A Comprehensive Review of Alarm Processing in Power Systems: Addressing Overreliance on Fault Analysis and Projecting Future Directions
Abstract
:1. Introduction
- Overview of Methods: Present an overview of alarm processing methods that utilize monitoring information from power systems, based on an analysis of previously published related papers.
- Analysis of Limitations: Analyze related papers to identify the problems and limitations of existing alarm processing definitions, with particular attention to issues of the potential for objective bias.
- Future Research Directions: Outline the research directions in which existing alarm processing methodologies should be directed to adapt to future changes in the power system.
- Only papers related to alarm systems applied to power grid systems were included.
- Literature about the communication aspects of alarm systems was excluded.
- Literature about the hardware design of alarm systems was excluded.
- Duplicates were removed from the collection.
2. Understanding Alarm Systems in Industrial Settings
2.1. Fundamentals of Alarms in Industry
2.2. Critical Role of Alarm Systems in Industrial Safety
2.3. Key Criteria for Efficient Alarm Processing
3. Background for the Alarm Processing of Power Systems
3.1. The Role of Alarm Processing as a Subsystem in Power System Management
3.2. Uniquely Emphasized Information in Power System Alarm Processing
3.2.1. Protective Device Operation
3.2.2. Fault Indicator
4. Current State of Power System Alarm Processing
4.1. Data Type for Alarm Processing
4.1.1. Analog Measurement
4.1.2. Fault Information
4.1.3. Protective Device Operation Information
4.2. Purpose of Alarm Processing
4.2.1. Alarm Cleaning
4.2.2. Fault Analysis
4.3. Inference Model for Alarm Processing
4.3.1. Knowledge-Based Modeling
4.3.2. Optimization Method
4.3.3. Petrinet
4.3.4. Data-Based Modeling
5. Discussion
5.1. First-Generation Alarm Processing
5.2. Transition to Second-Generation Alarm Processing
5.3. Second-Generation Alarm Processing
5.4. Third-Generation Alarm Processing
5.4.1. Unsupervised Learning: Anomaly Detection
5.4.2. Conceptual Framework of Third-Generation Alarm Processing
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumari, N.; Sharma, A.; Tran, B.; Chilamkurti, N.; Alahakoon, D. A Comprehensive Review of Digital Twin Technology for Grid-Connected Microgrid Systems: State of the Art, Potential and Challenges Faced. Energies 2023, 16, 5525. [Google Scholar] [CrossRef]
- Li, Y.; Green, T.C.; Gu, Y. The intrinsic communication in power systems: A new perspective to understand synchronization stability. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 4615–4626. [Google Scholar] [CrossRef]
- da Cruz, C.M.; Rocco, A.; Mario, M.C.; Garcia, D.; Lambert-Torres, G.; Abe, J.M.; Torres, C.R.; da Silva Filho, J.I. Application of paraconsistent artificial neural network in statistical process control acting on voltage level monitoring in electrical power systems. In Proceedings of the 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP), Porto, Portugal, 11–16 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bale, C.S.; Varga, L.; Foxon, T.J. Energy and complexity: New ways forward. Appl. Energy 2015, 138, 150–159. [Google Scholar] [CrossRef]
- Ridha, E.; Nolting, L.; Praktiknjo, A. Complexity profiles: A large-scale review of energy system models in terms of complexity. Energy Strategy Rev. 2020, 30, 100515. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, T.; Bompard, E.F. Big data analytics in smart grids: A review. Energy Inf. 2018, 1, 8. [Google Scholar] [CrossRef]
- ANSI/ISA-18.2; Mangement of Alarm Systems for the Process Industries. International Society of Automation: Research Triangle Park, NC, USA, 2009.
- Stauffer, T.; Clarke, P. Using alarms as a layer of protection. Process Saf. Prog. 2016, 35, 76–83. [Google Scholar] [CrossRef]
- Hollifield, B.R.; Habibi, E. Alarm Management: A Comprehensive Guide; Isa: Research Triangle Park, NC, USA, 2010. [Google Scholar]
- Bergquist, T.; Ahnlund, J.; Larsson, J.E. Alarm reduction in industrial process control. In Proceedings of the EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No. 03TH8696), Lisbon, Portugal, 16–19 September 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. 58–65. [Google Scholar] [CrossRef]
- Stanton, N.A.; Baber, C. Alarm-initiated activities: An analysis of alarm handlingby operators using text-based alarm systems in supervisory control systems. Ergonomics 1995, 38, 2414–2431. [Google Scholar] [CrossRef]
- IEC. Management of Alarm Systems for the Process Industries; IEC: Geneva, Switzerland, 2014. [Google Scholar]
- Beebe, D.; Ferrer, S.; Logerot, D. The connection of peak alarm rates to plant incidents and what you can do to minimize. Process Saf. Prog. 2013, 32, 72–77. [Google Scholar] [CrossRef]
- Laberge, J.C.; Bullemer, P.; Tolsma, M.; Dal Vernon, C.R. Addressing alarm flood situations in the process industries through alarm summary display design and alarm response strategy. Int. J. Ind. Ergon. 2014, 44, 395–406. [Google Scholar] [CrossRef]
- Srinivasan, R.; Liu, J.; Lim, K.; Tan, K.; Ho, W. Intelligent alarm management in a petroleum refinery. Hydrocarb. Process. 2004, 83, 47–54. [Google Scholar]
- EEMUA. 191-Alarm Systems: A Guide to Design, Management and Procurement, 3rd ed.; EEMUA: London, UK, 2013. [Google Scholar]
- Nochur, A.; Vedam, H.; Koene, J. Alarm performance metrics. IFAC Proc. Vol. 2001, 34, 203–208. [Google Scholar] [CrossRef]
- Bransby, M.; Jenkinson, J. The Management of Alarm Systems; Citeseer, 1998. Available online: https://humanfactors101.com/wp-content/uploads/2016/05/the-management-of-alarm-systems.pdf (accessed on 29 June 2024).
