognozy-2024 (accessed on 16 January 2024).
- Gyamfi, B.A.; Adedoyin, F.F.; Bein, M.A.; Bekun, F.V.; Agozie, D.Q. The Anthropogenic Consequences of Energy Consumption in E7 Economies: Juxtaposing Roles of Renewable, Coal, Nuclear, Oil and Gas Energy: Evidence from Panel Quantile Method. J. Clean. Prod. 2021, 295, 126373. [Google Scholar] [CrossRef]
- Saidur, R.; Rahim, N.A.; Islam, M.R.; Solangi, K.H. Environmental Impact of Wind Energy. Renew. Sustain. Energy Rev. 2011, 15, 2423–2430. [Google Scholar] [CrossRef]
- Szurek, M.; Blachowski, J.; Nowacka, A. GIS-Based Method for Wind Farm Location Multi-Criteria Analysis. Min. Sci. 2014, 21, 65–81. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Tsitoura, I.; Kokologos, D.; Kalaitzakis, K. Sustainable Siting Process in Large Wind Farms Case Study in Crete. Renew. Energy 2015, 75, 474–480. [Google Scholar] [CrossRef]
- Sotiropoulou, K.F.; Vavatsikos, A.P. Onshore Wind Farms GIS-Assisted Suitability Analysis Using PROMETHEE II. Energy Policy 2021, 158, 112531. [Google Scholar] [CrossRef]
- Villacreses, G.; Gaona, G.; Martínez-Gómez, J.; Jijón, D.J. Wind Farms Suitability Location Using Geographical Information System (GIS), Based on Multi-Criteria Decision Making (MCDM) Methods: The Case of Continental Ecuador. Renew. Energy 2017, 109, 275–286. [Google Scholar] [CrossRef]
- Łaska, G. Wind Energy and Multicriteria Analysis in Making Decisions on the Location of Wind Farms: A Case Study in the North-Eastern of Poland. In Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems; Maalawi, K., Ed.; IntechOpen: London, UK, 2020; pp. 1–18. [Google Scholar]
- Aydin, N.Y.; Kentel, E.; Sebnem Duzgun, H. GIS-Based Site Selection Methodology for Hybrid Renewable Energy Systems: A Case Study from Western Turkey. Energy Convers. Manag. 2013, 70, 90–106. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B.; Vogt, J. GIS-Based Approach for the Evaluation of Wind Energy Potential: A Case Study for the Kujawsko–Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2011, 15, 1696–1707. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Odigie, O.; Munda, J.L. A Multi-Criteria GIS Based Model for Wind Farm Site Selection Using Interval Type-2 Fuzzy Analytic Hierarchy Process: The Case Study of Nigeria. Appl. Energy 2018, 228, 1853–1869. [Google Scholar] [CrossRef]
- Saraswat, S.K.; Digalwar, A.K.; Yadav, S.S.; Kumar, G. MCDM and GIS Based Modelling Technique for Assessment of Solar and Wind Farm Locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Waewsak, J.; Ali, S.; Natee, W.; Kongruang, C.; Chancham, C.; Gagnon, Y. Assessment of Hybrid, Firm Renewable Energy-Based Power Plants: Application in the Southernmost Region of Thailand. Renew. Sustain. Energy Rev. 2020, 130, 109953. [Google Scholar] [CrossRef]
- Elkadeem, M.R.; Younes, A.; Sharshir, S.W.; Campana, P.E.; Wang, S. Sustainable Siting and Design Optimization of Hybrid Renewable Energy System: A Geospatial Multi-Criteria Analysis. Appl. Energy 2021, 295, 117071. [Google Scholar] [CrossRef]
- Kobryń, A. Wielokryterialne Wspomaganie Decyzji w Gospodarowaniu Przestrzenią; Difin: Warszawa, Poland, 2014; ISBN 9788379304691. [Google Scholar]
- Trzaskalik, T. Multiple Criteria Decision Making’05; The Karol Adamiecki University of Economics: Katowice, Poland, 2006; ISBN 8372468435. [Google Scholar]
