Aircraft Taxi Path Optimization Considering Environmental Impacts Based on a Bilevel Spatial–Temporal Optimization Model
Abstract
:1. Introduction
2. Bilevel Programing Model
2.1. Upper-Level Model Spatial Planning
2.2. Lower-Level Model Temporal Planning
3. Algorithm Design
3.1. Depth-First Search Algorithm for Available Paths
3.2. Genetic Algorithm Design
3.2.1. Genetic Algorithm for the Upper-Level Model
3.2.2. Genetic Algorithm for the Lower-Level Model
4. Experiments and Analysis
4.1. Analysis of the Experimental Results
4.2. Comparative Analysis
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Air Transport Action Group. Facts & Figures [EB/OL]. (2023-04). Available online: https://www.atag.org/facts-figures (accessed on 20 March 2024).
- International Energy Agency. Aviation [EB/OL]. (11 July 2023). Available online: https://www.iea.org/reports/aviation (accessed on 9 April 2024).
- Air Transport Action Group. Waypoint 2050; Air Transport Action Group: Geneva, Switzerland, 2021. [Google Scholar]
- European Environment Agency. European Aviation Environmental Report; EASA: Cologne, Germany, 2022. [Google Scholar]
- van der Sman, E.; Peerlings, B.; Kos, J.; Lieshout, R.; Boonekamp, T. Destination 2050—A Route to Net Zero European Aviation; NLR-Royal Netherlands Aerospace Centre & SEO Amsterdam Economics: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Jiang, Y.; Liu, Z.-Y.; Hu, Z.-T.; Wu, W.-W.; Wang, Z. Coordinated scheduling model of arriving aircraft at large airport. J. Traffic Transp. Eng. 2022, 22, 205–215. [Google Scholar]
- Wang, C.; Ren, Y.-H. A Model of Gate Allocation for Parallel Multi-runway Hybrid Operation from the Perspective of Fuel-saving and Carbon Emission Reduction. J. Transp. Inf. Saf. 2021, 39, 144–152. [Google Scholar]
- Sun, R.-F.; Li, J.; Wan, L.-L.; Yang, H.-T. Optimization of aircraft green taxi based on speed allocation. Sci. Technol. Eng. 2022, 22, 6752–6758. [Google Scholar]
- Shan, Y.; Shao, Y.; Yuan, Q.; Jiang, Y. Multiobjective Gate Assignment Model Considering Carbon Emissions. Int. J. Environ. Res. Public Health 2023, 20, 3952. [Google Scholar] [CrossRef]
- Weiszer, M.; Chen, J.; Stewart, P. A real-time Active Routing approach via a database for airport surface movement. Transp. Res. Part C Emerg. Technol. 2015, 58, 127–145. [Google Scholar] [CrossRef]
- Soltani, M.; Ahmadi, S.; Akgunduz, A.; Bhuiyan, N. An eco-friendly aircraft taxiing approach with collision and conflict avoidance. Transp. Res. Part C 2020, 121, 102872. [Google Scholar] [CrossRef]
- Cao, F.; Tang, T.-Q.; Gao, Y.-Q.; You, F.; Zhang, J. Calculation and analysis of new taxiing methods on aircraft fuel consumption and pollutant emissions. Energy 2023, 277, 127618. [Google Scholar] [CrossRef]
- Li, N.; Zhao, Q.; Xu, X.-H. Research on Taxing Optimization for Aircraft Based on Improved A*Algorithm. Comput. Simul. 2012, 29, 88–92. [Google Scholar]
- Rosa, L.P.; Ferreira, D.M.; Cruciol, L.L.B.V.; Li, W.-G.; Deng, X.-J. Genetic algorithms for management of taxi scheduling. In Proceedings of the 2013 International Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013. [Google Scholar]
- Benlic, U.; Brownlee, A.E.I.; Burke, E.K. Heuristic search for the coupled runway sequencing and taxiway routing problem. Transp. Res. Part C Emerg. Technol. 2016, 71, 333–355. [Google Scholar] [CrossRef]