- Azhar, S.B.; Rissanen, M.J. Evaluation of parallel coordinates for interactive alarm filtering. In Proceedings of the 2011 15th International Conference on Information Visualisation, London, UK, 13–15 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 102–109. [Google Scholar] [CrossRef]
- Mattiasson, C. The alarm system from the operator’s perspective. In Proceedings of the 1999 International Conference on Human Interfaces in Control Rooms, Cockpits and Command Centres, Bath, UK, 21–23 June 1999; IET: London, UK, 1999; pp. 217–221. [Google Scholar] [CrossRef]
- Noyes, J. Alarm systems: A guide to design, management and procurement. Eng. Manag. J. 1999, 9, 226. [Google Scholar]
- Pariyani, A.; Seider, W.D.; Oktem, U.G.; Soroush, M. Incidents investigation and dynamic analysis of large alarm databases in chemical plants: A fluidized-catalytic-cracking unit case study. Ind. Eng. Chem. Res. 2010, 49, 8062–8079. [Google Scholar] [CrossRef]
- Jain, P.; Pasman, H.J.; Waldram, S.P.; Rogers, W.J.; Mannan, M.S. Did we learn about risk control since Seveso? Yes, we surely did, but is it enough? An historical brief and problem analysis. J. Loss Prev. Process Ind. 2017, 49, 5–17. [Google Scholar] [CrossRef]
- Enescu, F.M.; Bizon, N. SCADA applications for electric power system. In Reactive Power Control in AC Power Systems: Fundamentals and Current Issues; Springer: Cham, Switzerland, 2017; pp. 561–609. [Google Scholar] [CrossRef]
- Kato, D.; Horii, H.; Kawahara, T. Next-generation SCADA/EMS designed for large penetration of renewable energy. Hitachi Rev. 2014, 63, 151–155. [Google Scholar]
- Collier, S.E. Ten steps to a smarter grid. IEEE Ind. Appl. Mag. 2010, 16, 62–68. [Google Scholar] [CrossRef]
- IEEE Std 999-1992; IEEE Recommended Practice for Master/Remote Supervisory Control and Data Acquisition (SCADA) Communications. IEEE: Piscataway, NJ, USA, 1993. [CrossRef]
- Chikuni, E.; Dondo, M. Investigating the security of electrical power systems SCADA. In Proceedings of the AFRICON 2007, Windhoek, South Africa, 26–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–7. [Google Scholar] [CrossRef]
- Dondo, M.C.; El-Hawary, M. An approach to implement electricity metering in real-time using artificial neural networks. IEEE Trans. Power Deliv. 2003, 18, 383–386. [Google Scholar] [CrossRef]
- Fowle, F.F.; Knowlton, A.E. Standard Handbook for Electrical Engineers; McGraw-Hill: New York, NY, USA, 1925; Volume 5. [Google Scholar]
- Bo, Z.-Q.; Lin, X.-N.; Wang, Q.-P.; Yi, Y.-H.; Zhou, F.-Q. Developments of power system protection and control. Prot. Control. Mod. Power Syst. 2016, 1, 7. [Google Scholar] [CrossRef]
- Zubic, S.; Gajic, Z.; Kralj, D. Line protection operate time: How fast shall it be? IEEE Access 2021, 9, 75608–75616. [Google Scholar] [CrossRef]
- Agwa, A.M.; El-Fergany, A.A. Protective Relaying Coordination in Power Systems Comprising Renewable Sources: Challenges and Future Insights. Sustainability 2023, 15, 7279. [Google Scholar] [CrossRef]
- Anderson, P.M.; Henville, C.F.; Rifaat, R.; Johnson, B.; Meliopoulos, S. Power System Protection; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Muench, F.J.; Wright, G.A. Fault indicators: Types, strengths & applications. IEEE Trans. Power Appar. Syst. 1984, 12, 3688–3693. [Google Scholar] [CrossRef]
- Harmand, Y. Fault Management in Electrical Distribution Systems. Final Report of the CIRED Working Group WG03 Fault Management FOREWORD. 1999. Available online: https://www.semanticscholar.org/paper/FAULT-MANAGEMENT-IN-ELECTRICAL-DISTRIBUTION-SYSTEMS-Harmand/db5fd01e897b0424ec77dfb188fa3552f2039b32 (accessed on 29 June 2024).