- Goodwin, P.; Wright, G. Analiza Decyzji; Wydawnictwo Nieoczywiste: Siedliska, Poland, 2016; ISBN 9788363391065. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980; Volume 9, ISBN 9780070543713. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; Golden, B.L., Wasil, E.A., Harker, P.T., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-642-50246-0. [Google Scholar]
- Erdamar, B.; Luis Garcia-Lapresta, J.; Pérez-Roman, D. Measuring Consensus in a Preference-Approval Context. Inf. Fusion. 2012, 17, 2012–2023. [Google Scholar] [CrossRef]
- Bouyssou, D.; Marchant, T.; Pirlot, M.; Tsoukiàs, A.; Vincke, P. Evaluation and Decision Models with Multiple Criteria, 1st ed.; Springer: New York, NY, USA, 2006; Volume 86. [Google Scholar]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making, 1st ed.; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin, Germany, 1981; Volume 186, ISBN 978-3-540-10558-9. [Google Scholar]
- Hwang, C.L.; Lai, Y.J.; Liu, T.Y. A New Approach for Multiple Objective Decision Making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Basic Information about Poland—Civil Service—Portal Gov.Pl. Available online: https://www.gov.pl/web/civilservice/basic-information-about-poland (accessed on 21 May 2024).
- Geography of Poland: Landscape, Climate, Nature & Economy. Available online: https://www.intopoland.com/poland-info/geography-of-poland.html (accessed on 21 May 2024).
- Climate. Study.Gov.Pl. Available online: https://study.gov.pl/climate (accessed on 21 May 2024).
- Poland—Climatology. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/poland/climate-data-historical (accessed on 21 May 2024).
- Parki Narodowe—Polskie Parki Narodowe. Available online: https://zpppn.pl/parki-narodowe (accessed on 23 May 2024).
- General Directorate for Environmental Protection. Forms of Nature Protection. Available online: http://www.gdos.gov.pl/forms-of-nature-protection (accessed on 23 May 2024).
- Białowieża National Park. Available online: https://bpn.com.pl/index.php?option=com_content&task=view&id=104&Itemid=178 (accessed on 21 May 2024).
- Tatra National Park. Available online: https://tpn.gov.pl/tatra-national-park (accessed on 21 May 2024).
- Biebrza National Park. Available online: https://bbpn.gov.pl/biebrza-national-park (accessed on 21 May 2024).
- “Ujście Warty” National Park. Available online: https://pnuw.gov.pl/ujscie-warty-national-park (accessed on 21 May 2024).
- Report on the Survey of Environmental Awareness and Behavior of Polish Residents. Available online: https://www.gov.pl/web/edukacja-ekologiczna/badania2 (accessed on 21 May 2024).
- Poland—Environmental Technologies. Available online: https://www.trade.gov/country-commercial-guides/poland-environmental-technologies (accessed on 21 May 2024).
- Baza Danych Obiektów Topograficznych-BDOT10k. Available online: https://dane.gov.pl/pl/dataset/2030,dane-obiektow-topograficznych-o-szczegolowosci-zap (accessed on 28 June 2023).
- Topographic Objects Database (BDOT10k). Available online: https://www.geoportal.gov.pl/dane/baza-danych-obiektow-topograficznych-bdot (accessed on 28 June 2023).
- Geoportal.Gov.Pl. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html (accessed on 28 June 2023).
- Numeryczny Model Terenu o Interwale Siatki Co Najmniej 100 m. Available online: https://dane.gov.pl/pl/dataset/792,numeryczny-model-terenu-o-interwale-siatki-co-najmniej-100-m (accessed on 28 June 2023).
- Digital Elevation Model (DEM). Available online: https://www.geoportal.gov.pl/dane/numeryczny-model-terenu (accessed on 28 June 2023).
