New Zero-Carbon Wooden Building Concepts: A Review of Selected Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage 1—Literature Review
- Sustainable Material Sourcing:
- ensuring that wood is sourced from sustainably managed forests that practice responsible harvesting;
- local sourcing—minimizing transportation emissions.
- Carbon Sequestration:
- leveraging the natural carbon sequestration properties of wood, which stores carbon dioxide absorbed during the tree’s growth;
- innovative wood products that offer structural strength and carbon storage benefits.
- Energy Efficiency:
- implementing passive design strategies to reduce energy consumption;
- integrating renewable energy sources;
- using energy-efficient lighting, heating, ventilation, and air conditioning systems.
- Life Cycle Assessment:
- a comprehensive LCA to evaluate the building’s CF from material extraction through to demolition or recycling;
- designing for disassembly and recycling to ensure materials can be reused, reducing future CO2 emissions.
- Construction Practices:
- utilizing low-carbon construction methods and technologies to minimize emissions during the building phase;
- the review employed the following academic search engines: Scopus, Google Scholar, and ResearchGate, using the following keywords:
- sustainable practices and material sourcing;
- energy efficiency and renewable energy;
- building life cycle assessment and environmental impact;
- innovative modular and prefabricated wood constructions;
- carbon sequestration in wood architecture.
2.2. Stage 2—Building Review
3. Results
3.1. Stage 1: Literature Review
3.1.1. Sustainable Material Sourcing
3.1.2. Carbon Sequestration
3.1.3. Energy Efficiency
3.1.4. Life Cycle Assessment
3.1.5. Innovative Construction Practices
3.2. Stage 2: Building Review
4. Discussion
5. Conclusions
- Sustainable Material Sourcing: Sustainable sourcing is foundational for zero-carbon wooden buildings. This involves using wood from responsibly managed forests, as certified by organizations like the FSC or PEFC. Local wood sourcing reduces transportation-related emissions, which is crucial for minimizing the building’s CF. Additionally, the use of bio-based and composite materials, such as Cross Laminated Timber (CLT) or other advanced wooden products, enhances carbon sequestration;
- Carbon Sequestration: Maximizing wood’s role as both a structural and finishing material is vital due to its ecological benefits. Wood not only helps in reducing CO2 emissions but also serves as a long-term carbon sink;
- Energy Efficiency: Implementing passive design strategies, including natural ventilation, effective insulation, and optimal building orientation, significantly lower energy demand. Incorporating renewable energy sources, such as solar panels and geothermal systems, meets the building’s energy needs and, combined with energy-efficient heating and ventilation systems, further reduces CO2 emissions;
- LCA: Conducting a thorough ecological assessment throughout all stages of a building’s life (from construction to demolition) is essential to understanding its total carbon footprint. Designing for disassembly and material recycling further minimizes future CO2 emissions;
- Innovative Construction Practices: Employing low-carbon construction technologies, such as prefabrication and modular construction, reduces waste and construction time. These innovative methods help minimize emissions during the construction phase, which is critical for achieving zero CO2 emissions.
- Use of Bio-Based Materials: Further research on bio-based materials like bamboo and wooden composites, which could be used in wooden construction and offer carbon sequestration benefits;
- Long-Term Carbon Sequestration Effects: Investigation into the long-term effects of carbon sequestration in wooden buildings, including their impact on the LCA and end-of-life scenarios such as recycling or disposal;
- Energy Efficiency in Various Climates: Studies to understand how different climatic conditions influence energy demand and design strategies for wooden buildings;
- Social and Regulatory Barriers: Identifying and addressing social and regulatory barriers to adopting ZCBs, which will aid in developing effective strategies to promote sustainable construction;
- Stakeholder Knowledge and Awareness: Assessing the knowledge and awareness levels among construction industry stakeholders about zero-carbon buildings and determining effective educational and training methods;
- Cost–Benefit Analysis: Evaluating the costs and benefits associated with constructing and operating ZCBs to better understand their economic feasibility compared to traditional construction methods.