- Smallwood, C.; Lattner, M.; Gardner, T. Expansion of distribution automation with communicating faulted circuit indicators. In Proceedings of the 2011 Rural Electric Power Conference, Chattanooga, TN, USA, 10–13 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. B6-1–B6-6. [Google Scholar] [CrossRef]
- Avouris, N. Abstractions for operator support in energy management systems. Int. J. Electr. Power Energy Syst. 2001, 23, 333–341. [Google Scholar] [CrossRef]
- Hor, C.L.; Crossley, P.A.; Watson, S.J. Building knowledge for substation-based decision support using rough sets. IEEE Trans. Power Deliv. 2007, 22, 1372–1379. [Google Scholar] [CrossRef]
- Rigatos, G.; Siano, P.; Piccolo, A. Neural network-based approach for early detection of cascading events in electric power systems. IET Gener. Transm. Distrib. 2009, 3, 650–665. [Google Scholar] [CrossRef]
- Guo, Y.; Li, K.; Laverty, D.; Xue, Y. Synchrophasor-based islanding detection for distributed generation systems using systematic principal component analysis approaches. IEEE Trans. Power Deliv. 2015, 30, 2544–2552. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, Y.; Qiu, H.; Wang, C.; Wen, F.; Salam, M.A.; Weng, L.; Yu, B.; Chen, J. Fault diagnosis with false and/or missing alarms in distribution systems with distributed generators. Energies 2018, 11, 2579. [Google Scholar] [CrossRef]
- Wang, C.; Pang, K.; Xu, Y.; Wen, F.; Palu, I.; Feng, C. A linear integer programming model for fault diagnosis in active distribution systems with bi-directional fault monitoring devices installed. IEEE Access 2020, 8, 106452–106463. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, P.; Zhao, Y.; Liu, Y. Grid monitoring alarm event recognition method integrating expert rules and deep learning. In Proceedings of the 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, 25–27 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 389–3894. [Google Scholar] [CrossRef]
- Wen, F.; Han, Z. Fault section estimation in power systems using a genetic algorithm. Electr. Power Syst. Res. 1995, 34, 165–172. [Google Scholar] [CrossRef]
- Lee, H.J.; Ahn, B.S.; Park, Y.M. A fault diagnosis expert system for distribution substations. IEEE Trans. Power Deliv. 2000, 15, 92–97. [Google Scholar] [CrossRef]
- Fritzen, P.C.; Zauk, J.M.; Cardoso, G., Jr.; de Lima Oliveira, A.; de Araújo, O.C.B. Hybrid system based on constructive heuristic and integer programming for the solution of problems of fault section estimation and alarm processing in power systems. Electr. Power Syst. Res. 2012, 90, 55–66. [Google Scholar] [CrossRef]
- Xu, B.; Yin, X.; Pang, S.; Yin, X. A Novel Analytic Method for Power System Alarm Processing Employing Topological Description. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Edwards, C.J.; Davidson, E.M.; McArthur, S.D.; Watt, I.; Cumming, T. Flexible model-based alarm processing for protection performance assessment and incident identification. IEEE Trans. Power Syst. 2013, 28, 2584–2591. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, J.; Wang, Z. Power system fault reasoning and diagnosis based on the improved temporal constraint network. IEEE Trans. Power Deliv. 2015, 31, 946–954. [Google Scholar] [CrossRef]
- Siemens AG. Smart Alarm Hiding in SIMATIC PCS 7. 2018. Available online: https://support.industry.siemens.com/cs/ww/en/view/55699984 (accessed on 26 June 2024).
- Shoop, A.H.; Silverman, S. A real-time alarm processor. Int. J. Electr. Power Energy Syst. 1992, 14, 108–113. [Google Scholar] [CrossRef]
- Schneider Electric. Smart Alarming Management. 2013. Available online: https://www.slideshare.net/slideshow/smart-alarming-2012-17230151/17230151 (accessed on 26 June 2024).
- Guo, W.; Wei, L.; Wen, F.; Liao, Z.; Liang, J.; Tseng, C.L. An on-line intelligent alarm analyzer for power systems based on temporal constraint network. In Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–7. [Google Scholar] [CrossRef]
- Siddiqi, U.R.; Lubkeman, D. An automated strategy for the processing and analysis of distribution automation data. IEEE Trans. Power Deliv. 1991, 6, 1216–1223. [Google Scholar] [CrossRef]
- de Lima Oliveira, A.; Cardoso, G.; Dhein, G.; de Araújo, O.C.B. Advanced Real-Time Alarm Processor for Fault Section Estimation in Power Systems. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Chan, T.; Liu, C.; Lucarella, D.; Gallanti, M.; Sobajic, D.; Hofmann, M. Intelligent alarm analysis: Generalization and enhancement. Eng. Intell. Syst. Electr. Eng. Commun. 2005, 13, 127. [Google Scholar]
- Zhang, X.; Wei, J.; Yue, S.; Zha, X. An analytical method for mapping alarm information to model of power grid fault diagnosis. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 823–830. [Google Scholar] [CrossRef]
- Zhu, J.; Zhuang, E.; Ivanov, C.; Yao, Z. A data-driven approach to interactive visualization of power systems. IEEE Trans. Power Syst. 2011, 26, 2539–2546. [Google Scholar] [CrossRef]
- Dagnino, A.; Beuthel, C.; Skovholt, T.C.; Hollender, M.; Dix, M. Intelligent Alarm Management Directs Operators to Critical Events. 2020. Available online: https://new.abb.com/news/detail/62299/intelligent-alarm-management-directs-operators-to-critical-events (accessed on 29 June 2024).