- Generalna Dyrekcja Ochrony Środowiska. Dostęp Do Danych Geoprzestrzennych. Available online: https://www.gov.pl/web/gdos/dostep-do-danych-geoprzestrzennych (accessed on 28 June 2023).
- METEO IMGW-PIB. Available online: https://meteo.imgw.pl/ (accessed on 28 June 2023).
- INSPIRE. Available online: https://isok.gov.pl/inspire.html (accessed on 28 June 2023).
- ESA/CCI Viewer. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download.php (accessed on 29 June 2023).
- Floors, R.; Badger, M.; Troen, I.; Grogan, K.; Permien, F.H. Satellite-Based Estimation of Roughness Lengths and Displacement Heights for Wind Resource Modelling. Wind. Energy Sci. 2021, 6, 1379–1400. [Google Scholar] [CrossRef]
- Global Wind Atlas. Available online: https://globalwindatlas.info/en/ (accessed on 1 July 2023).
- Poland Wind Power Plants. Available online: https://openinframap.org/stats/area/Poland/plants?source=wind (accessed on 29 June 2023).
- Dziennik Ustaw—Rok 2023 Poz. 1336—INFOR.PL. Available online: https://www.infor.pl/akt-prawny/DZU.2023.194.0001336,ustawa-o-ochronie-przyrody.html (accessed on 1 March 2024).
- Kiker, G.A.; Bridges, T.S.; Varghese, A.; Seager, P.T.P.; Linkov, I. Application of Multicriteria Decision Analysis in Environmental Decision Making. Integr. Environ. Assess. Manag. 2005, 1, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-Criteria Decision Analysis in Environmental Sciences: Ten Years of Applications and Trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Skibniewski, M.J.; Chao, L. Evaluation of Advanced Construction Technology with AHP Method. J. Constr. Eng. Manag. 1992, 118, 577–593. [Google Scholar] [CrossRef]
- Lin, Z.C.; Yang, C.B. Evaluation of Machine Selection by the AHP Method. J. Mater. Process Technol. 1996, 57, 253–258. [Google Scholar] [CrossRef]
- Gaudenzi, B.; Borghesi, A. Managing Risks in the Supply Chain Using the AHP Method. Int. J. Logist. Manag. 2006, 17, 114–136. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2001; Volume 34, ISBN 978-1-4613-5667-7. [Google Scholar]
- Taylan, O.; Bafail, A.O.; Abdulaal, R.M.S.; Kabli, M.R. Construction Projects Selection and Risk Assessment by Fuzzy AHP and Fuzzy TOPSIS Methodologies. Appl. Soft Comput. 2014, 17, 105–116. [Google Scholar] [CrossRef]
- Amiri, M.P. Project Selection for Oil-Fields Development by Using the AHP and Fuzzy TOPSIS Methods. Expert. Syst. Appl. 2010, 37, 6218–6224. [Google Scholar] [CrossRef]
- Chatterjee, P.; Stević, Ž. A Two-Phase Fuzzy AHP—Fuzzy TOPSIS Model for Supplier Evaluation in Manufacturing Environment. Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 72–90. [Google Scholar] [CrossRef]
- Lima-Junior, F.R.; Carpinetti, L.C.R. Combining SCOR® Model and Fuzzy TOPSIS for Supplier Evaluation and Management. Int. J. Prod. Econ. 2016, 174, 128–141. [Google Scholar] [CrossRef]
- Shidpour, H.; Shahrokhi, M.; Bernard, A. A Multi-Objective Programming Approach, Integrated into the TOPSIS Method, in Order to Optimize Product Design; in Three-Dimensional Concurrent Engineering. Comput. Ind. Eng. 2013, 64, 875–885. [Google Scholar] [CrossRef]
- Lin, M.C.; Wang, C.C.; Chen, M.S.; Chang, C.A. Using AHP and TOPSIS Approaches in Customer-Driven Product Design Process. Comput. Ind. 2008, 59, 17–31. [Google Scholar] [CrossRef]
- Vavrek, R.; Chovancová, J. Assessment of Economic and Environmental Energy Performance of EU Countries Using CV-TOPSIS Technique. Ecol. Indic. 2019, 106, 105519. [Google Scholar] [CrossRef]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A State-of the-Art Survey of TOPSIS Applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Ansari, M.T.J.; Al-Zahrani, F.A.; Pandey, D.; Agrawal, A. A Fuzzy TOPSIS Based Analysis toward Selection of Effective Security Requirements Engineering Approach for Trustworthy Healthcare Software Development. BMC Med. Inform. Decis. Mak. 2020, 20, 236. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Çifçi, G. A Combined Fuzzy AHP and Fuzzy TOPSIS Based Strategic Analysis of Electronic Service Quality in Healthcare Industry. Expert Syst. Appl. 2012, 39, 2341–2354. [Google Scholar] [CrossRef]
- Mericskay, B. Automation of Workflows for the Installation of a Wind Farm. QGIS Appl. Territ. Plan. 2018, 3, 125–168. [Google Scholar] [CrossRef]
- The Graphical Modeler in QGiS. Available online: https://docs.qgis.org/2.18/en/docs/user_manual/processing/modeler.html (accessed on 8 February 2024).
