Performance Assessment of an Integrated Low-Approach Low-Temperature Open Cooling Tower with Radiant Cooling and Displacement Ventilation for Space Conditioning in Temperate Climates
Abstract
:1. Introduction
2. Methodology
2.1. Building Model
2.1.1. External Heat Gains
2.1.2. Internal Heat Gains
2.1.3. Radiant Cooling (RC) Model
2.1.4. Condensation Control Type
2.1.5. Ventilation and Infiltration
2.2. Cooling Tower Model
2.3. Integrated Model
2.4. Benchmark Cooling System
3. System Performance Assessment
3.1. Design Day Analysis
3.1.1. Helsinki
3.1.2. Birmingham
3.1.3. Prague
3.1.4. Paris
3.2. Seasonal and Thermal Comfort Analysis
Thermal Comfort Results
3.3. Energy Utilization Results
3.4. System Performance
4. Baseline Cooling System Analysis
4.1. Thermal Comfort Analysis
4.2. Energy Consumption
4.3. System Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
a | surface area per unit volume |
COP | coefficient of performance |
cp | specific heat at constant pressure (J kg−1 K−1) |
K | mass transfer coefficient (kg m−2 s−1) |
L | water mass flow rate (kg s−1) |
mass flow rate, (kg s−1) | |
Me | Merkel number |
P | power consumption (W) |
heat transfer rate (W) | |
T | temperature (°C or K) |
V | volume of tower (m3) |
Subscripts | |
p | primary |
pr | primary return |
ps | primary supply |
s | secondary |
sr | secondary return |
ss | secondary supply |
Appendix A. Building Fabric Specification
Layer | Thickness | Density | Heat Capacity | Conductivity |
---|---|---|---|---|
Flooring screed | 0.050 | 900 | 1000 | 0.25 |
Expanded polystyrene | 0.120 | 1200 | 1000 | 0.41 |
Cast concrete | 0.100 | 2100 | 840 | 1.40 |
Brick slips | 0.025 | 2000 | 1000 | 1.35 |
Clay underfloor | 0.750 | 2400 | 1000 | 1.93 |
Layer | Thickness | Density | Heat Capacity | Conductivity |
---|---|---|---|---|
Concrete—dense | 0.15 | 1800 | 1000 | 1.13 |
Flooring screed | 0.04 | 900 | 1000 | 0.25 |
Mineral wool—dense | 0.2 | 900 | 1000 | 0.21 |
Asphalt | 0.019 | 1700 | 840 | 0.77 |
Stone chippings | 0.025 | 2100 | 1000 | 0.70 |
Layer | Thickness | Density | Heat Capacity | Conductivity |
---|---|---|---|---|
Plasterboard | 0.013 | 2000 | 1000 | 2.00 |
Concrete | 0.1 | 15 | 1300 | 0.04 |
Mineral wool quilt | 0.1 | 50 | 1030 | 0.036 |
Brick outer leaf | 0.105 | 1700 | 1000 | 0.77 |
Layer | Thickness | Density | Heat Capacity | Conductivity |
---|---|---|---|---|
Gypsum board | 0.026 | 800 | 830 | 0.16 |
Glazing Pane | Low-E Clear (4 mm) | Reflective (4 mm) |
---|---|---|
Solar transmittance at normal incidence | 0.62 | 0.429 |
Outer glass solar reflectance at normal incidence | 0.075 | 0.308 |
Inner glass solar reflectance at normal incidence | 0.075 | 0.379 |
Visible transmittance at normal incidence | 0.847 | 0.334 |
Outer glass visible reflectance at normal incidence | 0.081 | 0.453 |
Inner glass visible reflectance at normal incidence | 0.081 | 0.505 |
Infrared transmittance at normal incidence | 0 | 0 |
Outer glass infrared hemispherical emissivity | 0.84 | 0.84 |
Inner glass infrared hemispherical emissivity | 0.1 | 0.82 |
) | 1 | 1 |
References
- Energy Information Administration (EIA). International Energy Outlook 2013 with Projection to 2040; U.S. Energy Information Administration, Office of Energy Analysis, U.S. Department of Energy: Washington, DC, USA, 2013. [Google Scholar]
- Engelmann, P.; Kalz, D.; Salvalai, G. Cooling concepts for non-residential buildings: A comparison of cooling concepts in different climate zones. Energy Build. 2014, 82, 447–456. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change (IPCC), Working Group III, Mitigation of Climate Change. Chapter 9. Buildings. 2014. Available online: www.ipcc.ch (accessed on 1 January 2014).