- Klump, R.; Schooley, D.; Overbye, T. An advanced visualization platform for real-time power system operations. In Proceedings of the 14th Power Systems Computation Conference, Seville, Spain, 24–28 June 2002; Volume 2, p. 3. [Google Scholar]
- Li, B.; Liu, W.; Xing, J.; Zheng, W. The opengl-based visualization of power system flow and alarm. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Kuala Lumpur, Malaysia, 7–8 April 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, B.; Geng, J.; Dong, X. High-impedance fault detection based on nonlinear voltage–current characteristic profile identification. IEEE Trans. Smart Grid 2016, 9, 3783–3791. [Google Scholar] [CrossRef]
- Pandey, S.; Srivastava, A.K.; Amidan, B.G. A real time event detection, classification and localization using synchrophasor data. IEEE Trans. Power Syst. 2020, 35, 4421–4431. [Google Scholar] [CrossRef]
- Sidhu, T.; Cruder, O.; Huff, G. An abductive inference technique for fault diagnosis in electrical power transmission networks. IEEE Trans. Power Deliv. 1997, 12, 515–522. [Google Scholar] [CrossRef]
- Oliveira, A.L.; de Araújo, O.C.; Cardoso, G., Jr.; de Morais, A.P.; Mariotto, L. A mixed integer programming model for optimal fault section estimation in power systems. Int. J. Electr. Power Energy Syst. 2016, 77, 372–384. [Google Scholar] [CrossRef]
- Miao, H.; Sforna, M.; Liu, C.C. A new logic-based alarm analyzer for on-line operational environment. IEEE Trans. Power Syst. 1996, 11, 1600–1606. [Google Scholar] [CrossRef]
- Hor, C.L.; Crossley, P.A. Unsupervised event extraction within substations using rough classification. IEEE Trans. Power Deliv. 2006, 21, 1809–1816. [Google Scholar] [CrossRef]
- Brunner, T.; Nejdl, W.; Schwarzjirg, H.; Sturm, M. On-line expert system for power system diagnosis and restoration. Intell. Syst. Eng. 1993, 2, 15–24. [Google Scholar] [CrossRef]
- Protopapas, C.; Psaltiras, K.P.; Machias, A. An expert system for substation fault diagnosis and alarm processing. IEEE Trans. Power Deliv. 1991, 6, 648–655. [Google Scholar] [CrossRef]
- McArthur, S.; Dysko, R.; McDonald, J.; Bell, S.; Mather, R.; Burt, S. The application of model based reasoning within a decision support system for protection engineers. IEEE Trans. Power Deliv. 1996, 11, 1748–1754. [Google Scholar] [CrossRef]
- Park, M.Y.; Lefley, M.; Ramsay, B.; Moyes, I. An abductive fuzzy knowledge based system for fault diagnosis in a power system. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00EX409), Perth, WA, Australia, 4–7 December 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 1, pp. 345–350. [Google Scholar] [CrossRef]
- Meza, E.; de Souza, J.S.; Schilling, M.T.; Do Coutto Filho, M. Exploring fuzzy relations for alarm processing and fault location in electrical power systems. In Proceedings of the 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), Porto, Portugal, 10–13 September 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 3, p. 6. [Google Scholar] [CrossRef]
- De Souza, J.S.; Meza, E.M.; Schilling, M.T.; Do Coutto Filho, M.B. Alarm processing in electrical power systems through a neuro-fuzzy approach. IEEE Trans. Power Deliv. 2004, 19, 537–544. [Google Scholar] [CrossRef]
- Guo, W.; Wen, F.; Liao, Z.; Wei, L.; Xin, J. An analytic model-based approach for power system alarm processing employing temporal constraint network. IEEE Trans. Power Deliv. 2009, 25, 2435–2447. [Google Scholar] [CrossRef]
- Xu, B.; Wang, C.; Wen, F.; Palu, I.; Pang, K. Fault diagnosis and identification of malfunctioning protection devices in a power system via time series similarity matching. Energy Convers. Econ. 2020, 1, 81–92. [Google Scholar] [CrossRef]
- Wang, T.; Wei, X.; Wang, J.; Huang, T.; Peng, H.; Song, X.; Cabrera, L.V.; Pérez-Jiménez, M.J. A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies. Eng. Appl. Artif. Intell. 2020, 92, 103680. [Google Scholar] [CrossRef]
- Leão, F.B.; Pereira, R.A.; Mantovani, J.R. Fault section estimation in electric power systems using an optimization immune algorithm. Electr. Power Syst. Res. 2010, 80, 1341–1352. [Google Scholar] [CrossRef]
- Xiong, G.; Shi, D.; Zhang, J.; Zhang, Y. A binary coded brain storm optimization for fault section diagnosis of power systems. Electr. Power Syst. Res. 2018, 163, 441–451. [Google Scholar] [CrossRef]
- Guo, W.; Wen, F.; Ledwich, G.; Liao, Z.; He, X.; Liang, J. An analytic model for fault diagnosis in power systems considering malfunctions of protective relays and circuit breakers. IEEE Trans. Power Deliv. 2010, 25, 1393–1401. [Google Scholar] [CrossRef]
- Wen, F.; Chang, C. A probabilistic approach to alarm processing in power systems using a refined genetic algorithm. In Proceedings of the International Conference on Intelligent System Application to Power Systems, Chicago, IL, USA, 19–23 August 1996; IEEE: Piscataway, NJ, USA, 1996; pp. 14–19. [Google Scholar] [CrossRef]
- Wang, C.; Pang, K.; Shahidehpour, M.; Wen, F. MILP-based fault diagnosis model in active power distribution networks. IEEE Trans. Smart Grid 2021, 12, 3847–3857. [Google Scholar] [CrossRef]