- Badora, K. Farmy Wiatrowe Jako Elementy Determinujące Strukturę i Funkcjonowanie Krajobrazu Wiejskiego. Archit. Kraj. 2013, 2, 58–77. [Google Scholar]
- Nõ Lvak, H.; Truu, J.; Limane, B.; Truu, M.; Cepurnieks, G.; Bartkevičs, V.; Juhanson, J.; Muter, O. Visual Impact Assessment of Wind Turbines and Their Farms on Landscape of Kretinga Region (Lithuania) and Grobina Townscape (Latvia). J. Environ. Eng. Landsc. Manag. 2015, 23, 39–49. [Google Scholar] [CrossRef]
- Resak, M.; Rogosz, B.; Szczepiński, J.; Dziamara, M. Legal Conditions for Investments in Renewable Energy in the Overburden Disposal Areas in Poland. Sustainability 2022, 14, 1065. [Google Scholar] [CrossRef]
- Główny Urząd Statystyczny. Zużycie Energii w Gospodarstwach Domowych w 2022 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2022-roku,3,17.html (accessed on 12 February 2024).
- Latinopoulos, D.; Kechagia, K. A GIS-Based Multi-Criteria Evaluation for Wind Farm Site Selection. A Regional Scale Application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Azizi, A.; Malekmohammadi, B.; Jafari, H.R.; Nasiri, H.; Amini Parsa, V. Land Suitability Assessment for Wind Power Plant Site Selection Using ANP-DEMATEL in a GIS Environment: Case Study of Ardabil Province, Iran. Environ. Monit. Assess. 2014, 186, 6695–6709. [Google Scholar] [CrossRef] [PubMed]
- Kazak, J.; van Hoof, J.; Szewranski, S. Challenges in the Wind Turbines Location Process in Central Europe—The Use of Spatial Decision Support Systems. Renew. Sustain. Energy Rev. 2017, 76, 425–433. [Google Scholar] [CrossRef]
- Wang, Q.; M’Ikiugu, M.M.; Kinoshita, I. A GIS-Based Approach in Support of Spatial Planning for Renewable Energy: A Case Study of Fukushima, Japan. Sustainability 2014, 6, 2087–2117. [Google Scholar] [CrossRef]
- Li, M.; Xu, Y.; Guo, J.; Li, Y.; Li, W. Application of a GIS-Based Fuzzy Multi-Criteria Evaluation Approach for Wind Farm Site Selection in China. Energies 2020, 13, 2426. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfalos, A. A Decision Support System Methodology for Selecting Wind Farm Installation Locations Using AHP and TOPSIS: Case Study in Eastern Macedonia and Thrace Region, Greece. Energy Policy 2019, 132, 232–246. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Badi, A. Wind Farm Land Suitability Indexing Using Multi-Criteria Analysis. Renew. Energy 2012, 44, 80–87. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria Decision Making in Energy Planning Using a Modified Fuzzy TOPSIS Methodology. Expert Syst. Appl. 2011, 38, 6577–6585. [Google Scholar] [CrossRef]
- Díaz-Cuevas, P.; Biberacher, M.; Domínguez-Bravo, J.; Schardinger, I. Developing a Wind Energy Potential Map on a Regional Scale Using GIS and Multi-Criteria Decision Methods: The Case of Cadiz (South of Spain). Clean. Technol. Environ. Policy 2018, 20, 1167–1183. [Google Scholar] [CrossRef]
- Nitsch, F.; Turkovska, O.; Schmidt, J. Observation-Based Estimates of Land Availability for Wind Power: A Case Study for Czechia. Energy Sustain. Soc. 2019, 9, 45. [Google Scholar] [CrossRef]