- Zhang, Z.-N.; Wang, T. Taxing path optimization of airport at the aircraft end-around taxiway. Sci. Technol. Eng. 2019, 19, 241–248. [Google Scholar]
- Jiang, Y.; Wang, H.; Fan, W.-G.; Chen, L.; Cai, M.-T. Spatio-temporal cooperative optimization model of surface aircraft taxiing. J. Traffic Transp. Eng. 2019, 19, 127–135. [Google Scholar]
- He, S.; Lu, C.-Y.; Wang, Y.-Y.; Wang, D.-S. Lateral runway airport based on improved genetic algorithm Glide path optimization. Sci. Technol. Eng. 2021, 21, 8695–8701. [Google Scholar]
- Li, N.; Sun, Y.; Yu, J.; Li, J.-C.; Zhang, H.-F.; Tsai, S.-B. An Empirical Study on Low Emission Taxiing Path Optimization of Aircrafts on Airport Surfaces from the Perspective of Reducing Carbon Emissions. Energies 2019, 12, 1649. [Google Scholar] [CrossRef]
- Sun, R.; Li, J.; Niu, K.-X.; Tian, Y.; Xu, C. Research on Joint Ground Movement Optimization Based on Bilevel Programming. Aerospace 2022, 9, 502. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.-S.; Liu, M.-M.; Xue, Q.-W.; Zhang, H.-H.; Zhang, H. Bilevel spatial–temporal aircraft taxiing optimization considering carbon emissions. Sustain. Energy Technol. Assess. 2023, 58, 103358. [Google Scholar] [CrossRef]
- Obajemu, O.; Mahfouf, M.; Maiyar, L.M.; Al-Hindi, A.; Weiszer, M.; Chen, J. Real-Time Four-Dimensional Trajectory Generation Based on Gain-Scheduling Control and a High-Fidelity Aircraft Model. Engineering 2021, 7, 495–506. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, M.; Zuo, H.; Chen, J.; Weiszer, M.; Qian, X.-Y.; Burke, E.K. An online speed profile generation approach for efficient airport ground movement. Transp. Res. Part C 2018, 93, 256–272. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Q.-W.; Liu, S.-H.; Li, H.-Y. Multi-Objective Optimization of Aircraft Taxiing on the Airport Surface with Consideration to Taxiing Conflicts and the Airport Environment. Sustainability 2019, 11, 6728. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, Z.-T.; Liu, Z.-Y.; Zhang, H.-Y.; Wang, Z. A Bilevel Programming Approach for Optimization of Airport Ground Movement. Trans. Nanjing Univ. Aeronaut. Astronaut. 2021, 38, 829–839. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.-S.; Xue, Q.-W.; Wu, W.-W. Research on Space-Time Taxiing Optimization of Aircraft Based on Carbon Emission. J. S. China Univ. Technol. (Nat. Sci. Ed.) 2023, 51, 152–159. [Google Scholar]
- Air China. Check-in Deadlines for Air China Flights at All Airports in China [EB/OL]. Available online: https://www.airchina.com.cn/cn/info/airport-guide/counter-check-in/domestic-deadline/domestic_deadlines_c3.shtml (accessed on 22 March 2024).
- Air China. Gate Closure Schedule for Air China Flights at Airports in China [EB/OL]. Available online: https://et.airchina.com.cn/cn/info/gate_closing_time/domestic.shtml (accessed on 22 March 2024).
- Ren, X.-H.; Jiao, Y.; Zhao, Y.-F. Multi grid cellular automata boarding model considering carried baggages. J. Traffic Transp. Eng. 2017, 17, 122–129. [Google Scholar]
- International Civil Aviation Organization (ICAO). ICAO engine exhaust emissions databank [DB/OL]. (2019-05). Available online: https://www.easa.europa.eu/domains/environment/icaoaircraft-engine-emissions-databank (accessed on 21 March 2024).