- Zhang, Y.; Chung, C.Y.; Wen, F.; Zhong, J. An analytic model for fault diagnosis in power systems utilizing redundancy and temporal information of alarm messages. IEEE Trans. Power Syst. 2016, 31, 4877–4886. [Google Scholar] [CrossRef]
- Guo, W.; Wen, F.; Ledwich, G.; Liao, Z.; He, X.; Huang, J. A new analytic approach for power system fault diagnosis employing the temporal information of alarm messages. Int. J. Electr. Power Energy Syst. 2012, 43, 1204–1212. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Z.; Wang, Y. Fault location method for an active distribution network based on a hierarchical optimization model and fault confidence factors. Electronics 2023, 12, 1314. [Google Scholar] [CrossRef]
- Yang, C.L.; Yokoyama, A.; Sekine, Y. Fault section estimation of power system using colored and timed petri nets. Electr. Eng. Jpn. 1995, 115, 89–101. [Google Scholar] [CrossRef]
- Kiaei, I.; Lotfifard, S. A two-stage fault location identification method in multiarea power grids using heterogeneous types of data. IEEE Trans. Ind. Inf. 2018, 15, 4010–4020. [Google Scholar] [CrossRef]
- Yuan, C.; Liao, Y.; Kong, L.; Xiao, H. Fault diagnosis method of distribution network based on time sequence hierarchical fuzzy petri nets. Electr. Power Syst. Res. 2021, 191, 106870. [Google Scholar] [CrossRef]
- Lo, K.; Ng, H.; Trecat, J. Power systems fault diagnosis using Petri nets. IEE Proc.-Gener. Transm. Distrib. 1997, 144, 231–236. [Google Scholar] [CrossRef]
- Kiaei, I.; Lotfifard, S. Fault section identification in smart distribution systems using multi-source data based on fuzzy Petri nets. IEEE Trans. Smart Grid 2019, 11, 74–83. [Google Scholar] [CrossRef]
- Luo, X.; Kezunovic, M. Implementing fuzzy reasoning Petri-nets for fault section estimation. IEEE Trans. Power Deliv. 2008, 23, 676–685. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Roy, S.; Rana, D. Machine learning in nonlinear dynamical systems. Resonance 2021, 26, 953–970. [Google Scholar] [CrossRef]
- Yao, S.; Liu, X.; Zhang, Y.; Cui, Z. Research on solving nonlinear problem of ball and beam system by introducing detail-reward function. Symmetry 2022, 14, 1883. [Google Scholar] [CrossRef]
- Negnevitsky, M.; Pavlovsky, V. Neural networks approach to online identification of multiple failures of protection systems. IEEE Trans. Power Deliv. 2005, 20, 588–594. [Google Scholar] [CrossRef]
- Minakawa, T.; Ichikawa, Y.; Kunugi, M.; Shimada, K.; Wada, N.; Utsunomiya, M. Development and implementation of a power system fault diagnosis expert system. IEEE Trans. Power Syst. 1995, 10, 932–940. [Google Scholar] [CrossRef]
- Jung, J.; Liu, C.C.; Hong, M.; Gallanti, M.; Tornielli, G. Multiple hypotheses and their credibility in on-line fault diagnosis. IEEE Trans. Power Deliv. 2001, 16, 225–230. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Cardoso, G., Jr.; Silva, V.B.; Oliveira, A.L.; Ricciotti, A.C.D.; Oliveira, P.T. Paraconsistent analysis network for uncertainties treatment in electric power system fault section estimation. Int. J. Electr. Power Energy Syst. 2022, 134, 107317. [Google Scholar] [CrossRef]
- Bauer, A.; Botea, A.; Grastien, A.; Haslum, P.; Rintanen, J. Alarm processing with model-based diagnosis of event discrete systems. In Proceedings of the AI for an Intelligent Planet, Barcelona, Spain, 18 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Davidson, E.M.; McArthur, S.D.; McDonald, J.R. A toolset for applying model-based reasoning techniques to diagnostics for power systems protection. IEEE Trans. Power Syst. 2003, 18, 680–687. [Google Scholar] [CrossRef]
- Wang, W.; Bai, X.; Zhao, W.; Ding, J.; Fang, Z. A multilayer and distributed alarm processing and fault diagnosis system based on multiagent. In Proceedings of the 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, Dalian, China, 15–18 August 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 1–6. [Google Scholar] [CrossRef]
- Bijoch, R.; Harris, S.; Volkmann, T.; Bann, J.; Wollenberg, B. Development and implementation of the NSP intelligent alarm processor (for power systems). IEEE Trans. Power Syst. 1991, 6, 806–812. [Google Scholar] [CrossRef]
- Teo, C. A comprehensive fault diagnostic system using artificial intelligence for sub-transmission and urban distribution networks. IEEE Trans. Power Syst. 1997, 12, 1487–1493. [Google Scholar] [CrossRef]
- Chin, H.C. Fault section diagnosis of power system using fuzzy logic. IEEE Trans. Power Syst. 2003, 18, 245–250. [Google Scholar] [CrossRef]
- Chin, H.C.; Lin, C.P. On-line fault diagnosis of distribution substation using fuzzy reasoning. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokahama, Japan, 6–10 October 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 3, pp. 2086–2090. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Guo, L. A power system fault diagnosis method based on mutual-Information Network. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar] [CrossRef]
- General Electric. Intelligent Alarming (IA): Advanced Alarm Management Modular Application. 2018. Available online: https://www.ge.com/digital/sites/default/files/download_assets/digital-energy-intelligent-alarming-from-ge-digital.pdf (accessed on 26 June 2024).
