The Potential Diversity of Agricultural Biomass in the Context of the Organization of Agricultural Production and Circular Agriculture in Poland
Abstract
:1. Introduction
2. Study Context
2.1. Theoretical Background
2.2. Characteristics of Agriculture and the State of Use of Agricultural Residues and Waste in Poland
3. Materials and Methods
- -
- Area of cereal crops (wheat, rye, barley, oats, triticale, cereal mixtures, corn, rapeseed, and turnip rape);
- -
- Yield of cereals (wheat, rye, barley, oats, triticale, cereal mixtures, corn, rapeseed, and turnip rape) and meadows and pastures (hay);
- -
- Animal population (cattle, pigs, sheep, horses, goats);
- -
- Land use (area of meadows and pastures, area of orchards, area of fallow land).
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velasco-Muñoz, J.F.; Mendoza, J.M.F.; Aznar-Sánchez, J.A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies, and indicators. Resour. Conserv. Recy. 2021, 170, 105618. [Google Scholar] [CrossRef]
- Gralak, A. Wdrażanie modelu gospodarczego opartego na obiegu zamkniętym w biogospodarce. Probl. World Agric./Probl. Rol. Swiat. 2021, 21, 24–40. [Google Scholar] [CrossRef]
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef] [PubMed]
- de Lauwere, C.; Slegers, M.; Meeusen, M. The influence of behavioural factors and external conditions on Dutch farmers’ decision making in the transition towards circular agriculture. Land Use Policy 2022, 120, 106253. [Google Scholar] [CrossRef]
- Burg, V.; Rolli, C.; Schnorf, V.; Scharfy, D.; Anspach, V.; Bowman, G. Agricultural biogas plants as a hub to foster circular economy and bioenergy: An assessment using substance and energy flow analysis. Resour. Conserv. Recycl. 2023, 190, 106770. [Google Scholar] [CrossRef]
- Nattassha, R.; Handayati, Y.; Simatupang, T.M.; Siallagan, M. Understanding circular economy implementation in the agri-food supply chain: The case of an Indonesian organic fertilizer producer. Agricu. Food Secur. 2020, 9, 10. [Google Scholar] [CrossRef]
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirbya, M.E.; Theodorou, M.K. AgroCycle—Developing a circular economy in agriculture. Energy Procedia 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Rajković, M.B.; Popović Minić, D.; Milinčić, D.; Zdravković, M. Circular economy in food industry. Zast. Mater. 2020, 61, 229–250. [Google Scholar] [CrossRef]
- Helgason, K.S.; Iversen, K.; Julca, A. Circular Agriculture for Sustainable Rural Development; Development Research Branch, Economic Analysis and Policy Division, UN DESA: New York, NY, USA, 2021. [Google Scholar]
- Selvan, T.; Panmei, L.; Murasing, K.K.; Guleria, V.; Ramesh, K.R.; Bhardwaj, D.R.; Thakur, C.L.; Kumar, D.; Sharma, P.; Digvijaysinh Umedsinh, R.; et al. Circular economy in agriculture: Unleashing the potential of integrated organic farming for food security and sustainable development. Front. Sustain. Food Syst. 2023, 7, 1170380. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Luis Jesús Belmonte-Ureña, L.J.; Yakovleva, N.; Camacho-Ferre, F. Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management. Int. J. Environ. Res. Public Health 2020, 17, 9549. [Google Scholar] [CrossRef] [PubMed]
- Bos, H.L.; Broeze, J. Circular bio-based production systems in the context of current biomass and fossil demand. Biofuels Bioprod. Biorefin. 2020, 14, 187–197. [Google Scholar] [CrossRef]
- Jun, H.; Xiang, H. Development of Circular Economy Is A Fundamental Way to Achieve Agriculture Sustainable Development in China. Energy Procedia 2011, 5, 1530–1534. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; López-Felices, B.; Román-Sánchez, I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustain. Prod. Consum. 2022, 34, 257–270. [Google Scholar] [CrossRef]