- Li, J.; Zhao, Z.-Q.; Liu, X.-G.; Zhou, X.-N.; Wang, K.; Zhang, P. Study an analysis of aircraft emission inventory for Beijing Capital International Airport. China Environ. Sci. 2018, 38, 4469–4475. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Liu, S.-J.; Zhou, J.-Y.; Sun, J. Multimodal public transportation route planning considering personalized travel demand. J. Southwest Jiaotong Univ. 2022, 57, 1319–1325, 1333. [Google Scholar]
- Department of Development Planning, Civil Aviation Administration of China. Statistical Data on Civil Aviation of China 2020; China Civil Aviation Publishing House: Beijing, China, 2020. [Google Scholar]
- Wang, X.; Zuo, Q.-H. Aircraft taxiing route planning based on airport hotspots. In AIP Conference Proceedings, Proceedings of the1st International Conference on Materials Science, Energy Technology, Power Engineering (MEP 2017), Hangzhou, China, 15–16 April 2017; AIP Publishing: Long Island, NY, USA, 2017; p. 1839. [Google Scholar]
- Jiang, Y.; Liu, Z.; Hu, Z.; Zhang, H.-H. A Priority-Based Conflict Resolution Strategy for Airport Surface Traffic Considering Suboptimal Alternative Paths. IEEE Access 2021, 9, 606–617. [Google Scholar] [CrossRef]
Type of Objective | Optimization Objectives | Solution Method | Ref. |
---|---|---|---|
Environmental impacts not considered | Minimize taxi time | A* algorithm | [13] |
Minimize the number of taxiing conflicts | Genetic algorithm | [14] | |
Minimize taxi time | Local search-based algorithm | [15] | |
Minimize taxi time | Improved genetic algorithm | [16] | |
Minimize taxi distance and number of taxi conflicts | Heuristic algorithm | [17] | |
Minimize taxi time and wait time | Improved genetic algorithm | [18] | |
Environmental impacts considered | Minimize fuel consumption and gas emissions | Genetic algorithm | [19] |
Maximize the matching degree between the aircraft and the gate and minimize fuel consumption | Bilevel programming model, Dijkstra algorithm to generate available paths, genetic algorithm | [20] | |
Minimize carbon emissions and arrival flight wait time | Manual experience assignment to generate the set of available paths, neighborhood search algorithm | [21] | |
Minimize taxi time and fuel consumption | Genetic algorithm | [22] | |
Minimize taxi time and fuel consumption | Particle swarm optimization algorithm | [23] | |
Minimize taxi time and fuel consumption and gas emissions | NSGA-II algorithm | [24] |
Symbol | Type | Definition |
---|---|---|
F | Constant | Set of arriving and departing aircrafts |
V | Constant | Set of taxiing nodes, k, q ∈ V |
G | Constant | Set of gas types, G = {HC, CO, NOX, SO2} |
Variable | Flight i’s scheduled arrival or departure time | |
si/ei | Variable | Aircraft i’s taxiing start/end point |
Ri,j,k | Boolean variable | If aircraft i passes through node k before flight j, it is 1; otherwise, it is 0 |
Ri,k,q | Boolean variable | If aircraft i passes through node k and then node q, it is 1; otherwise, it is 0 |
ti,k | Variable | Time of aircraft i at node k |
ti,k,q | Variable | Taxiing time of aircraft i from node k to node q |
Lk,q | Variable | Distance from node k to node q |
Variable | Taxiing distance on apron area for arriving and departing flight i | |
Variable | Taxiing time on apron area for arriving and departing flight i | |
Variable | Flight i’s starting or ending boarding time | |
Ti | Variable | Total aircraft i’s taxiing time |
Nturni | Variable | Number of turns of aircraft i |