- International Energy Agency (IEA). World Energy Outlook 2023, Licence: Creative Commons Attribution CC BY-NC-SA 3.0 IGO; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Eicker, U. Low Energy Cooling for Sustainable Buildings; John Wiley & Sons Ltd: Chichester, UK, 2009; ISBN 978-0-470-69744-3. [Google Scholar]
- Hojjati, B.; Wade, S.H. U.S. household energy consumption and intensity trends: A decomposition approach. Energy Policy 2012, 48, 304–314. [Google Scholar] [CrossRef]
- Islington. Low Energy Cooling: Good Practice Guide 5; Islington: London, UK, 2012. Available online: www.islington.gov.uk (accessed on 1 January 2024).
- Salvalai, G.; Pfafferott, J.; Sesana, M.M. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings. Energy Convers. Manag. 2013, 76, 332–341. [Google Scholar] [CrossRef]
- Ezzeldin, S.; Rees, S.J. The potential for office buildings with mixed-mode ventilation and low energy cooling systems in arid climates. Energy Build. 2013, 65, 368–381. [Google Scholar] [CrossRef]
- Harvey, L.D.D. A Handbook on Low Energy Buildings and District-Energy Systems—Fundamentals, Techniques and Examples; Earthscan Pub.: London, UK, 2006; ISBN 1844072436. [Google Scholar]
- Gan, G.; Riffat, S. Numerical simulation of closed wet cooling towers for chilled ceiling systems. Appl. Therm. Eng. 1999, 19, 1279–1296. [Google Scholar] [CrossRef]
- Facão, J.; Oliveira, A.C. Thermal behaviour of closed wet cooling towers for use with chilled ceilings. Appl. Therm. Eng. 2000, 20, 1225–1236. [Google Scholar] [CrossRef]
- Gan, G.; Riffat, S.; Shao, L.; Doherty, P. Application of CFD to closed-wet cooling towers. Appl. Therm. Eng. 2001, 21, 79–92. [Google Scholar] [CrossRef]
- Bolher, A.; Fleury, E.; Millet, J.R.; Marchio, D.; Stabat, P. Guidance and tools for chilled ceilings combined with a wet cooling tower. In Proceedings of the EPIC AIVC Conference, Lyon, France, 23–26 October 2002; pp. 413–418. [Google Scholar]
- Bergsten, B. Evaporative Cooling Tower and Chilled Beams. Design Aspects for Cooling in Office Buildings in Northern Europe. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2009. [Google Scholar]
- Ma, P.; Wang, L.-S.; Guo, N. Modeling of TABS-based thermally manageable buildings in Simulink. Appl. Energy 2013, 104, 791–800. [Google Scholar] [CrossRef]
- Ma, P.; Wang, L.-S.; Guo, N. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower. Appl. Energy 2014, 127, 172–181. [Google Scholar] [CrossRef]
- Nasrabadi, M.; Finn, D.P. Analysis of a low-temperature small approach open cooling tower integrated with radiant cooling and displacement ventilation for space conditioning in temperate climates. Adv. Build. Energy Res. 2022, 16, 754–779. [Google Scholar] [CrossRef]
- Costelloe, B.; Finn, D. Indirect evaporative cooling potential in air–water systems in temperate climates. Energy Build. 2003, 35, 573–591. [Google Scholar] [CrossRef]
- Costelloe, B. Effectiveness of Water-side Indirect Evaporative Cooling in Maritime Temperate Climates—Experimental and Analytical Investigation. Ph.D. Thesis, University College Dublin, Dublin, Ireland, 2005. [Google Scholar]
- Costelloe, B.; Finn, D. Heat transfer correlations for low approach evaporative cooling systems in buildings. Appl. Therm. Eng. 2009, 29, 105–115. [Google Scholar] [CrossRef]
- Costelloe, B.; Finn, D. Experimental energy performance of open cooling towers used under low and variable approach conditions for indirect evaporative cooling in buildings. Build. Serv. Eng. Res. Technol. 2003, 24, 163–177. [Google Scholar] [CrossRef]
- Alessandrini, J.M.; Bolher, A.; Fleury, E.; Millet, J.R. CONSOCLIM a Software Package to Calculate Energy Consumption of Air Conditioned Buildings, First Comparisons with In Situ Measurements. 2002. Available online: www.aivc.org (accessed on 1 January 2002).