- McDonald, J.R.; Burt, G.M.; Young, D.J. Alarm processing and fault diagnosis using knowledge based systems for transmission and distribution network control. IEEE Trans. Power Syst. 1992, 7, 1292–1298. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y.; Xu, H.; Wei, F. A Novel Reduced-Order Analytical Fault Diagnosis Model for Power Grid. IEEE Access 2024, 12, 59521–59532. [Google Scholar] [CrossRef]
- Jiang, Y.; Srivastava, A.K. Data-driven event diagnosis in transmission systems with incomplete and conflicting alarms given sensor malfunctions. IEEE Trans. Power Deliv. 2019, 35, 214–225. [Google Scholar] [CrossRef]
- Biswas, T.; Davari, A.; Feliachi, A. Modeling and analysis of discrete event behaviors in power system using Petri nets. In Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, Atlanta, GA, USA, 14–16 March 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 165–169. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, N.; Wang, L.; Li, Z. Power system fault diagnosis based on power grid. In Proceedings of the 11th IET International Conference on Developments in Power Systems Protection (DPSP 2012), Birmingham, UK, 23–26 April 2012. [Google Scholar] [CrossRef]
- He, Z.; Yang, J.; Zeng, Q.; Zang, T. Fault section estimation for power systems based on adaptive fuzzy Petri nets. Int. J. Comput. Intell. Syst. 2014, 7, 605–614. [Google Scholar] [CrossRef]
- Thukaram, D.; Khincha, H.; Vijaynarasimha, H. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Trans. Power Deliv. 2005, 20, 710–721. [Google Scholar] [CrossRef]
- Salim, R.H.; de Oliveira, K.R.C.; Filomena, A.D.; Resener, M.; Bretas, A.S. Hybrid fault diagnosis scheme implementation for power distribution systems automation. IEEE Trans. Power Deliv. 2008, 23, 1846–1856. [Google Scholar] [CrossRef]
- Wang, X.; McArthur, S.D.; Strachan, S.M.; Kirkwood, J.D.; Paisley, B. A data analytic approach to automatic fault diagnosis and prognosis for distribution automation. IEEE Trans. Smart Grid 2017, 9, 6265–6273. [Google Scholar] [CrossRef]
- Cardoso, G.; Rolim, J.G.; Zurn, H. Application of neural-network modules to electric power system fault section estimation. IEEE Trans. Power Deliv. 2004, 19, 1034–1041. [Google Scholar] [CrossRef]
- Yongli, Z.; Limin, H.; Jinling, L. Bayesian networks-based approach for power systems fault diagnosis. IEEE Trans. Power Deliv. 2006, 21, 634–639. [Google Scholar] [CrossRef]
- Yang, H.-T.; Chang, W.-Y.; Huang, C.-L. On-line fault diagnosis of power substation using connectionist expert system. IEEE Trans. Power Syst. 1995, 10, 323–331. [Google Scholar] [CrossRef]
- Khosla, R.; Dillon, T. Learning knowledge and strategy of a neuro-expert system architecture in alarm processing. IEEE Trans. Power Syst. 1997, 12, 1610–1618. [Google Scholar] [CrossRef]
- Lin, W.-M.; Lin, C.-H.; Sun, Z.-C. Adaptive multiple fault detection and alarm processing for loop system with probabilistic network. IEEE Trans. Power Deliv. 2004, 19, 64–69. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Z.; Liu, Y. An automated on-line monitoring and fault diagnosis system for power transformers. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1105–1112. [Google Scholar] [CrossRef]