- Díaz, L.; Señorans, S.; Gonzàlez, L.A.; Escalante, D.J. Assessment of the energy potential of agricultural residues in the Canary Islands: Promoting circular economy through bioenergy production. J. Clean. Prod. 2024, 437, 140735. [Google Scholar] [CrossRef]
- Craparo, G.; Cano Montero, E.I.; Santos Peńalver, J.F. Trends in the circular economy applied to the agricultural sector in the framework of the SDGs. Environ. Dev. Sustain. 2023, 1–31. [Google Scholar] [CrossRef]
- Lovrak, A.; Pukšec, T.; Duić, N. A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste. Appl. Energy 2020, 267, 115010. [Google Scholar] [CrossRef]
- Rodino, S.; Pop, R.; Sterie, C.; Giuca, A.; Dumitru, E. Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming. Agriculture 2023, 13, 2047. [Google Scholar] [CrossRef]
- Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef]
- Meng, X.; Liu, M.; Wang, M.; Wang, J.; Wu, Q. Fuzzy Min-Max Neural Network with Fuzzy Lattice Inclusion Measure for Agricultural Circular Economy Region Division in Heilongjiang Province in China. IEEE Access 2020, 8, 36120–36130. [Google Scholar] [CrossRef]
- Koppelmäki, K.; Helenius, J.; Schulte, R.P.O. Nested circularity in food systems: A Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 2021, 164, 105218. [Google Scholar] [CrossRef]
- Longo, S.; Cellura, M.; Luu, L.Q.; Nguyen, T.Q.; Rincione, R.; Guarino, F. Circular economy and life cycle thinking applied to the biomass supply chain: A review. Renew. Energy 2024, 220, 119598. [Google Scholar] [CrossRef]
- Atinkut, H.B.; Yan, T.; Zhang, F.; Qin, S.; Gai, H.; Liu, Q. Cognition of agriculture waste and payments for a circular agriculture model in Central China. Sci. Rep. 2020, 10, 10826. [Google Scholar] [CrossRef]
- Feleke, S.; Cole, S.M.; Sekabira, H.; Djouaka, R.; Manyong, V. Circular Bioeconomy Research for Development in Sub-Saharan Africa: Innovations, Gaps, and Actions. Sustainability 2021, 13, 1926. [Google Scholar] [CrossRef]
- Sgroi, F. The circular economy for resilience of the agricultural landscape and promotion of the sustainable agriculture and food systems. J. Agric. Food Res. 2022, 8, 100307. [Google Scholar] [CrossRef]
- Xia, X.; Ruan, J. Analyzing Barriers for Developing a Sustainable Circular Economy in Agriculture in China Using Grey-DEMATEL Approach. Sustainability 2020, 12, 6358. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Ulloa-Murillo, L.M.; Belmonte-Ureña, L.J.; Camacho-Ferre, F.; Mercl, F.; Tlustoš, P. Sustainable and circular agro-environmental practices: A review of the management of agricultural waste biomass in Spain and the Czech Republic. Waste Manag. Res. 2023, 41, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Enaime, G.; Wichern, M.; Lübken, M. Contribution of biochar application to the promotion of circular economy in agriculture. Front. Agron. 2023, 5, 1214012. [Google Scholar] [CrossRef]
- De Pascalea, S.; Rouphael, Y.; Cirillo, V.; Esposito, M.; Maggio, A. Modular systems to foster circular economy in agriculture. Acta Hortic. 2021, 1320, 205–210. [Google Scholar] [CrossRef]
- Fernando, Y.; Tseng, M.-L.; Aziz, N.; Ikhsan, R.-B.; Wahyuni-TD, I.S. Waste-to-energy supply chain management on circular economy capability: An empirical study. Sustain. Prod. Consum. 2022, 31, 26–38. [Google Scholar] [CrossRef]
- Batlles-delaFuente, A.; Abad-Segura, E.; González-Zamar, M.-D.; Cortés-García, F.J. An Evolutionary Approach on the Framework of Circular Economy Applied to Agriculture. Agronomy 2022, 12, 620. [Google Scholar] [CrossRef]
- Silvestri, C.; Silvestri, L.; Piccarozzi, M.; Ruggieri, A. Toward a framework for selecting indicators of measuring sustainability and circular economy in the agri-food sector: A systematic literature review. Int. J. Life Cycle Assess 2022, 1–39. [Google Scholar] [CrossRef]
