Electromagnetic–Structural Finite Element Analysis of Copper and Aluminum Windings in Power Transformers under Short-Circuit Conditions
Abstract
:1. Introduction
2. Electromagnetic Forces
- : Radial force per unit length (tons/m);
- : Total radial force (tons);
- NI: Ampère-turn (A);
- h: Winding height (m);
- : Average winding diameter (m).
3. Mechanical Stresses and Strains
3.1. Copper and Aluminum Properties
3.2. Axial Stresses
- : Axial force per length unit (N/m);
- L: Distance between the radial spacers (m);
- : Number of axial conductors;
- : Axial dimension of the conductor (m);
- : Number of radial conductors;
- : Radial dimension of the conductor (m);
3.3. Radial Stresses
4. Finite Element Simulation
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medeiros, L.H.; Maschio, G.; Oliveira, M.M.; Kaminski, A.M., Jr.; Bueno, D.M.; Bender, V.C.; Marchesan, T.B. Finite element analysis for calculation of total and distributed electromagnetic forces on power transformers windings arrangements. Electr. Eng. 2024, 106, 931–940. [Google Scholar] [CrossRef]
- Ashkezari, A.D.; Ma, H.; Saha, T.K.; Ekanayake, C. Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 965–973. [Google Scholar] [CrossRef]
- Jahromi, A.; Piercy, R.; Cress, S.; Service, J.; Fan, W. An approach to power transformer asset management using health index. IEEE Electr. Insul. Mag. 2009, 25, 20–34. [Google Scholar] [CrossRef]
- Luiz, M.C. Avaliação dos Impactos da Geração Distribuída para Proteção do Sistema Elétrico. Master’s Thesis, UFMG, Belo Horizonte, Brazil, 2012. [Google Scholar]
- Group du Travail. 12.05 Cigre. Enquête Internationale sur les Défaillances en Service des Transformateurs de Grande Puissance. Electra 1983, 88, 21–48. [Google Scholar]
- Kulkarni, S.V.; Khaparde, S.A. Transformer Engineering: Design and Practice. In Transformer Engineering: Design and Practice; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Araujo, J.; Costa, E.; Andrade, A.; Germano, T.; Ferreira, T. Methodology to Evaluate the Electromechanical Forces on Conductive Materials in Transformers Windings using the Von Mises and Fatigue Criteria. IEEE Trans. Power Deliv. 2016, 31, 2206–2214. [Google Scholar] [CrossRef]
- Barros, R.; Costa, E.; Araujo, J.; Andrade, F.; Ferreira, T. Contribution of inrush current to mechanical failure of power transformers windings. Inst. Eng. Technol. 2019, 4, 300–307. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, B.; Xu, W.; Wang, S.; Wang, G.; Huangfu, Y.; Zhang, J. Dynamic Deformation Analysis of Power Transformer Windings in Short-Circuit Fault by FEM. IEEE Trans. Appl. Supercond. 2014, 24, 1–4. [Google Scholar] [CrossRef]
- Silva, N.H.G. Avaliação da Operação da Proteção Diferencial em Transformadores de Potência; Centro Federal de Educação Tecnológica de Minas Gerais: Belo Horizonte, Brazil, 2015. [Google Scholar]
- Medeiros, L.H.; Maschio, G.; Oliveira, M.M.; Kaminski, A.M.; Bueno, D.M.; Bender, V.C.; Marchesan, T.B. Finite Element Analysis applied to Electromagnetic Forces calculation on Power Transformers. In Proceedings of the SEPOC, Online, 15 May 2021. [Google Scholar]
- Li, Y.; Xu, Q.; Lu, Y. Electromagnetic Force Analysis of a Power Transformer Under the Short-Circuit Condition. IEEE Trans. Appl. Supercond. 2021, 31, 1–3. [Google Scholar] [CrossRef]
- Bakshi, A.; Kulkarni, S.V. Analysis of Buckling Strength of Inner Windings in Transformers Under Radial Short-Circuit Forces. IEEE Trans. Power Deliv. 2013, 29, 241–245. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, N.; Ma, S.; Wang, H. Buckling Strength Analysis of Transformer Windings Based on Electromagnetic Thermal Structural Coupling Method. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Geißler, D.; Leibfried, T. Short-Circuit Strength of Power Transformer Windings-Verification of Tests by a Finite Element Analysis-Based Model. IEEE Trans. Power Deliv. 2017, 32, 1705–1712. [Google Scholar]
- Ho, S.L.; Li, Y.; Wong, H.C.; Wang, S.H.; Tang, R.Y. Numerical simulation of transient force and eddy current loss in a 720-MVA power transformer. IEEE Trans. Magn. 2004, 40, 687–690. [Google Scholar] [CrossRef]
- Zhang, C.; Ge, W.; Xie, Y.; Li, Y. Comprehensive Analysis of Winding Electromagnetic Force and Deformation During No-Load Closing and Short-Circuiting of Power Transformers. IEEE Access 2021, 9, 73335–73345. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Zhang, N.; Yuan, D.; Qiu, H. Calculation and Analysis of Mechanical Characteristics of Transformer Windings Under Short-Circuit Condition. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Fonseca, W.S.; Lima, D.S.; Lima, A.K.F.; Nunes, M.V.A.; Bezerra, U.H.; Soeiro, N.S. Analysis of Structural Behavior of Transformer’s Winding Under Inrush Current Conditions. IEEE Trans. Ind. Appl. 2018, 54, 2285–2294. [Google Scholar] [CrossRef]