Author Contributions
Funding
Conflicts of Interest
References
- Branchi, B.A.; Ferreira, D.H.L.; Barbosa, A.M.; Ferreira, A.L. Footprints’ Effectiveness as Decision-Making Tools for Promoting Sustainability. In Proceedings of the 8th Brazilian Technology Symposium (BTSym’22); Iano, Y., Saotome, O., Kemper Vásquez, G.L., De Moraes Gomes Rosa, M.T., Arthur, R., Gomes De Oliveira, G., Eds.; Smart Innovation, Systems and Technologies; Springer International Publishing: Cham, Switzerland, 2023; Volume 353, pp. 472–478. ISBN 978-3-031-31006-5. [Google Scholar]
- Wackernagel, M.; Lin, D.; Hanscom, L.; Galli, A.; Iha, K. Ecological Footprint. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 270–282. ISBN 978-0-444-64130-4. [Google Scholar]
- Dai, J.; Ouyang, Y.; Hou, J.; Cai, L. Long-Time Series Assessment of the Sustainable Development of Xiamen City in China Based on Ecological Footprint Calculations. Ecol. Indic. 2023, 148, 110130. [Google Scholar] [CrossRef]
- Fang, K.; Heijungs, R.; De Snoo, G.R. Theoretical Exploration for the Combination of the Ecological, Energy, Carbon, and Water Footprints: Overview of a Footprint Family. Ecol. Indic. 2014, 36, 508–518. [Google Scholar] [CrossRef]
- Ridhosari, B.; Rahman, A. Carbon Footprint Assessment at Universitas Pertamina from the Scope of Electricity, Transportation, and Waste Generation: Toward a Green Campus and Promotion of Environmental Sustainability. J. Clean. Prod. 2020, 246, 119172. [Google Scholar] [CrossRef]
- Ching, S.L.; Sari, K.A.M.; Muslim, R. Analysis of Carbon Footprint of Transportation, Food, and Manufactured Product in Industrial Manufacture. AIP Conf. Proc. 2024, 2991, 020063. [Google Scholar]
- Feder, T. Scientists Take Steps in the Lab toward Climate Sustainability. Phys. Today 2023, 76, 20–23. [Google Scholar] [CrossRef]
- Groll, M. Can Climate Change Be Avoided? Vision of a Hydrogen-Electricity Energy Economy. Energy 2023, 264, 126029. [Google Scholar] [CrossRef]
- Meleti, V.; Delitheou, V. Smart Cities and the Challenge of Cities’ Energy Autonomy. In Handbook of Smart Cities; Augusto, J.C., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 563–592. ISBN 978-3-030-69697-9. [Google Scholar]
- Nidhin, B.K.S.N.; Domingo, N.; Bui, T.T.P.; Wilkinson, S. Construction Stakeholders’ Knowledge on Zero Carbon Initiatives in New Zealand. Int. J. Build. Pathol. Adapt. 2023. [Google Scholar] [CrossRef]
- Talvitie, I.; Amiri, A.; Junnila, S. Climate Benefits of Wooden Construction in Urban Context. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 022048. [Google Scholar] [CrossRef]
- Andersen, C.E.; Rasmussen, F.N.; Habert, G.; Birgisdóttir, H. Embodied GHG Emissions of Wooden Buildings—Challenges of Biogenic Carbon Accounting in Current LCA Methods. Front. Built Environ. 2021, 7, 729096. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chiang, W.-H.; Weng, Y.-S.; Wu, H.-P. Assessing the Anthropogenic Carbon Emission of Wooden Construction: An LCA Study. Build. Res. Inf. 2023, 51, 138–157. [Google Scholar] [CrossRef]
- Alvarez, D.; Kouda, R.; Ho, A.D.; Kubota, T. Scenario Analysis of Embodied Energy and CO2 Emissions for Multistory Apartments in Indonesia. E3S Web Conf. 2023, 396, 04015. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2002. [Google Scholar]
- Lou, H.-L.; Hsieh, S.-H. Towards Zero: A Review on Strategies in Achieving Net-Zero-Energy and Net-Zero-Carbon Buildings. Sustainability 2024, 16, 4735. [Google Scholar] [CrossRef]
- Besana, D.; Tirelli, D. Reuse and Retrofitting Strategies for a Net Zero Carbon Building in Milan: An Analytic Evaluation. Sustainability 2022, 14, 16115. [Google Scholar] [CrossRef]
- Ding, Y.; Pang, Z.; Lan, K.; Yao, Y.; Panzarasa, G.; Xu, L.; Lo Ricco, M.; Rammer, D.R.; Zhu, J.Y.; Hu, M.; et al. Emerging Engineered Wood for Building Applications. Chem. Rev. 2023, 123, 1843–1888. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.E.; Hoxha, E.; Nygaard Rasmussen, F.; Grau Sørensen, C.; Birgisdóttir, H. Evaluating the Environmental Performance of 45 Real-Life Wooden Buildings: A Comprehensive Analysis of Low-Impact Construction Practices. Build. Environ. 2024, 250, 111201. [Google Scholar] [CrossRef]