- Łaska, G. Wind Energy and Multi-Criteria Analysis in Making Decisions on the Location of Wind Farms. Procedia Eng. 2017, 182, 418–424. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Parry, T. Developing and Applying a GIS-Assisted Approach to Locating Wind Farms in the UK. Renew. Energy 2001, 24, 59–71. [Google Scholar] [CrossRef]
- Chamanehpour, E. Site Selection of Wind. Power Plant Using. Multi-Criteria Decision-Making Methods in GIS: A Case Study. Comput. Ecol. Softw. 2017; 7, 49. [Google Scholar] [CrossRef]
- AFRY. Wind of Change: A Guide to Improve Your Wind Farm’s Profitability. Available online: https://afry.com/en/insight/wind-change-guide-improve-your-wind-farms-profitability (accessed on 5 March 2024).
- Immediate Actions for the European Wind Power Industry. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_5185 (accessed on 5 March 2024).
- LinkedIn. The Wind Farm Industry: A Decade of Growth and Global Opportunities. Available online: https://www.linkedin.com/pulse/wind-farm-industry-decade-growth-global-opportunities/ (accessed on 5 March 2024).
- Ignitis Polska • Ignitis Polska Sp. z o.o. Available online: https://ignitis.pl/ignitis-polska/ (accessed on 13 February 2024).
- Polish Wind Farm “Jasna” with 132 MW Completed. Available online: https://www.sevivon.pl/aktualnosci/detail/polish-wind-farm-jasna-with-132-mw-completed/ (accessed on 13 February 2024).
- Abdulrahman, M.; Wood, D. Wind Farm Layout Upgrade Optimization. Energies 2019, 12, 2465. [Google Scholar] [CrossRef]
- Rehman, S.; Mohammed, A.B.; Alhems, L. A Heuristic Approach to Siting and Design Optimization of an Onshore Wind Farm Layout. Energies 2020, 13, 5946. [Google Scholar] [CrossRef]
- Kuczyński, W.; Wolniewicz, K.; Charun, H. Analysis of the Wind Turbine Selection for the Given Wind Conditions. Energies 2021, 14, 7740. [Google Scholar] [CrossRef]
- Gross, C. Community Perspectives of Wind Energy in Australia: The Application of a Justice and Community Fairness Framework to Increase Social Acceptance. Energy Policy 2007, 35, 2727–2736. [Google Scholar] [CrossRef]
- Hall, N.; Ashworth, P.; Devine-Wright, P. Societal Acceptance of Wind Farms: Analysis of Four Common Themes across Australian Case Studies. Energy Policy 2013, 58, 200–208. [Google Scholar] [CrossRef]
- Celik, A.N. Optimisation and Techno-Economic Analysis of Autonomous Photovoltaic-Wind Hybrid Energy Systems in Comparison to Single Photovoltaic and Wind Systems. Energy Convers. Manag. 2002, 43, 2453–2468. [Google Scholar] [CrossRef]
- Díaz-Cuevas, P.; Domínguez-Bravo, J.; Prieto-Campos, A. Integrating MCDM and GIS for Renewable Energy Spatial Models: Assessing the Individual and Combined Potential for Wind, Solar and Biomass Energy in Southern Spain. Clean. Technol. Environ. Policy 2019, 21, 1855–1869. [Google Scholar] [CrossRef]
- Ministry of Climate and Environment—Gov.Pl Website. Energy Policy of Poland Until 2040 (EPP2040). Available online: https://www.gov.pl/web/climate/energy-policy-of-poland-until-2040-epp2040 (accessed on 5 March 2024).