Twaiti | Variable | Flight i’s waiting time |
ni | Variable | Number of engines of aircraft i |
ratei | Variable | Engine fuel flow rate of the engine of aircraft i under idle conditions |
Ei,gas | Variable | Gas emission index of the engine of aircraft i under idle conditions |
Tturn | Constant | Aircraft turn penalty factor, Tturn = 30 s [21] |
Tboard | Constant | Time required for passenger boarding, Tboard = 20 min |
v1 | Constant | Taxiing speed of aircraft on taxiway area, v1 = 10 (m·s−1) |
v2 | Constant | Taxiing speed of aircraft on apron area, v2 = 15 (km·h−1) |
E1 | Constant | Conversion coefficient of aviation kerosene to standard coal, E1 = 1.4714 |
E2 | Constant | Emission coefficient of standard coal converted to carbon, E2 = 3.155 |
Tmax | Constant | Maximum waiting time, Tmax = 90 s |
Tmin | Constant | Safe taxiing time interval, Tmin = 20 s [19] |
M | Constant | Very large penalty, M = 105 |
Conf | Constant | Total number of taxiing conflicts |
Flight Id | Airline | Aircraft Type | Arr_Schedule | Dep_Schedule | Arr_Runway | Dep_Runway | Gate |
---|---|---|---|---|---|---|---|
1 | GS | ERJ190 | 10:00 | 13:00 | 16R | 16R | 206 |
2 | RY | ARJ21 | 10:15 | 11:20 | 16L | 16R | 207 |
3 | G5 | A320 | 10:25 | 11:35 | 16L | 16R | 214 |
4 | FM | B737 | 10:25 | 11:35 | 16L | 16R | 228 |
5 | ZH | B737 | 10:30 | 11:30 | 16L | 16R | 209 |
⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ | |
23 | UQ | B737 | 11:55 | 13:00 | 16L | 16R | 207 |
24 | DR | B737 | 11:55 | 13:00 | 16L | 16R | 225 |
25 | GX | A320 | 12:10 | 13:15 | 16L | 16R | 209 |
26 | CA | B737 | 12:20 | 14:00 | 16L | 16R | 214 |
27 | FM | B737 MAX | 12:20 | 13:20 | 16L | 16R | 224 |
Aircraft Type | Engine Type | Num_Engine | Rate/(kg·s−1) | Gas Emission Index/(g·kg−1) | ||
---|---|---|---|---|---|---|
HC | CO | NOX | ||||
ERJ190 | CF34-10E | 2 | 0.084 | 5.44 | 50.81 | 3.56 |
ARJ21 | CF34-10A16 | 2 | 0.083 | 6.96 | 52.05 | 3.45 |
B737 | CFM56-3C-1 | 2 | 0.124 | 1.42 | 26.80 | 4.30 |
B737 MAX | CFM LEAP-1B | 2 | 0.098 | 0.57 | 14.62 | 4.64 |
A320 | CFM56-5B4/P | 2 | 0.104 | 4.60 | 23.40 | 4.30 |
A319 | V2522-A5 | 2 | 0.118 | 0.10 | 13.42 | 4.50 |
CRJ900 | CF34-8C5 | 2 | 0.064 | 0.13 | 18.25 | 4.60 |
Number | Gate | Apron | Arr_Taxiing Distance/m | Dep_Taxiing Distance/m | Arr_Point | Dep_Point |
---|---|---|---|---|---|---|
1 | 103 | 2 | 635 | 305 | 60 | 59 |
2 | 201 | 4 | 588 | 564 | 45 | 40 |
3 | 202 | 4 | 585 | 519 | 45 | 40 |
4 | 203 | 4 | 569 | 486 | 45 | 40 |
… | … | … | … | … | … | |
21 | 226 | 7 | 520 | 433 | 26 | 31 |
22 | 228 | 7 | 545 | 528 | 26 | 31 |
23 | 229 | 7 | 555 | 552 | 26 | 31 |
24 | 230 | 7 | 540 | 600 | 26 | 31 |
Flight Id | Num_Paths | Set of Available Paths |
---|---|---|
1_Arr | 5 | 81→74→64→54→49→48→47→46→45 81→74→73→72→71→61→55→50→45 81→74→64→54→49→48→47→46→51→50→45 81→74→64→54→49→48→47→52→51→50→45 81→74→64→54→49→48→53→52→51→50→45 |
1_Dep | 2 | 40→45→50→55→61→71→70→69→68→67→66→65→77 40→41→46→51→56→62→72→71→70→69→68→67→66→65→77 |
2_Arr | 4 | 6→18→17→16→24→29→34→43→48→47→46→45 6→18→17→25→30→35→44→49→48→47→46→45 6→18→17→16→24→29→34→43→48→53→52→51→50→45 6→18→17→25→30→35→44→49→54→53→52→51→50→45 |
⋯ | ⋯ | ⋯ |
27_Arr | 4 | 6→18→17→16→15→14→21→26 6→18→17→16→15→22→27→32→31→26 6→18→17→16→24→29→34→33→32→31→26 6→18→17→25→30→35→34→33→32→31→26 |
27_Dep | 2 | 31→32→33→34→43→48→53→63→73→72→71→70→69→68→67→66→65→77 31→32→33→34→35→44→49→54→64→74→73→72→71→70→69→68→67→66→65→77 |
Flight Id | Path_id | Node and Time of the Taxiing Paths |
---|---|---|