- Hu, M. Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture. Climate 2023, 11, 165. [Google Scholar] [CrossRef]
- El-Shorbagy, A.-M. Wood Shapes the Future of Sustainable Architecture. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020; pp. 1–6. [Google Scholar]
- Michálková, D.; Ďurica, P. Natural Materials in Building Construction—Annual Evaluation. APP 2022, 38, 222–227. [Google Scholar] [CrossRef]
- Carletti, C.; Piselli, C.; Sciurpi, F. Are Design Strategies for High-Performance Buildings Really Effective? Results from One Year of Monitoring of Indoor Microclimate and Envelope Performance of a Newly Built nZEB House in Central Italy. Energies 2024, 17, 741. [Google Scholar] [CrossRef]
- Starzyk, A.; Donderewicz, M.; Rybak-Niedziółka, K.; Marchwiński, J.; Grochulska-Salak, M.; Łacek, P.; Mazur, Ł.; Voronkova, I.; Vietrova, P. The Evolution of Multi-Family Housing Development Standards in the Climate Crisis: A Comparative Analysis of Selected Issues. Buildings 2023, 13, 1985. [Google Scholar] [CrossRef]
- Amiri, A.; Ottelin, J.; Sorvari, J.; Junnila, S. Cities as Carbon Sinks—Classification of Wooden Buildings. Environ. Res. Lett. 2020, 15, 094076. [Google Scholar] [CrossRef]
- Avellan, K.C.; Belopotocanova, E.; Ghobakhlou, M. Massive Wood Elements and Modular Housing Technology as Innovative Building Concept of Sustainable Urban Planning. In Proceedings of the IABSE Conference–Engineering the Developing World, Kuala Lumpur, Malaysia, 25–27 April 2018; pp. 1085–1090. [Google Scholar]
- Arumägi, E.; Kalamees, T. Cost and Energy Reduction of a New nZEB Wooden Building. Energies 2020, 13, 3570. [Google Scholar] [CrossRef]
- Moschetti, R.; Brattebø, H.; Sparrevik, M. Exploring the Pathway from Zero-Energy to Zero-Emission Building Solutions: A Case Study of a Norwegian Office Building. Energy Build. 2019, 188–189, 84–97. [Google Scholar] [CrossRef]
- Parkin, A.; Herrera, M.; Coley, D.A. Energy or Carbon? Exploring the Relative Size of Universal Zero Carbon and Zero Energy Design Spaces. Build. Serv. Eng. Res. Technol. 2019, 40, 319–339. [Google Scholar] [CrossRef]
- Net Zero Energy Buildings (NZEB); Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-812461-1.
- Sultanuzzaman, M.R.; Yahya, F.; Lee, C.-C. Exploring the Complex Interplay of Green Finance, Business Cycles, and Energy Development. Energy 2024, 306, 132479. [Google Scholar] [CrossRef]
- Mulya, K.S.; Ng, W.L.; Biró, K.; Ho, W.S.; Wong, K.Y.; Woon, K.S. Decarbonizing the High-Rise Office Building: A Life Cycle Carbon Assessment to Green Building Rating Systems in a Tropical Country. Build. Environ. 2024, 255, 111437. [Google Scholar] [CrossRef]
- Ferreira, A.; Pinheiro, M.D.; Brito, J.D.; Mateus, R. A Critical Analysis of LEED, BREEAM and DGNB as Sustainability Assessment Methods for Retail Buildings. J. Build. Eng. 2023, 66, 105825. [Google Scholar] [CrossRef]
- BREEAM International New Construction. Version 6.0 Technical Manual—SD250; BRE Group: Watford, UK, 2021.
- Leed V5, Rating System Building Design and Construction: New Construction First Public Comment Draft; U.S. Green Building Council: Washington, DC, USA, 2024.
- DGNB Criteria Set New Construction Buildings, Version 2023; DGNB: Stuttgart, Germany, 2023.
- European Commission. Directorate General for Climate Action. Going Climate-Neutral by 2050: A Strategic Long Term Vision for a Prosperous, Modern, Competitive and Climate Neutral EU Economy; Publications Office: Luxembourg, 2019. [Google Scholar]
- DIRECTIVE 2010/31/EU of the European Parliament and of the Council on the Energy Performance of Buildings. Available online: https://eur-lex.europa.eu/eli/dir/2010/31/oj (accessed on 10 June 2024).
- Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency (Text with EEA Relevance); EUR-Lex. 2018. Available online: http://data.europa.eu/eli/dir/2018/844/oj (accessed on 10 June 2024).
- Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the Energy Performance of Buildings (Recast) (Text with EEA Relevance); EUR-Lex. 2024. Available online: http://data.europa.eu/eli/dir/2024/1275/oj (accessed on 10 June 2024).