- Mei, S.; Zhang, X.; Cao, M. Power Grid Complexity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ahsan, F.; Dana, N.H.; Sarker, S.K.; Li, L.; Muyeen, S.; Ali, M.F.; Tasneem, Z.; Hasan, M.M.; Abhi, S.H.; Islam, M.R.; et al. Data-driven next-generation smart grid towards sustainable energy evolution: Techniques and technology review. Prot. Control. Mod. Power Syst. 2023, 8, 1–42. [Google Scholar] [CrossRef]
- Kirschen, D.S.; Wollenberg, B.F. Intelligent alarm processing in power systems. Proc. IEEE 1992, 80, 663–672. [Google Scholar] [CrossRef]
- Ferreira, V.; Zanghi, R.; Fortes, M.; Sotelo, G.; Silva, R.d.B.M.; Souza, J.; Guimarães, C.; Gomes, S., Jr. A survey on intelligent system application to fault diagnosis in electric power system transmission lines. Electr. Power Syst. Res. 2016, 136, 135–153. [Google Scholar] [CrossRef]
- Endsley, M.R.; Bolté, B.; Jones, D.G. Designing for Situation Awareness: An Approach to User-Centered Design; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Onnasch, L.; Hösterey, S. Stages of decision automation: Impact on operators’ role, awareness and monitoring. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Seattle, WA, USA, 28 October–1 November 2019; SAGE Publications Sage CA: Los Angeles, CA, USA, 2019; Volume 63, pp. 282–286. [Google Scholar] [CrossRef]
- Goel, P.; Datta, A.; Mannan, M.S. Industrial alarm systems: Challenges and opportunities. J. Loss Prev. Process Ind. 2017, 50, 23–36. [Google Scholar] [CrossRef]
- Prostejovsky, A.M.; Brosinsky, C.; Heussen, K.; Westermann, D.; Kreusel, J.; Marinelli, M. The future role of human operators in highly automated electric power systems. Electr. Power Syst. Res. 2019, 175, 105883. [Google Scholar] [CrossRef]
- Shi, L.; Dai, Q.; Ni, Y. Cyber–physical interactions in power systems: A review of models, methods, and applications. Electr. Power Syst. Res. 2018, 163, 396–412. [Google Scholar] [CrossRef]
- Panteli, M.; Kirschen, D.S. Situation awareness in power systems: Theory, challenges and applications. Electr. Power Syst. Res. 2015, 122, 140–151. [Google Scholar] [CrossRef]
- King, G.; Zeng, L. Logistic Regression in Rare Events Data. Political Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- Weiss, G.M. Mining with rarity: A unifying framework. ACM Sigkdd Explor. Newsl. 2004, 6, 7–19. [Google Scholar] [CrossRef]
- Maalouf, M.; Siddiqi, M. Weighted logistic regression for large-scale imbalanced and rare events data. Knowl.-Based Syst. 2014, 59, 142–148. [Google Scholar] [CrossRef]
- Bi, T.; Ni, Y.; Shen, C.; Wu, F.F. An on-line distributed intelligent fault section estimation system for large-scale power networks. Electr. Power Syst. Res. 2002, 62, 173–182. [Google Scholar] [CrossRef]
- Soldati, P.; Ghadimi, E.; Demirel, B.; Wang, Y.; Gaigalas, R.; Sintorn, M. Design Principles for Generalization and Scalability of AI in Communication Systems. arXiv 2023, arXiv:2306.06251. [Google Scholar] [CrossRef]
- Sjödin, D.; Parida, V.; Palmié, M.; Wincent, J. How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops. J. Bus. Res. 2021, 134, 574–587. [Google Scholar] [CrossRef]
- Scaling AI for Success: Four Technical Enablers for Sustained Impact; McKinsey & Company: Chicago, IL, USA, 2021.
- Broader Application of AI in Industries: Emphasizing Scalability and Efficiency Across Operational Environments; Software Engineering Institute—Carnegie Mellon University: Pittsburgh, PA, USA, 2023.