- Lee, J.Y.; Ahn, H.M.; Kim, J.K.; Oh, Y.H.; Hahn, S.C. Finite element analysis of short circuit electromagnetic force in power transformer. Int. Conf. Electr. Mach. Syst. 2009, 47, 1267–1272. [Google Scholar]
- Guimarães, R.; Delaiba, A.C.; Oliveira, J.C.; Saraiva, E.; Rosentino, A.J.J.P. Electromechanical Forces in Transformers Caused by Inrush Currents: An Analytical, Numerical and Experimental Approach. J. Control Autom. Electr. Syst. 2013, 24, 863–872. [Google Scholar] [CrossRef]
- Ahn, H.; Oh, Y.; Kim, J.; Song, J.; Hahn, S. Experimental Verification and Finite Element Analysis of Short-Circuit Electromagnetic Force for Dry-Type Transformer. IEEE Trans. Magn. 2012, 48, 819–822. [Google Scholar] [CrossRef]
- Cornelius, R.G.; Lenhard, B.; Medeiros, H.; Bender, V.C.; Marchesan, T.B.; Carraro, R. Electromagnetic Forces and Mechanical Stresses in Power Transformers: An Analysis Based on Computer Aided Engineering. In Proceedings of the SEPOC, Online, 12 November 2022. [Google Scholar]
- Waters, M. The Short-Circuit Strength of Power Transformers; Macdonald & Co.: London, UK, 1966. [Google Scholar]
- Zhang, H.; Wang, S.; Wang, S. Cumulative Deformation Analysis of Transformer Winding under Short-Circuit Fault Using 3-D FEM. In Proceedings of the IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai, China, 20–23 November 2015; pp. 370–371. [Google Scholar]
- IEC 60076-5; Power Transformers—Part 5: Ability to Withstand Short Circuit. International Electrotechnical Commission: Geneva, Switzerland, 2006.
Description | Value |
---|---|
Core diameter | = 212.725 mm |
Inner winding diameter | = 262.350 mm |
Transformer average diameter | = 307.975 mm |
Outer winding diameter | = 357.600 mm |
Winding thickness | = = 28.575 mm |
Duct between windings | = 19.050 mm |
Inner winding height | = 812.800 mm |
Outer winding height | = 772.160 mm |
Core window height | = 889.000 mm |
Core height | = 1270 mm |
Distance between the centers of the core columns | = 412.750 |
Radial dimension of bare conductor | = 8.255 mm |
Radial dimension of insulated conductor | = 1.778 mm |
Axial dimension of bare conductor | = 8.763 mm |
Axial dimension of insulated conductor | = 2.286 mm |
Disc number | 60 |
Number of turns per disc | 12 |
Rated voltage | 5.5 kV/5.5 kV |
Rated current per phase | 25.4 A |
Rated power per phase | 140 kVA |
Short-circuit current per phase | 1527 A |
Variable | Waters (kN) | FEM (kN) | Difference (%) |
---|---|---|---|
HV Axial Force | −204.822 | −199.901 | 2.40 |
HV Radial Force | 1063.000 | 988.707 | 6.99 |
Variable | Analytical (MPa) | FEM (kN) | Difference (%) |
---|---|---|---|
Axial Stress | 13.898 | 13.798 | 0.72 |
Radial Stress | 15.908 | 16.368 | −2.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornelius, R.G.; Lenhard, B.L.; Medeiros, L.H.; Fontoura, H.C.; Correa, C.H.; Carraro, R.; Beltrame, R.C.; dos Santos, T.; Marchesan, T.B.; Bender, V.C. Electromagnetic–Structural Finite Element Analysis of Copper and Aluminum Windings in Power Transformers under Short-Circuit Conditions. Energies 2024, 17, 3994. https://doi.org/10.3390/en17163994
Cornelius RG, Lenhard BL, Medeiros LH, Fontoura HC, Correa CH, Carraro R, Beltrame RC, dos Santos T, Marchesan TB, Bender VC. Electromagnetic–Structural Finite Element Analysis of Copper and Aluminum Windings in Power Transformers under Short-Circuit Conditions. Energies. 2024; 17(16):3994. https://doi.org/10.3390/en17163994
Chicago/Turabian StyleCornelius, Richard Gonçalves, Betina Luísa Lenhard, Leonardo Hautrive Medeiros, Herber Cuadro Fontoura, Cristian Hans Correa, Rodinei Carraro, Rafael Concatto Beltrame, Tiago dos Santos, Tiago Bandeira Marchesan, and Vitor Cristiano Bender. 2024. "Electromagnetic–Structural Finite Element Analysis of Copper and Aluminum Windings in Power Transformers under Short-Circuit Conditions" Energies 17, no. 16: 3994. https://doi.org/10.3390/en17163994
APA StyleCornelius, R. G., Lenhard, B. L., Medeiros, L. H., Fontoura, H. C., Correa, C. H., Carraro, R., Beltrame, R. C., dos Santos, T., Marchesan, T. B., & Bender, V. C. (2024). Electromagnetic–Structural Finite Element Analysis of Copper and Aluminum Windings in Power Transformers under Short-Circuit Conditions. Energies, 17(16), 3994. https://doi.org/10.3390/en17163994