- Abed, J.; Rayburg, S.; Rodwell, J.; Neave, M. A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures. Sustainability 2022, 14, 5570. [Google Scholar] [CrossRef]
- Ahmed, A.E.; Suwaed, M.S.; Shakir, A.M.; Ghareeb, A. The Impact of Window Orientation, Glazing, and Window-to-Wall Ratio on the Heating and Cooling Energy of an Office Building: The Case of Hot and Semi-Arid Climate. J. Eng. Res. 2023, S230718772300295X. [Google Scholar] [CrossRef]
- Arlet, J.L. Innovative Carpentry and Hybrid Joints in Contemporary Wooden Architecture. Arts 2021, 10, 64. [Google Scholar] [CrossRef]
- Bai, X.; Dawson, R.J.; Ürge-Vorsatz, D.; Delgado, G.C.; Salisu Barau, A.; Dhakal, S.; Dodman, D.; Leonardsen, L.; Masson-Delmotte, V.; Roberts, D.C.; et al. Six Research Priorities for Cities and Climate Change. Nature 2018, 555, 23–25. [Google Scholar] [CrossRef]
- Barclay, S.; Salem, S. Behaviour of Cross-Laminated Timber Slabs Subjected to Fire—A State-Of-The-Art Review. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022; Gupta, R., Sun, M., Brzev, S., Alam, M.S., Ng, K.T.W., Li, J., El Damatty, A., Lim, C., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Cham, Switzerland, 2024; Volume 367, pp. 183–198. ISBN 978-3-031-35470-0. [Google Scholar]
- Blay-Armah, A.; Mohebbi, G.; Bahadori-Jahromi, A.; Fu, C.; Amoako-Attah, J.; Barthorpe, M. Evaluation of Embodied Carbon Emissions in UK Supermarket Constructions: A Study on Steel, Brick, and Timber Frameworks with Consideration of End-of-Life Processes. Sustainability 2023, 15, 14978. [Google Scholar] [CrossRef]
- Bøe, A.S.; Friquin, K.L.; Brandon, D.; Steen-Hansen, A.; Ertesvåg, I.S. Fire Spread in a Large Compartment with Exposed Cross-Laminated Timber and Open Ventilation Conditions: #FRIC-02—Exposed Wall and Ceiling. Fire Saf. J. 2023, 141, 103986. [Google Scholar] [CrossRef]
- Bougiatioti, F.; Alexandrou, E.; Katsaros, M. Sustainable Refurbishment of Existing, Typical Single-Family Residential Buildings in Greece. Int. J. Build. Pathol. Adapt. 2023. ahead of print. [Google Scholar] [CrossRef]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef]
- Brogi, S.; Menichini, T. Do the ISO 14001 Environmental Management Systems Influence Eco-Innovation Performance? Evidences from the EU Context. Eur. J. Sustain. Dev. 2019, 8, 292. [Google Scholar] [CrossRef]
- BuHamdan, S.; Duncheva, T.; Alwisy, A. Developing a BIM and Simulation-Based Hazard Assessment and Visualization Framework for CLT Construction Design. J. Constr. Eng. Manag. 2021, 147, 04021003. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life Cycle Assessment (LCA) and Life Cycle Energy Analysis (LCEA) of Buildings and the Building Sector: A Review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Lobos Calquin, D.; Mata, R.; Correa, C.; Núñez, E.; Bustamante, G.; Caicedo, N.; Blanco Fernandez, D.; Díaz, M.A.; Pulgar—Rubilar, P.; Roa, L. Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach. Buildings 2024, 14, 584. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, H.; Bergman, R.; Liang, S. Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings. Sustainability 2020, 12, 4708. [Google Scholar] [CrossRef]
- Chen, Q. Sustainable Future: Development and Potential of Modern Timber Structures. Highlights Sci. Eng. Technol. 2023, 75, 86–93. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a Global Carbon Sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Defloor, B.; Bleys, B.; Verhofstadt, E.; Van Ootegem, L. How to Reduce Individuals’ Ecological Footprint without Harming Their Well-Being: An Application to Belgium. Sustainability 2022, 14, 5232. [Google Scholar] [CrossRef]
- Parthiban Devarajan; Alicja Kozarzewska; Dhanasingh Sivalinga Vijayan; Sanjay Kumar; Sivasuriyan, A. Wiktor Sitek Transformational Green Sustainable Concepts in the Field of Infrastructure. Acta. Sci. Pol. Archit. 2024, 23, 56–78. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.; Xue, J.; Shao, J.; Guo, H. Assessment of Summer Overheating in Concrete Block and Cross Laminated Timber Office Buildings in the Severe Cold and Cold Regions of China. Buildings 2021, 11, 330. [Google Scholar] [CrossRef]
- Duan, Z.; Huang, Q.; Zhang, Q. Life Cycle Assessment of Mass Timber Construction: A Review. Build. Environ. 2022, 221, 109320. [Google Scholar] [CrossRef]
- Dzhurko, D.; Haacke, B.; Haberbosch, A.; Köhne, L.; König, N.; Lode, F.; Marx, A.; Mühlnickel, L.; Neunzig, N.; Niemann, A.; et al. Future Buildings as Carbon Sinks: Comparative Analysis of Timber-Based Building Typologies Regarding Their Carbon Emissions and Storage. Front. Built Environ. 2024, 10, 1330105. [Google Scholar] [CrossRef]
- Elaouzy, Y.; El Fadar, A. Impact of Key Bioclimatic Design Strategies on Buildings’ Performance in Dominant Climates Worldwide. Energy Sustain. Dev. 2022, 68, 532–549. [Google Scholar] [CrossRef]
- Elginoz, N.; Van Blokland, J.; Safarian, S.; Movahedisaveji, Z.; Yadeta Wedajo, D.; Adamopoulos, S. Wood Waste Recycling in Sweden—Industrial, Environmental, Social, and Economic Challenges and Benefits. Sustainability 2024, 16, 5933. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of The Regions A New European Innovation Agenda; European Commission: Brussels, Belgium, 2022.