- Benedick, P.L.; Robert, J.; Le Traon, Y. A systematic approach for evaluating artificial intelligence models in industrial settings. Sensors 2021, 21, 6195. [Google Scholar] [CrossRef]
- Reddy, S.; Rogers, W.; Makinen, V.P.; Coiera, E.; Brown, P.; Wenzel, M.; Weicken, E.; Ansari, S.; Mathur, P.; Casey, A.; et al. Evaluation framework to guide implementation of AI systems into healthcare settings. BMJ Health Care Inf. 2021, 28, e100444. [Google Scholar] [CrossRef] [PubMed]
Method | Ref. | Data Type | Purpose | |||||
---|---|---|---|---|---|---|---|---|
Analog Measurement | Protection Operation | Fault Information | Alarm Cleaning | Fault Recognition | Fault Cause | Fail Device Determination | ||
Knowledge | [39] | ✔ | ✔ | |||||
(Rule) | [40] | ✔ | ✔ | ✔ | ✔ | |||
[47,58,68,97,98,99,100,101] | ✔ | ✔ | ||||||
[50] | ✔ | ✔ | ✔ | ✔ | ||||
[52] | ✔ | ✔ | ||||||
[54] | ✔ | ✔ | ||||||
[53,70] | ✔ | ✔ | ✔ | |||||
[56] | ✔ | ✔ | ✔ | ✔ | ||||
[102] | ✔ | ✔ | ✔ | |||||
[103] | ✔ | ✔ | ✔ | |||||
[104] | ✔ | ✔ | ✔ | |||||
Knowledge | [66] | ✔ | ✔ | ✔ | ||||
(Logic) | [71] | ✔ | ✔ | ✔ | ||||
[72] | ✔ | ✔ | ||||||
Knowledge | [51,59,73,74,75,77,78,105,106,107] | ✔ | ✔ | |||||
(Network) | [61] | ✔ | ✔ | ✔ | ✔ | |||
[69] | ✔ | ✔ | ✔ | |||||
[108] | ✔ | ✔ | ✔ | |||||
Optimization | [43,44] | ✔ | ✔ | ✔ | ||||
[46,76,79,81,109,110,111] | ✔ | ✔ | ||||||
[48,49,67,80] | ✔ | ✔ | ✔ | |||||
[82] | ✔ | ✔ | ✔ | |||||
Petrinet | [87,88,89,112,113,114] | ✔ | ✔ | |||||
[91] | ✔ | ✔ | ✔ | ✔ | ||||
Data | [41,64,65] | ✔ | ✔ | |||||
based | [42,115,116,117] | ✔ | ✔ | |||||
[45] | ✔ | ✔ | ✔ | ✔ | ||||
[67] | ✔ | ✔ | ✔ | |||||
[75,96,118,119] | ✔ | ✔ | ||||||
[120] | ✔ | ✔ | ✔ | |||||
[121] | ✔ | ✔ | ✔ | |||||
[122] | ✔ | ✔ | ✔ | |||||
[123] | ✔ | ✔ | ✔ |
Method | Principles of Operation | Advantages | Limitations |
---|---|---|---|
Rule-based | Uses predefined conditional rules to filter and process alarms. | Simple to implement and modify; intuitive logic. | Limited to scenarios that fit defined rules; may not handle complex dependencies well. |
Logic-based | Employs logical operations like AND and OR to define relationships between alarms. | More flexible in defining relationships; can handle more complex scenarios. | Requires precise logic definition; can become complex with many inputs. |
Network-based | Analyzes network-like connections between alarms based on predefined criteria. | Useful for systems with interconnected alarms; can reveal deeper insights into alarm relationships. | Highly dependent on initial setup and predefined criteria; may miss nuances not directly modeled. |
Optimization | Searches for an optimal solution that correlates known alarms to potential causes. | Can effectively reduce false alarms by focusing on the most likely scenarios. | Computationally intensive; requires accurate models and can be slow in large systems. |
Petrinet | Models the sequence of events in alarm systems as states and transitions, where tokens move through places based on system events to simulate alarm scenarios. | Provides a structured way to simulate and analyze dynamic behaviors in alarm systems; good for capturing sequential and concurrent events. | Requires precise modeling of system behaviors and may become complex with large-scale systems; understanding and modifying Petrinets can be challenging without specific expertise. |
Data-based | Utilizes machine learning and statistical methods to predict and analyze alarms. | Can adapt over time as more data are gathered; potentially very powerful for predictive maintenance. | Requires large data sets for training; effectiveness depends on data quality and may overfit. |
Alarm Processing | Fault Diagnosis | |
---|---|---|
Used data | All data from SCADA | Data for fault analysis |
Purpose | Show global situation | Find cause of fault |
Complexity | Low | High |
Speed | Fast | Slow |
Process | Description | Ref |
---|---|---|
Alarm Processing | One of the functions of alarm processing is the ability to diagnose the fault situation and give the location of the fault | [103] |
Identification of power system events (black areas, successful protection operation, etc.) from the incoming SCADA system data stream | [72] | |
This system would present these results (fault diagnosis) in a manner that is easily and correctly understood by the operators without requiring complex operations | [97] | |
Fault Diagnosis | Derivation of causal roots (phase/earth faults on feeders, failed protection, etc.) of the events deduced by the alarm processor | [72] |
Fault diagnosis systems can be used to extract information for operators to make decisions in concise and objective way | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.-Y.; Yoon, Y.T.; Sohn, J.-M. A Comprehensive Review of Alarm Processing in Power Systems: Addressing Overreliance on Fault Analysis and Projecting Future Directions. Energies 2024, 17, 3344. https://doi.org/10.3390/en17133344
Oh J-Y, Yoon YT, Sohn J-M. A Comprehensive Review of Alarm Processing in Power Systems: Addressing Overreliance on Fault Analysis and Projecting Future Directions. Energies. 2024; 17(13):3344. https://doi.org/10.3390/en17133344
Chicago/Turabian StyleOh, Jae-Young, Yong Tae Yoon, and Jin-Man Sohn. 2024. "A Comprehensive Review of Alarm Processing in Power Systems: Addressing Overreliance on Fault Analysis and Projecting Future Directions" Energies 17, no. 13: 3344. https://doi.org/10.3390/en17133344
APA StyleOh, J. -Y., Yoon, Y. T., & Sohn, J. -M. (2024). A Comprehensive Review of Alarm Processing in Power Systems: Addressing Overreliance on Fault Analysis and Projecting Future Directions. Energies, 17(13), 3344. https://doi.org/10.3390/en17133344