- Poland|Electricity Transition|Ember. Available online: https://ember-climate.org/countries-and-regions/countries/poland/ (accessed on 5 March 2024).
- Moving towards Energy Independence Wind Energy and Community Resilience. Available online: https://energy5.com/moving-towards-energy-independence-wind-energy-and-community-resilience (accessed on 5 March 2024).
- WindCycle. Blowing Away Fossil Fuels: The Impact of Wind Turbines on Energy Production. Available online: https://windcycle.energy/blowing-away-fossil-fuels/ (accessed on 5 March 2024).
- Zhang, D.; Xu, Z.; Li, C.; Yang, R.; Shahidehpour, M.; Wu, Q.; Yan, M. Economic and Sustainability Promises of Wind Energy Considering the Impacts of Climate Change and Vulnerabilities to Extreme Conditions. Electr. J. 2019, 32, 7–12. [Google Scholar] [CrossRef]
- NREL. News. Growth in Offshore Wind Energy Offers Huge Opportunity to Create U.S. Jobs. Available online: https://www.nrel.gov/news/program/2022/growth-in-offshore-wind-energy-offers-huge-opportunity-to-create-us-jobs.html (accessed on 5 March 2024).
- New Floating Wind Farm Will Power 4 Million Homes And Create Jobs. Available online: https://www.preciseconsultants.com/news/new-floating-wind-farm-will-power-4-million-homes-and-create-jobs/42274/ (accessed on 5 March 2024).
- Can Şener, Ş.E.; Anctil, A.; Sharp, J.L. Economic and Environmental Factors of Wind Energy Deployment in the United States. Renew. Energy Focus 2023, 45, 150–168. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wang, Q.; Zhang, K.; Qiang, W.; Wen, Q.H. Recent Advances in Data-Driven Prediction for Wind Power. Front. Energy Res. 2023, 11, 1204343. [Google Scholar] [CrossRef]
- Gautam, A.; Warudkar, V.; Bhagoria, J.L. A Comparative Analysis of Wind Characteristics for Distinct Terrains of India. Sustain. Energy Technol. Assess. 2022, 52, 102089. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate Change Impacts on Wind Power Generation. Nat. Rev. Earth Environ. 2020, 1, 627–643. [Google Scholar] [CrossRef]
- Zio, E.; Patil, R.B.; Kara, T.; Duran¸sahin, A.; Duran¸sahin, D. Implications of Climate Change on Wind Energy Potential. Sustainability 2023, 15, 14822. [Google Scholar] [CrossRef]
GIS Layer Name | Data | Data Type | Source |
---|---|---|---|
SWRS | Rivers and springs | Geospatial vector (Shp file) | [56] |
SWKN | Channels | ||
SWRM | Drainage ditches | ||
OIMK | Wetlands | ||
PTWP | Surface water | ||
PTZB— | Urban areas | ||
BUBD | Buildings | ||
SULN | Power grid | ||
SKDR | Roads | ||
PTLZ | Forests | ||
PTUT | Permanent crops | ||
KUSC | Sacral complexes | ||
KUZA | Historical complexes | ||
ADMS | Territorial divisions | ||
PTWZ | Excavations and heaps | ||
National parks | National parks | Geospatial vector (Shp file) | [61] |
Reserves | Reserves | ||
Natura 2000 network (SAC) | Natura 2000 network (SAC) | ||
Natura 2000 network (SPA) | Natura 2000 network (SPA) | ||
Landscape parks | Landscape parks | ||
Protected landscape areas | Protected landscape areas | ||
Natural landscape complexes | Natural landscape complexes | ||