- Evans, P.D.; Matsunaga, H.; Preston, A.F.; Kewish, C.M. Wood Protection for Carbon Sequestration—A Review of Existing Approaches and Future Directions. Curr For. Rep 2022, 8, 181–198. [Google Scholar] [CrossRef]
- Azimi Fereidani, N.; Rodrigues, E.; Gaspar, A.R. A Review of the Energy Implications of Passive Building Design and Active Measures under Climate Change in the Middle East. J. Clean. Prod. 2021, 305, 127152. [Google Scholar] [CrossRef]
- Furhana Shereen, M.; Vishal Malolan, V.; Devanesan, M.G.; Sudalai, S.; Arumugam, A. A Critical Analysis of Renewable and Sustainable Energy Technologies: Energy Concept and Conversion Techniques. In Recent Advances in Recycling Engineering; Siddiqui, N.A., Baxtiyarovich, A.S., Nandan, A., Mondal, P., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Singapore, 2023; Volume 275, pp. 117–137. ISBN 978-981-19393-0-3. [Google Scholar]
- Gutierrez Garzon, A.R.; Bettinger, P.; Siry, J.; Abrams, J.; Cieszewski, C.; Boston, K.; Mei, B.; Zengin, H.; Yeşil, A. A Comparative Analysis of Five Forest Certification Programs. Forests 2020, 11, 863. [Google Scholar] [CrossRef]
- Ghobadi, M.; Sepasgozar, S.M.E. Circular Economy Strategies in Modern Timber Construction as a Potential Response to Climate Change. J. Build. Eng. 2023, 77, 107229. [Google Scholar] [CrossRef]
- Giridhar, B.N.; Pandey, K.K. Wood Modification for Wood Protection. In Science of Wood Degradation and its Protection; Sundararaj, R., Ed.; Springer: Singapore, 2022; pp. 647–663. ISBN 9789811687969. [Google Scholar]
- Grinham, J.; Fjeldheim, H.; Yan, B.; Helge, T.D.; Edwards, K.; Hegli, T.; Malkawi, A. Zero-Carbon Balance: The Case of HouseZero. Build. Environ. 2022, 207, 108511. [Google Scholar] [CrossRef]
- Hamida, A.; Zhang, D.; Ortiz, M.A.; Bluyssen, P.M. Indicators and Methods for Assessing Acoustical Preferences and Needs of Students in Educational Buildings: A Review. Appl. Acoust. 2023, 202, 109187. [Google Scholar] [CrossRef]
- Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P.C.; Singh, L.P. A Review on CO2 Capture and Sequestration in the Construction Industry: Emerging Approaches and Commercialised Technologies. J. CO2 Util. 2023, 67, 102292. [Google Scholar] [CrossRef]
- He, J.; Fu, L.; Hu, J.; Lv, Y.; Chen, S.; He, Z.; Miao, W. Optimization Analysis of Ultra-high-rise Steel Structure Construction Based on Carbon Emission. Eng. Rep. 2024, 6, e12833. [Google Scholar] [CrossRef]
- Himes, A.; Busby, G. Wood Buildings as a Climate Solution. Dev. Built Environ. 2020, 4, 100030. [Google Scholar] [CrossRef]
- Hoxha, E.; Passer, A.; Saade, M.R.M.; Trigaux, D.; Shuttleworth, A.; Pittau, F.; Allacker, K.; Habert, G. Biogenic Carbon in Buildings: A Critical Overview of LCA Methods. Build. Cities 2020, 1, 504–524. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, Y.; Zhang, S. The Possibility and Improvement Directions of Achieving the Paris Agreement Goals from the Perspective of Climate Policy. Sustainability 2024, 16, 4212. [Google Scholar] [CrossRef]
- Hurmekoski, E.; Seppälä, J.; Kilpeläinen, A.; Kunttu, J. Contribution of Wood-Based Products to Climate Change Mitigation. In Forest Bioeconomy and Climate Change; Hetemäki, L., Kangas, J., Peltola, H., Eds.; Managing Forest Ecosystems; Springer International Publishing: Cham, Swizterland, 2022; Volume 42, pp. 129–149. ISBN 978-3-030-99205-7. [Google Scholar]