- Costelloe, B.; Finn, D. Thermal effectiveness characteristics of low approach indirect evaporative cooling systems in buildings. Energy Build. 2007, 39, 1235–1243. [Google Scholar] [CrossRef]
- Riffat, S.B.; Zhao, X.; Doherty, P.S. Review of research into and application of chilled ceilings and displacement ventilation systems in Europe. Int. J. Energy Res. 2004, 28, 257–286. [Google Scholar] [CrossRef]
- Hasan, A.; Sirén, K. Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings. Energy Build. 2002, 34, 477–486. [Google Scholar] [CrossRef]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.; Huang, Y.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- TRNSYS. A Transient System Simulation Program, version 17.01.0016; Solar Energy Laboratory, University of Wisconsin-Madison: Madison, WI, USA, 2012. [Google Scholar]
- Clarke, J.; Hensen, J. An approach to the simulation of coupled heat and mass flows in buildings. Indoor Air 1991, 1, 283–296. [Google Scholar] [CrossRef]
- Haves, P.; Ravache, B.; Yazdanian, M. Accuracy of HVAC Load Predictions: Validation of EnergyPlus and DOE-2 Using FLEXLAB Measurements; Energy Technologies Area: Berkeley, CA, USA, 2020. [Google Scholar]
- ASHRAE. ASHRAE Handbook: Fundamentals, SI ed.; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- EnergyPlus Engineering Reference. EnergyPlus Documentation; LBL: Berkeley, CA, USA, 2013. [Google Scholar]
- Nasrabadi, M. Performance analysis of a radiant cooling system connected to a cooling tower in comparison to a fan-coil system in different climatic conditions of Iran. J. Renew. New Energy 2023, 10, 64–76. [Google Scholar]
- ENERGY.GOV, Office of Energy Efficency and Renewable Energy. 2014. Available online: www.energy.gov/eere/buildings/commercial-reference-buildings (accessed on 1 January 2014).
- EnergyPlus Input/Output Reference. EnergyPlus Documentation; LBL: Berkeley, CA, USA, 2013. [Google Scholar]
- ASHRAE. International Weather for Energy Calculation (IWEC Weather Files) Users Manual and CD-ROM; ASHRAE: Atlanta, GA, USA, 2001. [Google Scholar]
- International Weather for Energy Calculations (IWEC Weather Files), version 2.0; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2012.
- Mandalaki, M.; Zervas, K.; Tsoutsos, T.; Vazakas, A. Assessment of fixed shading devices with integrated PV for efficient energy use. Sol. Energy 2012, 86, 2561–2575. [Google Scholar] [CrossRef]
- Imanari, T.; Omori, T.; Bogaki, K. Thermal comfort and energy consumption of the radiant ceiling panel system. Energy Build. 1999, 30, 167–175. [Google Scholar] [CrossRef]
- Miriel, J.; Serres, L.; Trombe, A. Radiant ceiling panel heating–cooling systems: Experimental and simulated study of the performances, thermal comfort and energy consumptions. Appl. Therm. Eng. 2002, 22, 1861–1873. [Google Scholar] [CrossRef]
- Bolashikov, Z.D.; Mustakallio, P.; Kolencikova, S.; Kostov, K.; Melikov, A.K.; Kosonen, R. Thermal comfort in simulated office environment with four convective and radiant cooling systems. In Proceedings of the 11th REHVA World Congress and the 8th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, Prague, Czech Republic, 16–19 June 2013. [Google Scholar]
- Kosonen, R.; MustaKallio, P.; BolashiKov, Z.; Kostov, K.; Kolencikova, S.; Melikov, A.K. Thermal comfort with radiant and convective cooling systems. REHVA J. 2014, 6, 47–51. [Google Scholar]
- Doebber, I. Radiant slab cooling for retail. ASHRAE J. 2010, 52, 28. [Google Scholar]
- Moore, T. Simulation of Radiant Cooling Performance with Evaporative Cooling Sources; Summary Report; Center for Built Environment (CBE), University of California: Berkeley, CA, USA, 2008. [Google Scholar]
- Starr, R.J. Radiantec Tubing Layout, General Supplement 440, Pioneering Radiant Technology, Copyright 2003. Online Resource. Available online: https://www.radiantec.com/installation-manuals/instructions-for-doing-your-own-tubing-layout/ (accessed on 1 January 2003).
- ASHRAE. ANSI/ASHRAE Standard 62.1; Ventilation for Acceptable Indoor Air Quality. ASHRAE: Atlanta, GA, USA, 2019.