Ecological sites | Ecological sites | ||
Monuments of nature | Monuments of nature | ||
Documentation posts | Documentation posts | ||
ISOK | Flood-risk areas | [63] | |
LCCL | Land cover classification | [64] | |
DEM | Digital Elevation Model | Tag Image File Format (Tiff file) | [60] |
Wind speed 100m | Wind speed and at 100 m | [66] | |
Air power density | Air power density at 100 m | [66] | |
WindFarm | Locations of currently built wind farms | Geospatial vector (Shp file) | [67] |
Criteria | Criteria Value |
---|---|
Protected nature areas, m | 2000 |
Protected monuments of nature, m | 200 |
Distance from urban areas, m | 700 |
Distance from power grid, m | 200 |
Distance from roads, m | 100 |
Distance from forests, m | 100 |
Distance from water network, m | 100 |
Slope, ° | 0–3 |
Roughness class | 2 |
Mean wind speed, m/s | 8 |
Power density of air, W/m2 | 500 |
GIS Layers | Buffer, m | GIS Layers | Buffer, m |
---|---|---|---|
Protected nature areas | Water network | ||
Monuments of nature | 200 | Surface water | 100 |
Ecological sites | 200 | Rivers and streams | 100 |
Reserves | 500 | Channels | 100 |
Landscape parks | 0 | Collective drainage ditches | 100 |
National parks | 2000 | Swamps and wetlands | 100 |
Protected landscape areas | 200 | Flood hazard areas | 0 |
Natural landscape complexes | 200 | Permanent crops | |
Documentation posts | 200 | Permanent crops | 25 |
Natura 2000 (birds) | 2000 | Urban areas | |
Natura 2000 (habitats) | 2000 | Building | 700 |
Ecological corridors | 0 | Buildings | 700 |
Forests | Power grid | ||
Forest | 100 | Power grid | 10 |
Areas around already-built wind turbines | Roads | ||
Areas around wind turbines | 500 | Roads | 50 |
Voivodeship Name | Suitable Area, km2 | Share to the Total Area, % | Total Selected Area, km2 |
---|---|---|---|
Lower Silesian | 158.88 | 2.10 | 7555.91 |
Kuyavian–Pomeranian | 108.42 | 1.43 | |
Lublin | 81.22 | 1.07 | |
Lubusz | 49.54 | 0.66 | |
Łódź | 36.72 | 0.49 | |
Lesser Poland | 35.27 | 0.47 | |
Masovian | 1305.67 | 17.28 | |
Opole | 17.88 | 0.24 | |
Subcarpathian | 193.81 | 2.57 | |
Podlaskie | 33.13 | 0.44 | |
Pomeranian | 909.74 | 12.04 | |
Silesian | 55.26 | 0.73 | |
Holy Cross | 0.52 | 0.01 | |
Warmian–Masurian | 1264.68 | 16.74 | |
Greater Poland | 1961.70 | 25.96 | |
Western Pomeranian | 1343.48 | 17.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amsharuk, A.; Łaska, G. Site Selection of Wind Farms in Poland: Combining Theory with Reality. Energies 2024, 17, 2635. https://doi.org/10.3390/en17112635
Amsharuk A, Łaska G. Site Selection of Wind Farms in Poland: Combining Theory with Reality. Energies. 2024; 17(11):2635. https://doi.org/10.3390/en17112635
Chicago/Turabian StyleAmsharuk, Artur, and Grażyna Łaska. 2024. "Site Selection of Wind Farms in Poland: Combining Theory with Reality" Energies 17, no. 11: 2635. https://doi.org/10.3390/en17112635
APA StyleAmsharuk, A., & Łaska, G. (2024). Site Selection of Wind Farms in Poland: Combining Theory with Reality. Energies, 17(11), 2635. https://doi.org/10.3390/en17112635