- Ibrahim, B.S.; Soomro, D.M.; Sundarajoo, S.; Nordin, Z. Natural Lighting System Using Fiber Optics for Energy Efficiency. In Proceedings of the 2023 IEEE 8th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Bahrain, Bahrain, 25–27 October 2023; pp. 1–6. [Google Scholar]
- Kazemian, M.; Shafei, B. Carbon Sequestration and Storage in Concrete: A State-of-the-Art Review of Compositions, Methods, and Developments. J. CO2 Util. 2023, 70, 102443. [Google Scholar] [CrossRef]
- Keržič, E.; Humar, M. Studies on the Material Resistance and Moisture Dynamics of Wood after Artificial and Natural Weathering. Wood Mater. Sci. Eng. 2022, 17, 551–557. [Google Scholar] [CrossRef]
- Király, É.; Börcsök, Z.; Kocsis, Z.; Németh, G.; Polgár, A.; Borovics, A. Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests 2022, 13, 1809. [Google Scholar] [CrossRef]
- Koval, R.; Yemelyanenko, S.; Kuzyk, A.; Starodub, Y. Assessing the Risk of Material Damage of Building Construction of High-Rise Rooms Due to Fires and Emergencies. Constr. Technol. Archit. 2023, 9, 49–57. [Google Scholar]
- Leszczyszyn, E.; Heräjärvi, H.; Verkasalo, E.; Garcia-Jaca, J.; Araya-Letelier, G.; Lanvin, J.-D.; Bidzińska, G.; Augustyniak-Wysocka, D.; Kies, U.; Calvillo, A.; et al. The Future of Wood Construction: Opportunities and Barriers Based on Surveys in Europe and Chile. Sustainability 2022, 14, 4358. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhang, L.; Liang, X.; Xiao, B.; Tam, V.W.Y.; Lai, X.; Chen, Z. Advances in the Research of Building Energy Saving. Energy Build. 2022, 254, 111556. [Google Scholar] [CrossRef]
- Linkevičius, E.; Žemaitis, P.; Aleinikovas, M. Sustainability Impacts of Wood- and Concrete-Based Frame Buildings. Sustainability 2023, 15, 1560. [Google Scholar] [CrossRef]
- Lo, J.T.Y.; Kam, C. Innovation Performance Indicators for Architecture, Engineering and Construction Organization. Sustainability 2021, 13, 9038. [Google Scholar] [CrossRef]
- Lu, J.; Luo, X.; Cao, X. Research on Geometry Optimization of Park Office Buildings with the Goal of Zero Energy. Energy 2024, 306, 132179. [Google Scholar] [CrossRef]
- Michalak, H.; Michalak, K. Selected Aspects of Sustainable Construction—Contemporary Opportunities for the Use of Timber in High and High-Rise Buildings. Energies 2024, 17, 1961. [Google Scholar] [CrossRef]
- Mirashk-Daghiyan, M.; Dehghan-Touran-Poshti, A.; Shahcheragi, A.; Kaboli, M.H. The Effect of Surrounding Buildings’ Height and the Width of the Street on a Building’s Energy Consumption. Int. J. Energy Environ. Eng. 2022, 13, 207–217. [Google Scholar] [CrossRef]
- Motamedi, S.; Rousse, D.R.; Promis, G. The Evolution of Crop-Based Materials in the Built Environment: A Review of the Applications, Performance, and Challenges. Energies 2023, 16, 5252. [Google Scholar] [CrossRef]
- Mushtaha, E.; Salameh, T.; Kharrufa, S.; Mori, T.; Aldawoud, A.; Hamad, R.; Nemer, T. The Impact of Passive Design Strategies on Cooling Loads of Buildings in Temperate Climate. Case Stud. Therm. Eng. 2021, 28, 101588. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.M.; Ramseier, L.; Balouktsi, M.; Delem, L.; Foliente, G.; Francart, N.; Garcia-Martinez, A.; Hoxha, E.; Lützkendorf, T.; Nygaard Rasmussen, F.; et al. Carbon Footprint Assessment of a Wood Multi-Residential Building Considering Biogenic Carbon. J. Clean. Prod. 2023, 404, 136834. [Google Scholar] [CrossRef]
- Pasternack, R.; Wishnie, M.; Clarke, C.; Wang, Y.; Belair, E.; Marshall, S.; Gu, H.; Nepal, P.; Dolezal, F.; Lomax, G.; et al. What Is the Impact of Mass Timber Utilization on Climate and Forests? Sustainability 2022, 14, 758. [Google Scholar] [CrossRef]
