On the Thermal Stability of Selected Electrode Materials and Electrolytes for Na-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.1.1. Na3V2(PO4)3 (NVP)
2.1.2. Na3(VO)2(PO4)2F (NVOPF)
2.1.3. β-NaVP2O7 (NVPO)
2.1.4. Hard Carbon (HC)
2.1.5. Electrodes
2.2. Characterization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Jia, Y.; Yuan, C.; Wang, L.; Gao, X.; Yin, S.; Xu, J. Safety Issues and Mechanisms of Lithium-Ion Battery Cell upon Mechanical Abusive Loading: A Review. Energy Storage Mater. 2020, 24, 85–112. [Google Scholar] [CrossRef]
- Martha, S.K.; Haik, O.; Zinigrad, E.; Exnar, I.; Drezen, T.; Miners, J.H.; Aurbach, D. On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, A1115. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Y.C.; Jenkins, D.M.; Chernova, N.A.; Chung, Y.; Radhakrishnan, B.; Chu, I.H.; Fang, J.; Wang, Q.; Omenya, F.; et al. Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 7013–7021. [Google Scholar] [CrossRef]
- Tamaru, M.; Chung, S.C.; Shimizu, D.; Nishimura, S.I.; Yamada, A. Pyrophosphate Chemistry toward Safe Rechargeable Batteries. Chem. Mater. 2013, 25, 2538–2543. [Google Scholar] [CrossRef]
- Yi, J.; Wang, C.; Xia, Y. Comparison of Thermal Stability between Micro- and Nano-Sized Materials for Lithium-Ion Batteries. Electrochem. Commun. 2013, 33, 115–118. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.O.; Mun, J.; Park, M.S.; Kim, K.J.; Lee, K.Y.; Choi, W. Influence of Salt, Solvents, and Additives on the Thermal Stability of Delithiated Cathodes in Lithium-Ion Batteries. J. Electroanal. Chem. 2017, 807, 174–180. [Google Scholar] [CrossRef]
- Gnanaraj, J.S.; Zinigrad, E.; Asraf, L.; Gottlieb, H.E.; Sprecher, M.; Schmidt, M.; Geissler, W.; Aurbach, D. A Detailed Investigation of the Thermal Reactions of LiPF6 Solution in Organic Carbonates Using ARC and DSC. J. Electrochem. Soc. 2003, 150, A1533. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitice, G.; Thalera, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef]
- Velumani, D.; Bansal, A. Thermal Behavior of Lithium- and Sodium-Ion Batteries: A Review on Heat Generation, Battery Degradation, Thermal Runway—Perspective and Future Directions. Energy Fuels 2022, 36, 14000–14029. [Google Scholar] [CrossRef]
- Bang, H.; Kim, D.-H.; Bae, Y.C.; Prakash, J.; Sun, Y.-K. Effects of Metal Ions on the Structural and Thermal Stabilities of Li[Ni1−x−yCoxMny]O2 (x + y ≤ 0.5) Studied by In Situ High Temperature XRD. J. Electrochem. Soc. 2008, 155, A952–A958. [Google Scholar] [CrossRef]
- Sun, Y.K.; Myung, S.T.; Park, B.C.; Prakash, J.; Belharouak, I.; Amine, K. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 2009, 8, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Bak, S.-M.; Hu, E.; Zhou, Y.; Yu, X.; Senanayake, S.D.; Cho, S.-J.; Kim, K.-B.; Chung, K.Y.; Yang, X.-Q.; Nam, K.-W. Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 22594–22601. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cui, Y.; Li, B.; Geng, L.; Yan, J.; Zhu, D.; Zhou, P.; Zhou, J.; Yan, Z.; Xue, Q.; et al. Revealing the origin of high-thermal-stability of single-crystal Ni-rich cathodes toward higher-safety batteries. Nano Energy 2023, 116, 108846. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, J.; Lee, D.H.; Dimov, N.; Meng, Y.S.; Okada, S. Electrochemical and Thermal Properties of P2-Type Na2/3Fe 1/3Mn2/3O2 for Na-Ion Batteries. J. Power Sources 2014, 264, 235–239. [Google Scholar] [CrossRef]
- Zuo, W.; Liu, R.; Ortiz, G.F.; Rubio, S.; Chyrka, T.; Lavela, P.; Zheng, S.; Tirado, J.L.; Wang, D.; Yang, Y. Sodium Storage Behavior of Na0.66Ni0.33˗xZnxMn0.67O2 (x = 0, 0.07 and 0.14) Positive Materials in Diglyme-Based Electrolytes. J. Power Sources 2018, 400, 317–324. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, L.; Chihara, K.; Okada, S.; Yamaki, J.I.; Matsumoto, S.; Kuze, S.; Nakane, K. Electrochemical and Thermal Properties of Hard Carbon-Type Anodes for Na-Ion Batteries. J. Power Sources 2013, 244, 752–757. [Google Scholar] [CrossRef]
- Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.M.; Palacín, M.R. In Search of an Optimized Electrolyte for Na-Ion Batteries. Energy Environ. Sci. 2012, 5, 8572–8583. [Google Scholar] [CrossRef]
- Li, Z.; Dadsetan, M.; Gao, J.; Zhang, S.; Cai, L.; Naseri, A.; Jimenez-Castaneda, M.E.; Filley, T.; Miller, J.T.; Thomson, M.J.; et al. Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries. Adv. Energy Mater. 2021, 11, 2101764. [Google Scholar] [CrossRef]
- Ge, L.; Song, Y.; Niu, P.; Li, B.; Zhou, L.; Feng, W.; Ma, C.; Li, X.; Kong, D.; Yan, Z.; et al. Elaborating the Crystal Water of Prussian Blue for Outstanding Performance of Sodium Ion Batteries. ACS Nano 2024, 18, 3542–3552. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, X.; Qiu, X.; Cao, Y.; Wang, C.; Wang, Y.; Xia, Y. Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries, Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries. J. Power Sources 2020, 476, 228550. [Google Scholar] [CrossRef]
- Mohsin, I.U.; Hofmann, A.; Ziebert, C. Exploring the reactivity of Na3V2(PO4)3/C and hard carbon electrodes in sodium-ion batteries at various charge states. Electrochim. Acta 2024, 487, 144197. [Google Scholar] [CrossRef]
- Samigullin, R.R.; Zakharkin, M.V.; Drozhzhin, O.A.; Antipov, E.V. Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries. Energies 2023, 16, 3051. [Google Scholar] [CrossRef]
- Samigullin, R.R.; Drozhzhin, O.A.; Antipov, E.V. Comparative Study of the Thermal Stability of Electrode Materials for Li-Ion and Na-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 14–19. [Google Scholar] [CrossRef]
- Xiang, H.F.; Wang, H.; Chen, C.H.; Ge, X.W.; Guo, S.; Sun, J.H.; Hu, W.Q. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries. J. Power Sources 2009, 191, 575–581. [Google Scholar] [CrossRef]
- Chen, G.; Richardson, T.J. Thermal instability of Olivine-type LiMnPO4 cathodes. J. Power Sources 2010, 195, 1221–1224. [Google Scholar] [CrossRef]
- He, X.; Ping, P.; Kong, D.; Wang, G.; Wang, D. Comparison study of electrochemical and thermal stability of Na3V2(PO4)3 in different electrolytes under room and elevated temperature. Int. J. Energy Res. 2022, 46, 23173–23194. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Grugeon, S.; Kim, H.; Jeong, S.; Wu, L.; Gachot, G.; Laruelle, S.; Armand, M.; Passerini, S. Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions. ChemSusChem 2016, 9, 462. [Google Scholar] [CrossRef]
- Gan, Y.; Ping, P.; Wang, J.; Song, Y.; Gao, W. Comparative analysis of thermal stability and electrochemical performance of NaNi1/3Fe1/3Mn1/3O2 cathode in different electrolytes for sodium ion batteries. J. Power Sources 2024, 594, 234008. [Google Scholar] [CrossRef]
- Zakharkin, M.V.; Drozhzhin, O.A.; Ryazantsev, S.V.; Chernyshov, D.; Kirsanova, M.A.; Mikheev, I.V.; Pazhetnov, E.M.; Antipov, E.V.; Stevenson, K.J. Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0 ≤ x ≤ 1) cathodes for Na-ion batteries. J. Power Sources 2020, 470, 228231. [Google Scholar] [CrossRef]
- Burova, D.; Shakhova, I.; Morozova, P.; Iarchuk, A.; Drozhzhin, O.A.; Rozova, M.G.; Praneetha, S.; Murugan, V.; Tarascon, J.M.; Abakumov, A.M. The Rapid Microwave-Assisted Hydrothermal Synthesis of NASICON-Structured Na3V2O2: X(PO4)2F3-2 x (0 < x ≤ 1) Cathode Materials for Na-Ion Batteries. RSC Adv. 2019, 9, 19429–19440. [Google Scholar] [CrossRef]
- Drozhzhin, O.A.; Tertov, I.V.; Alekseeva, A.M.; Aksyonov, D.A.; Stevenson, K.J.; Abakumov, A.M.; Antipov, E.V. β-NaVP2O7 as a Superior Electrode Material for Na-Ion Batteries. Chem. Mater. 2019, 31, 7463–7469. [Google Scholar] [CrossRef]
- Bobyleva, Z.V.; Drozhzhin, O.A.; Alekseeva, A.M.; Dosaev, K.A.; Peters, G.S.; Lakienko, G.P.; Perfilyeva, T.I.; Sobolev, N.A.; Maslakov, K.I.; Savilov, S.V.; et al. Caramelization as a Key Stage for the Preparation of Monolithic Hard Carbon with Advanced Performance in Sodium-Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 181–190. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C.H.; Tateyama, Y. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Lu, L.; Wang, L.; Ohma, A.; Ren, D.; Feng, X.; Li, Y.; Li, Y.; Ootani, I.; Han, X.; et al. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 2020, 11, 5100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Inoishi, A.; Okada, S. Thermal risk evaluation of concentrated electrolytes for Li-ion batteries. J. Power Sources Adv. 2021, 12, 100079. [Google Scholar] [CrossRef]