- CIBSE. CIBSE Guide A—Environmental Design, 7th ed.; CIBSE: London, UK, 2006; ISBN 9781903287668. [Google Scholar]
- Nasrabadi, M.; Finn, D.P. Mathematical modeling of a low temperature low approach direct cooling tower for the provision of high temperature chilled water for conditioning of building spaces. Appl. Therm. Eng. 2014, 64, 273–282. [Google Scholar] [CrossRef]
- Nasrabadi, M.; Finn, D.P. Performance analysis of a low approach low temperature direct cooling tower for high-temperature building cooling systems. Energy Build. 2014, 84, 674–689. [Google Scholar] [CrossRef]
- Yang, K.; Ting, M. An innovative analysis and experimental investigation on energy savings of a VAV system in hot and humid climates. J. Affect. Disord. 2000, 35, 27–31. [Google Scholar] [CrossRef]
- Adnot, J.; Greslou, O.; Riviere, P.; Spadaro, J.; Hitchen, R.; Pout, C.; Kema, R.; van Elburg, M.; van Holsteijn, R. Sustainable Industrial Policy Building on the Eco-Design Directive-Energy-Using Product Group Analysis/2; Contract No. ENTR/B1/35-2009/LOT6/SI2.549494; BRE: Hertfordshire, UK, 2012. [Google Scholar]
- Nasrabadi, M. Investigation of Office Space Conditioning Using an Open Cooling Tower with Radiant Cooling and Displacement Ventilation in Temperate Climates. Ph.D. Dissertation, School of Mechanical, Materials Engineering, University College Dublin, Dublin, Ireland, 2015. [Google Scholar]
- Alfano, F.R.D.; Pepe, D.; Riccio, G.; Vio, M.; Palella, B.I. On the effects of the mean radiant temperature evaluation in the assessment of thermal comfort by dynamic energy simulation tools. J. Affect. Disord. 2023, 236, 110254. [Google Scholar] [CrossRef]
- Abela, A.; Hamilton, L.; Hitchin, R.; Pout, C.; Lewry, A. Study on energy use by air-conditioning. In Building Research Establishment (BRE) Client Report for the Department of Energy & Climate Change; BRE: Hertfordshire, UK, 2016; p. 39. [Google Scholar]
- ASHRAE. ASHRAE Standard. Standard 90.1-2007; Energy Standard for Buildings Except Low Rise Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2007.
- Tan, C.K.; Ogawa, A.; Matsuma, T. Innovative Climate Change Communication: Team Minus 6%; GEIC Working Paper Series 2008-001; Global Environment Information Centre, United Nations University: Shibuya City, Japan, 2008. [Google Scholar]
- Lakeridou, M.; Ucci, M.; Marmot, A.; Ridley, I. The potential of increasing cooling set-points in air-conditioned offices in the UK. Appl. Energy 2012, 94, 338–348. [Google Scholar] [CrossRef]
- Yu, X.; Yan, D.; Sun, K.; Hong, T.; Zhu, D. Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings. Appl. Energy 2016, 183, 725–736. [Google Scholar] [CrossRef]
- Document, L. Conservation of Fuel and Power: Approved Document L. Department for Levelling Up, Housing and Communities and Ministry of Housing, Communities & Local Government (2018 to 2021). 2024. Available online: https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l (accessed on 1 January 2024).