1 | 2 | 81(0.00)→74(38.50)→73(46.50)→72(70.30)→71(80.10)→61(90.10)→55(111.10)→50(120.40)→45(128.40) |
2 | 2 | 6(900.00)→18(933.00)→17(956.50)→25(994.00)→30(1002.00)→35(1010.00)→44(1072.00)→49(1080.00)→48(1088.00)→47(1096.00)→46(1111.80)→45(1121.60) |
3 | 2 | 6(1500.00)→18(1533.00)→17(1556.50)→25(1594.00)→30(1602.00)→35(1610.00)→44(1672.00)→43(1680.00)→42(1688.00)→41(1703.80)→38(1712.80) |
⋯ | ⋯ | ⋯ |
25 | 1 | 6(7800.00)→18(7833.00)→17(7856.50)→16(7864.50)→24(7902.00)→29(7910.00)→34(7918.00)→43(7980.00)→48(7988.00)→47(7996.00)→46(8011.80)→45(8021.60) |
26 | 2 | 6(8420.00)→18(8453.00)→17(8476.50)→25(8514.00)→30(8522.00)→35(8530.00)→44(8592.00)→43(8600.00)→42(8608.00)→41(8623.80)→38(8632.80) |
27 | 1 | 6(8400.00)→18(8433.00)→17(8456.50)→16(8464.50)→15(8486.80)→14(8502.40)→21(8539.90)→26(8547.90) |
Flight Id | Path_id | Node and Time of the Taxiing Path |
---|---|---|
1 | 1 | 40(10,002.16)→45(10,010.16)→50(10,018.16)→55(10,027.46)→61(10,048.46)→71(10,058.46)→70(10,073.76)→69(10,128.56)→68(10,161.06)→67(10,193.56)→66(10,260.06)→65(10,300.06)→77(10,321.06) |
2 | 1 | 40(3981.60)→45(3989.60)→50(3997.60)→55(4006.90)→61(4027.90)→71(4037.90)→70(4053.20)→69(4108.00)→68(4140.50)→67(4173.00)→66(4239.50)→65(4279.50)→77(4300.50) |
3 | 1 | 38(4847.76)→41(4856.76)→46(4864.76)→51(4872.76)→56(4882.06)→62(4903.06)→72(4913.06)→71(4922.86)→70(4938.16)→69(4992.96)→68(5025.46)→67(5057.96)→66(5124.46)→65(5164.46)→77(5185.46) |
⋯ | ⋯ | ⋯ |
25 | 1 | 40(10,858.56)→45(10,866.56)→50(10,874.56)→55(10,883.86)→61(10,904.86)→71(10,914.86)→70(10,930.16)→69(10,984.96)→68(11,017.46)→67(11,049.96)→66(11,116.46)→65(11,156.46)→77(11,177.46) |
26 | 1 | 38(13,547.76)→41(13,556.76)→46(13,564.76)→51(13,572.76)→56(13,582.06)→62(13,603.06)→72(13,613.06)→71(13,622.86)→70(13,638.16)→69(13,692.96)→68(13,725.46)→67(13,757.96)→66(13,824.46)→65(13,864.46)→77(13,885.46) |
27 | 1 | 31(11,182.08)→32(11,197.68)→33(11,211.98)→34(11,219.98)→43(11,281.98)→48(11,289.98)→53(11,297.98)→63(11,328.28)→73(11,338.28)→72(11,362.08)→71(11,371.88)→70(11,387.18)→69(11,441.98)→68(11,474.48)→67(11,506.98)→66(11,573.48)→65(11,613.48)→77(11,634.48) |
Groups | Definition |
---|---|
S0 (experimental group) | Waiting for taxiing + DFS algorithm generated the set of available paths |
S1 (control group) | Waiting for taxiing + Dijkstra algorithm generated the set of available paths [34] |
S2 (control group) | Waiting for taxiing + Manual experience generated the set of available paths [26] |
S3 (control group) | Taxiing immediately [35] + DFS algorithm generated the set of available paths |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Quan, L.; Yu, J. Aircraft Taxi Path Optimization Considering Environmental Impacts Based on a Bilevel Spatial–Temporal Optimization Model. Energies 2024, 17, 2692. https://doi.org/10.3390/en17112692
Chen Y, Quan L, Yu J. Aircraft Taxi Path Optimization Considering Environmental Impacts Based on a Bilevel Spatial–Temporal Optimization Model. Energies. 2024; 17(11):2692. https://doi.org/10.3390/en17112692
Chicago/Turabian StyleChen, Yuxiu, Liyan Quan, and Jian Yu. 2024. "Aircraft Taxi Path Optimization Considering Environmental Impacts Based on a Bilevel Spatial–Temporal Optimization Model" Energies 17, no. 11: 2692. https://doi.org/10.3390/en17112692
APA StyleChen, Y., Quan, L., & Yu, J. (2024). Aircraft Taxi Path Optimization Considering Environmental Impacts Based on a Bilevel Spatial–Temporal Optimization Model. Energies, 17(11), 2692. https://doi.org/10.3390/en17112692