- Pablos, C.; Olchowka, J.; Petit, E.; Minart, G.; Duttine, M.; Weill, F.; Masquelier, C.; Carlier, D.; Croguennec, L. Thermal Stability of Na3–xV2(PO4)2F3–yOy: Influence of F– for O2– Substitution and Degradation Mechanisms. Chem. Mater. 2023, 35, 4078–4088. [Google Scholar] [CrossRef]
- Gauthier, M.; Carney, T.J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D.P.; Lux, S.F.; Paschos, O.; Bauer, C.; et al. Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. J. Phys. Chem. Lett. 2015, 6, 4653–4672. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Jia, G.; Yang, H.; Wang, M. Recent advances for SEI of hard carbon anode in sodium-ion batteries: A mini review. Front. Chem. 2022, 10, 986541. [Google Scholar] [CrossRef] [PubMed]
- Daboss, S.; Philipp, T.; Palanisamy, K.; Flowers, J.; Stein, H.S.; Kranz, C. Characterization of the solid/electrolyte interphase at hard carbon anodes via scanning (electrochemical) probe microscopy. Electrochim. Acta 2023, 453, 142345. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Parimalam, B.S.; Nguyen, C.C.; Wang, G.; Lucht, B.L. Investigation of the solid electrolyte interphase on hard carbon electrode for sodium ion batteries. J. Electroanal. Chem. 2017, 799, 181–186. [Google Scholar] [CrossRef]
- Joachin, H.; Kaun, T.D.; Zaghib, K.; Prakash, J. Electrochemical and Thermal Studies of Carbon-Coated LiFePO4 Cathode. J. Electrochem. Soc. 2009, 156, A401–A406. [Google Scholar] [CrossRef]
- Yamada, A.; Chung, S.C.; Hinokuma, K. Optimized LiFePO4 for Lithium Battery Cathodes. J. Electrochem. Soc. 2001, 148, A224–A229. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Yao, X.; Chen, C. Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc. 2006, 153, A329–A333. [Google Scholar] [CrossRef]
Electrolyte | Onset Temperature, °C | Peak Temperature, °C | Enthalpy, J·g−1 |
---|---|---|---|
1M NaPF6 in EC:DEC | 274 | 290 | 268 |
2M NaPF6 in EC:DEC | 258 | 270 | 281 |
3M NaPF6 in EC:DEC | 257 | 267 | 246 |
1M NaPF6 in PC | 301 | 307 | 476 |
1M NaPF6 in PC:EC | 279 | 295 | 456 |
1M NaClO4 in PC | 279 | 302 | 629 |
Initial Sample | Onset Temperature, °C | Peak Temperature, °C | Enthalpy, Dry *, J·g−1 | Enthalpy, Soaked, J·g−1 | Main Crystalline Phases by Ex Situ PXRD |
---|---|---|---|---|---|
Na3V2(PO4)3 | 243 | 256, 270 | 78 | 503 | α–NaVP2O7 |
Na3(VO)2(PO4)2F | 170 | 188, 229, 391 | 111 | 460 | Na5V3O3F11 |
β–NaVP2O7 | 150 | 175, 247 | – | 364 | α–NaVP2O7 |
Hard carbon | 85 | 114, 238 | 610 | 1205 | NaF |
Electrolyte (1M NaPF6 in EC:DEC) | 274 | 290 | 268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samigullin, R.R.; Bobyleva, Z.V.; Zakharkin, M.V.; Zharikova, E.V.; Rozova, M.G.; Drozhzhin, O.A.; Antipov, E.V. On the Thermal Stability of Selected Electrode Materials and Electrolytes for Na-Ion Batteries. Energies 2024, 17, 3970. https://doi.org/10.3390/en17163970
Samigullin RR, Bobyleva ZV, Zakharkin MV, Zharikova EV, Rozova MG, Drozhzhin OA, Antipov EV. On the Thermal Stability of Selected Electrode Materials and Electrolytes for Na-Ion Batteries. Energies. 2024; 17(16):3970. https://doi.org/10.3390/en17163970
Chicago/Turabian StyleSamigullin, Ruslan R., Zoya V. Bobyleva, Maxim V. Zakharkin, Emiliya V. Zharikova, Marina G. Rozova, Oleg A. Drozhzhin, and Evgeny V. Antipov. 2024. "On the Thermal Stability of Selected Electrode Materials and Electrolytes for Na-Ion Batteries" Energies 17, no. 16: 3970. https://doi.org/10.3390/en17163970
APA StyleSamigullin, R. R., Bobyleva, Z. V., Zakharkin, M. V., Zharikova, E. V., Rozova, M. G., Drozhzhin, O. A., & Antipov, E. V. (2024). On the Thermal Stability of Selected Electrode Materials and Electrolytes for Na-Ion Batteries. Energies, 17(16), 3970. https://doi.org/10.3390/en17163970