- Korolija, I. Heating, Ventilating and Air-Conditioning System Energy Demand Coupling with Building Loads for Office Buildings. Ph.D. Thesis, De Montford University, Leicester, UK, 2011. [Google Scholar]
RC Type | Office Set-Point Temperature (°C) | DV Fan Air Flow Rate (m3·s−1) | Primary Pump Flow Rate (kg∙s−1) | Secondary Pump Flow Rate (kg∙s−1) | Total Internal Cooling Load (W∙m−2) | Occupancy Hours during Working Days |
---|---|---|---|---|---|---|
Radiant floor | 22 | 0.255 | 1.4 | 1.6 | 66 | 8 am–5 pm |
Radiant ceiling | 20 | 0.255 | 1.4 | 1.6 | 66 | 8 am–5 pm |
Paris | Prague | Helsinki | Birmingham | |||||
---|---|---|---|---|---|---|---|---|
Component | Radiant Floor | Radiant Ceiling | Radiant Floor | Radiant Ceiling | Radiant Floor | Radiant Ceiling | Radiant Floor | Radiant Ceiling |
CT fan (kWh) | 1416.2 | 1487.8 | 1314.0 | 1446.1 | 1136.9 | 1276.5 | 863.7 | 1410.6 |
Primary pump (kWh) | 753.7 | 797.6 | 705.3 | 782.0 | 616.7 | 696.6 | 464.2 | 767.6 |
Secondary pump (kWh) | 662.7 | 696.7 | 630.5 | 671.0 | 548.9 | 581.6 | 405.3 | 633.4 |
DV fan (kWh) | 54.4 | 53.8 | 55.0 | 54.5 | 55.2 | 54.3 | 54.5 | 54.4 |
Total (kWh) | 2887.0 | 3035.9 | 2704.8 | 2953.6 | 2357.7 | 2609.0 | 1787.7 | 2866.0 |
Total energy consumption density (kWh·m−2) | 5.6 | 5.9 | 5.3 | 5.8 | 4.6 | 5.1 | 3.5 | 5.6 |
System Performance Factor (SPF) | Paris | Prague | Helsinki | Birmingham | ||||
---|---|---|---|---|---|---|---|---|
Radiant Floor | Radiant Ceiling | Radiant Floor | Radiant Ceiling | Radiant Floor | Radiant Ceiling | Radiant Floor | Radiant Ceiling | |
SPF1 | 10.59 | 7.77 | 16.92 | 11.37 | 19.12 | 11.58 | 12.16 | 10.13 |
SPF2 | 7.96 | 5.85 | 12.63 | 8.58 | 14.22 | 8.76 | 9.03 | 7.70 |
Chiller COP | Energy Consumption (kWh) | |||
---|---|---|---|---|
Paris | Prague | Helsinki | Birmingham | |
2.75 | 7662.3 | 6175.8 | 4941.7 | 5187.6 |
3.50 | 6519.7 | 5324.1 | 4327.7 | 4487.5 |
4.25 | 5781.6 | 4774.0 | 3930.4 | 4034.6 |
5.00 | 5265.4 | 4389.4 | 3652.3 | 3717.6 |
5.75 | 4884.2 | 4105.2 | 3446.8 | 3483.3 |
6.50 | 4591.0 | 3886.6 | 3288.7 | 3303.1 |
Paris | Prague | Helsinki | Birmingham | |||||
---|---|---|---|---|---|---|---|---|
Chiller COP | SPF1 | SPF2 | SPF1 | SPF2 | SPF1 | SPF2 | SPF1 | SPF2 |
2.75 | 2.79 | 2.15 | 2.59 | 1.89 | 2.40 | 1.62 | 2.39 | 1.75 |
3.50 | 3.46 | 2.52 | 3.19 | 2.19 | 2.95 | 1.85 | 2.93 | 2.02 |
4.25 | 4.10 | 2.84 | 3.76 | 2.44 | 3.46 | 2.03 | 3.44 | 2.25 |
5.00 | 4.70 | 3.12 | 4.29 | 2.65 | 3.93 | 2.19 | 3.91 | 2.44 |
5.75 | 5.27 | 3.37 | 4.80 | 2.84 | 4.37 | 2.32 | 4.34 | 2.61 |
6.50 | 5.82 | 3.58 | 5.27 | 3.00 | 4.78 | 2.43 | 4.75 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasrabadi, M.; Finn, D. Performance Assessment of an Integrated Low-Approach Low-Temperature Open Cooling Tower with Radiant Cooling and Displacement Ventilation for Space Conditioning in Temperate Climates. Energies 2024, 17, 3763. https://doi.org/10.3390/en17153763
Nasrabadi M, Finn D. Performance Assessment of an Integrated Low-Approach Low-Temperature Open Cooling Tower with Radiant Cooling and Displacement Ventilation for Space Conditioning in Temperate Climates. Energies. 2024; 17(15):3763. https://doi.org/10.3390/en17153763
Chicago/Turabian StyleNasrabadi, Mehdi, and Donal Finn. 2024. "Performance Assessment of an Integrated Low-Approach Low-Temperature Open Cooling Tower with Radiant Cooling and Displacement Ventilation for Space Conditioning in Temperate Climates" Energies 17, no. 15: 3763. https://doi.org/10.3390/en17153763
APA StyleNasrabadi, M., & Finn, D. (2024). Performance Assessment of an Integrated Low-Approach Low-Temperature Open Cooling Tower with Radiant Cooling and Displacement Ventilation for Space Conditioning in Temperate Climates. Energies, 17(15), 3763. https://doi.org/10.3390/en17153763