- Silvius, J.; Hoogstra, A.G.; Candel, J.J.L.; de Olde, E.M.; de Boer, I.J.M.; Termeer, C.J.A.M. Determining the transformative potential of circular agriculture initiatives. Ambio 2023, 52, 1968–1980. [Google Scholar] [CrossRef] [PubMed]
- Trendov, N.M. Index of Circular Agriculture Development in the Republic of Macedonia. Visegr. J. Bioecon. Sustain. Dev. 2017, 6, 35–38. [Google Scholar] [CrossRef]
- Arru, B.; Furesi, R.; Pulina, P.; Sau, P.; Madau, F.A. The Circular Economy in the Agri-food system: A Performance Measurement of European Countries. Int. J. Agric. Syst. 2022, 24, 3. [Google Scholar] [CrossRef]
- Matysik-Pejas, R.; Bogusz, M.; Daniek, K.; Szafrańska, M.; Satoła, Ł.; Krasnodębski, A.; Dziekański, P. An Assessment of the Spatial Diversification of Agriculture in the Conditions of the Circular Economy in European Union Countries. Agriculture 2023, 13, 2235. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; García-Arca, D.; López-Felices, B. Identification of Opportunities for Applying the Circular Economy to Intensive Agriculture in Almería (South-East Spain). Agronomy 2020, 10, 1499. [Google Scholar] [CrossRef]
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour. Conserv. Recycl. 2021, 165, 105236. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The Management of AgriculturalWaste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef]
- Kumar Awasthi, M.; Sarsaiya, S.; Patel, A.; Juneja, A.; Prasad Singh, R.; Yan, B.; Kumar Awasthi, S.; Jain, A.; Liu, T.; Duan, Y.; et al. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Kumar Vijay, V.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 2020, 304, 113036. [Google Scholar] [CrossRef] [PubMed]
- Battista, F.; Frison, N.; Bolzonella, D. Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications. Energies 2019, 12, 3287. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Shadangi, K.P.; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ. Sci. Pollut. R. 2023, 30, 8526–8539. [Google Scholar] [CrossRef] [PubMed]
- Romero-Perdomo, F.; González-Curbelo, M.Á. Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review. Sustainability 2023, 15, 5026. [Google Scholar] [CrossRef]
- Agamuthu, P. Circular Economic Utilization of Agriculture and Biomass Waste—A Potential Opportunity for Asia and the Pacific. In Proceedings of the Sixth Regional 3R Forum in Asia and the Pacific, Male, Maldives, 16–19 August 2015. [Google Scholar]
- Schipfer, F.; Pfeiffer, A.; Hoefnagels, R. Strategies for the Mobilization and Deployment of Local Low-Value, Heterogeneous Biomass Resources for a Circular Bioeconomy. Energies 2022, 15, 433. [Google Scholar] [CrossRef]
- Lange, L.; Connor, K.O.; Arason, S.; Bundgård-Jørgensen, U.; Canalis, A.; Carrez, D.; Gallagher, J.; Gøtke, N.; Huyghe, C.; Jarry, B.; et al. Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business. Front. Bioeng. Biotechnol. 2021, 8, 619066. [Google Scholar]
- Babu, S.; Singh Rathore, S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; et al. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef]
- Li, B.; Feng, Y.; Xia, X.; Feng, M. Evaluation of China’s Circular Agriculture Performance and Analysis of the Driving Factors. Sustainability 2021, 13, 1643. [Google Scholar] [CrossRef]
- Ministerstwo Rolnictwa i Rozwoju Wsi. Rolnictwo i gospodarka żywnościowa w Polsce; Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Poland; Instytutu Ekonomiki Rolnictwa i Gospodarki Żywnościowej: Warszawa, Poland, 2019.
- Central Statistical Office: Local Data Bank. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 19 April 2024).
- Statistics Poland. Gospodarka Paliwowo-Energetyczna w Latach 2020 i 2021; Statistics Poland: Warsaw, Poland, 2022.