- Pecio, M. Replacement Fire Protection Solutions for a Pick Tower Building—Case Study. Inżynieria Bezpieczeństwa Obiektów Antropog. 2024, 1, 23–34. [Google Scholar] [CrossRef]
- Pedreño-Rojas, M.A.; Porras-Amores, C.; Villoria-Sáez, P.; Morales-Conde, M.J.; Flores-Colen, I. Characteruniteization and Performance of Building Composites Made from Gypsum and Woody-Biomass Ash Waste: A Product Development and Application Study. Constr. Build. Mater. 2024, 419, 135435. [Google Scholar] [CrossRef]
- Phillips, R.; Troup, L.; Fannon, D.; Eckelman, M.J. Triple Bottom Line Sustainability Assessment of Window-to-Wall Ratio in US Office Buildings. Build. Environ. 2020, 182, 107057. [Google Scholar] [CrossRef]
- Pilli, R.; Alkama, R.; Cescatti, A.; Kurz, W.A.; Grassi, G. The European Forest Carbon Budget under Future Climate Conditions and Current Management Practices. Biogeosciences 2022, 19, 3263–3284. [Google Scholar] [CrossRef]
- Pomponi, F.; Hart, J.; Arehart, J.H.; D’Amico, B. Buildings as a Global Carbon Sink? A Reality Check on Feasibility Limits. One Earth 2020, 3, 157–161. [Google Scholar] [CrossRef]
- Porter, M.E.; Stern, S. Innovation: Location Matters. MITSloan Manag. Rev. 2001, 42, 28–36. [Google Scholar]
- Premrov, M.; Kozem Šilih, E. Numerical Analysis of the Racking Behaviour of Multi-Storey Timber-Framed Buildings Considering Load-Bearing Function of Double-Skin Façade Elements. Sustainability 2023, 15, 6379. [Google Scholar] [CrossRef]
- Anne-Hélène Prieur-Richard; Walsh, B.; Craig, M.; Megan, L.; Melamed, M.; Colbert, L.; Pathak, M.; Connors, S.; Xuemei, B.; Aliyu, B.; et al. Extended Version: Global Research and Action Agenda on Cities and Climate Change Science. In Proceedings of the Cities & Climate Change Science Conference, Edmonton, AB, Canada, 5–7 March 2018. [Google Scholar] [CrossRef]
- Prins, K.; Köhl, M.; Linser, S. Is the Concept of Sustainable Forest Management Still Fit for Purpose? For. Policy Econ. 2023, 157, 103072. [Google Scholar] [CrossRef]
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG Emissions of Buildings—The Hidden Challenge for Effective Climate Change Mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Salata, F.; Ciardiello, A.; Dell’Olmo, J.; Ciancio, V.; Ferrero, M.; Rosso, F. Geometry Optimization in the Schematic Design Phase of Low-Energy Buildings for All European Climates through Genetic Algorithms. Sustain. Cities Soc. 2024, 112, 105639. [Google Scholar] [CrossRef]
- Sandoli, A.; D’Ambra, C.; Ceraldi, C.; Calderoni, B.; Prota, A. Sustainable Cross-Laminated Timber Structures in a Seismic Area: Overview and Future Trends. Appl. Sci. 2021, 11, 2078. [Google Scholar] [CrossRef]
- Sasaki, N. Timber Production and Carbon Emission Reductions through Improved Forest Management and Substitution of Fossil Fuels with Wood Biomass. Resour. Conserv. Recycl. 2021, 173, 105737. [Google Scholar] [CrossRef]
- Schmidt, L.; Hilditch, R.; Ervine, A.; Madden, J. Explicit fire safety for modern mass timber structures—from theory to practice. In Proceedings of the World Conference on Timber Engineering (WCTE 2023), Oslo, Norway, 19–22 June 2023; pp. 1738–1747. [Google Scholar]
- Schneider-Marin, P.; Harter, H.; Tkachuk, K.; Lang, W. Uncertainty Analysis of Embedded Energy and Greenhouse Gas Emissions Using BIM in Early Design Stages. Sustainability 2020, 12, 2633. [Google Scholar] [CrossRef]