- Szulc, R.; Dach, J. Kierunki Rozwoju Ekoenergetyki w Polskim Rolnictwie; Komitet Techniki Rolniczej PAN Polskie Towarzystwo Inżynierii Rolniczej: Kraków, Poland, 2014. [Google Scholar]
- Statistics Poland. Energy from Renewable Sources in 2021; Statistics Poland: Warsaw, Poland, 2022.
- Malec, M. Energetyczne Wykorzystanie Biomasy—Polski Wkład w OZE. Analiza IPE nr 2/2023; Instytut Polityki Energetycznej im. Ignacego Łukasiewicza: Jasionka, Poland, 2023. [Google Scholar]
- Official Journal of the European Union. Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652; Official Journal of the European Union: Brussels, Belgum, 2023. [Google Scholar]
- Harasim, A. Dobór wskaźników do oceny regionalnego zróżnicowania rolnictwa. Rap. PIB 2006, 3, 61–69. [Google Scholar]
- Central Statistical Office: General Agricultural Census. Available online: https://bdl.stat.gov.pl/bdl/dane/podgrup/temat (accessed on 19 April 2024).
- Suchecki, B.; Lewandowska-Gwarda, K. Klasyfikacja, wizualizacja i grupowanie danych przestrzennych. In Ekonometria Przestrzenna; Metody i modele analizy danych przestrzennych; Suchecki, B., Ed.; Wydawnictwo C.H. Back: Warszawa, Poland, 2010; p. 57. [Google Scholar]
- Wysocki, F.; Lira, J. Statystyka Opisowa; Wydawnictwo Akademii Rolniczej w Poznaniu: Poznań, Poland, 2003; pp. 173–175. [Google Scholar]
- Parysek, J.J.; Wojtasiewicz, L. Metody Analizy Regionalnej i Planowania Regionalnego; Studia tom LXIX, PWN: Warszawa, Poland, 1979; p. 20. [Google Scholar]
- Kowalczyk-Jusko, A. Zasady sporządzania bilansu odnawialnych źródeł energii i oceny zasobów biomasy. In Odnawialne Źródła Energii; Rolnicze surowce energetyczne; Kołodziej, B., Matyka, M., Eds.; PWRiL: Poznań, Poland, 2012; p. 442. [Google Scholar]
- Janiszewska, D.; Ossowska, L. The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries. Energies 2022, 15, 6756. [Google Scholar] [CrossRef]
- Pudełko, R. Ocena Potencjałów Biomasy Ubocznej i Odpadowej w UE—27 i Szwajcarii Oraz ich Regionalizacja; IUNG: Puławy, Poland, 2013; p. 7. [Google Scholar]
- Klugmann-Radziemska, E. Odnawialne Źródła Energii—Przykłady Obliczeniowe; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2006; p. 52. [Google Scholar]
- Ministry of Climate and Environment. Energy Policy of Poland until 2040, Annex to Resolution No. 22/2021 of the Council of Ministers of February 2; Ministry of Climate and Environment: Warszawa, Poland, 2021.
- Ministry of the Environment. National Environmental Policy 2030, Annex to Resolution No. 67/2019 of the Council of Ministers of July 16; Ministry of Climate and Environment: Warszawa, Poland, 2019.
Specification | Average Farm Size | Number of Tractors per Farm | Share of Farms with Final Production for Sale | Number of Full-Time Employees per 100 ha of UAA |
---|---|---|---|---|
Total number of counties | 314 | |||
Minimum | 3.92 | 0.49 | 12.88 | 2.17 |
Maximum | 46.26 | 1.80 | 95.47 | 32.94 |
Range | 42.34 | 1.31 | 82.59 | 30.78 |
Average | 14.47 | 1.12 | 70.37 | 9.97 |
Median | 13.96 | 1.09 | 74.54 | 8.45 |
Standard deviation | 7.57 | 0.27 | 17.75 | 5.94 |
Sample variance | 57.26 | 0.07 | 315.10 | 35.31 |
Specification | Straw Surplus | Surplus Hay | Growing Energy Crops | Residues from Orchard Maintenance | Total |
---|---|---|---|---|---|
Total number of counties | 314 | ||||
Minimum | −1.52 | 0.07 | 0.00 | 0.00 | 0.47 |
Maximum | 96.47 | 5.85 | 5.58 | 3.86 | 98.12 |
Range | 97.99 | 5.79 | 5.58 | 3.86 | 97.64 |
Average | 20.93 | 0.76 | 0.74 | 0.07 | 22.51 |
Median | 17.86 | 0.55 | 0.52 | 0.02 | 19.39 |
Standard deviation | 17.53 | 0.69 | 0.69 | 0.27 | 17.39 |
Sample variance | 307.45 | 0.48 | 0.48 | 0.07 | 302.56 |
Diversification of the Level of Agriculture Production Organization | Diversification of Biomass Potential from Agricultural Residues and Waste (toe/100 ha of Agricultural Area) | Number of Counties in the Group | |||||||
---|---|---|---|---|---|---|---|---|---|
Average Farm Size | Number of Tractors per Farm | Share of Farms with Final Production for Sale | Number of Full-Time Employees per 100 ha of UAA | Straw Surplus | Surplus Hay | Growing Energy Crops | Residues from Orchard Maintenance | Total | |
Group I (High Agriculture/High Biomass) | 40 | ||||||||
22.0 | 1.4 | 82.2 | 5.4 | 101.7 | 0.8 | 1.0 | 0.0 | 103.6 | |
Group II (High Agriculture/Medium Biomass) | 41 | ||||||||
22.0 | 1.3 | 79.9 | 5.8 | 56.7 | 1.4 | 1.1 | 0.1 | 59.3 | |
Group III (High agriculture/Low biomass) | 30 | ||||||||
19.3 | 1.4 | 80.7 | 7.1 | 11.6 | 2.5 | 0.9 | 0.0 | 15.0 | |
Group IV (Medium Agriculture/High Biomass) | 26 | ||||||||
15.7 | 1.0 | 70.7 | 6.5 | 102.3 | 1.1 | 1.7 | 0.1 | 105.2 | |
Group V (Medium Agriculture/Medium Biomass) | 63 | ||||||||
12.5 | 1.1 | 75.7 | 9.5 | 52.1 | 1.5 | 1.9 | 0.1 | 55.7 | |
Group VI (Medium Agriculture/Low Biomass) | 37 | ||||||||
13.1 | 1.1 | 75.4 | 10.0 | 21.6 | 2.2 | 1.6 | 0.4 | 25.8 | |
Group VII (Low Agriculture/High Biomass) | 8 | ||||||||
7.0 | 0.9 | 59.4 | 13.3 | 94.1 | 1.5 | 3.0 | 0.3 | 98.9 | |
Group VIII (Low Agriculture/Medium Biomass) | 33 | ||||||||
6.3 | 0.8 | 51.9 | 16.4 | 44.0 | 2.3 | 4.7 | 0.1 | 51.0 | |
Group IX (Low Agriculture/Low Biomass) | 36 | ||||||||
6.6 | 0.8 | 42.5 | 18.8 | 12.1 | 4.1 | 3.9 | 0.5 | 20.5 | |
Total (average for all counties) | 314 | ||||||||
14.5 | 1.1 | 70.4 | 10.0 | 51.4 | 1.9 | 2.1 | 0.2 | 55.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janiszewska, D.; Ossowska, L. The Potential Diversity of Agricultural Biomass in the Context of the Organization of Agricultural Production and Circular Agriculture in Poland. Energies 2024, 17, 3368. https://doi.org/10.3390/en17143368
Janiszewska D, Ossowska L. The Potential Diversity of Agricultural Biomass in the Context of the Organization of Agricultural Production and Circular Agriculture in Poland. Energies. 2024; 17(14):3368. https://doi.org/10.3390/en17143368
Chicago/Turabian StyleJaniszewska, Dorota, and Luiza Ossowska. 2024. "The Potential Diversity of Agricultural Biomass in the Context of the Organization of Agricultural Production and Circular Agriculture in Poland" Energies 17, no. 14: 3368. https://doi.org/10.3390/en17143368
APA StyleJaniszewska, D., & Ossowska, L. (2024). The Potential Diversity of Agricultural Biomass in the Context of the Organization of Agricultural Production and Circular Agriculture in Poland. Energies, 17(14), 3368. https://doi.org/10.3390/en17143368