- Schwarzschachner, H.; Hernandez, S. Prolonged Carbon Storage and CO2 Reduction by Circular Design with Wood. J. Sustain. Archit. Civ. Eng. 2024, 35, 23–33. [Google Scholar] [CrossRef]
- Scouse, A.; Kelley, S.S.; Liang, S.; Bergman, R. Regional and Net Economic Impacts of High-Rise Mass Timber Construction in Oregon. Sustain. Cities Soc. 2020, 61, 102154. [Google Scholar] [CrossRef]
- Sher, F.; Curnick, O.; Azizan, M.T. Sustainable Conversion of Renewable Energy Sources. Sustainability 2021, 13, 2940. [Google Scholar] [CrossRef]
- De Oliveira, R.S.; De Oliveira, M.J.L.; Nascimento, E.G.S.; Sampaio, R.; Nascimento Filho, A.S.; Saba, H. Renewable Energy Generation Technologies for Decarbonizing Urban Vertical Buildings: A Path towards Net Zero. Sustainability 2023, 15, 13030. [Google Scholar] [CrossRef]
- Stanciu, M.-C.; Teacă, C.-A. Changes of Wood Surfaces Treated with Natural-Based Products—Structural and Properties Investigation. BioResources 2024, 19, 5895–5915. [Google Scholar] [CrossRef]
- Tupenaite, L.; Kanapeckiene, L.; Naimaviciene, J.; Kaklauskas, A.; Gecys, T. Timber Construction as a Solution to Climate Change: A Systematic Literature Review. Buildings 2023, 13, 976. [Google Scholar] [CrossRef]
- Udele, K.E.; Morrell, J.J.; Sinha, A. Biological Durability of Cross-Laminated Timber—The State of Things. For. Prod. J. 2021, 71, 124–132. [Google Scholar] [CrossRef]
- Ürge-Vorsatz, D.; Khosla, R.; Bernhardt, R.; Chan, Y.C.; Vérez, D.; Hu, S.; Cabeza, L.F. Advances Toward a Net-Zero Global Building Sector. Annu. Rev. Environ. Resour. 2020, 45, 227–269. [Google Scholar] [CrossRef]
- Veichtlbauer, A.; Praschl, C.; Gaisberger, L.; Steinmaurer, G.; Strasser, T.I. Toward an Effective Community Energy Management by Using a Cluster Storage. IEEE Access 2022, 10, 112286–112306. [Google Scholar] [CrossRef]
- Veloso, A.C.O.; Filho, C.R.A.; Souza, R.V.G. The Potential of Mixed-Mode Ventilation in Office Buildings in Mild Temperate Climates: An Energy Benchmarking Analysis. Energy Build. 2023, 297, 113445. [Google Scholar] [CrossRef]
- Veillette, D.; Rouleau, J.; Gosselin, L. Impact of Window-to-Wall Ratio on Heating Demand and Thermal Comfort When Considering a Variety of Occupant Behavior Profiles. Front. Sustain. Cities 2021, 3, 700794. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, K.; Guo, P.; Zhang, J.; Xiong, Z. Key Issues and Solutions in the Study of Quantitative Mechanisms for Tropical Islands Zero Carbon Buildings. Appl. Sci. 2024, 14, 1659. [Google Scholar] [CrossRef]
- Warmling, J.G.; Espindola, L.D.R.; Abreu, A.L.P.D. Elaboração de Projeto BIM de Uma Habitação Em CLT; Encontro Nacional de Tecnologia do Ambiente Construído: Canela, Brasil, 2022; pp. 1–10. [Google Scholar]
- Wilberforce, T.; Olabi, A.G.; Sayed, E.T.; Elsaid, K.; Maghrabie, H.M.; Abdelkareem, M.A. A Review on Zero Energy Buildings—Pros and Cons. Energy Built Environ. 2023, 4, 25–38. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Wang, K. Quantitative Study of Life Cycle Carbon Emissions from 7 Timber Buildings in China. Int. J. Life Cycle Assess. 2021, 26, 1721–1734. [Google Scholar] [CrossRef]
- Younis, A.; Dodoo, A. Cross-Laminated Timber for Building Construction: A Life-Cycle-Assessment Overview. J. Build. Eng. 2022, 52, 104482. [Google Scholar] [CrossRef]
- Zawada, K.; Rybak-Niedziółka, K.; Donderewicz, M.; Starzyk, A. Digitization of AEC Industries Based on BIM and 4.0 Technologies. Buildings 2024, 14, 1350. [Google Scholar] [CrossRef]
- Zhan, T.; Li, R.; Liu, Z.; Peng, H.; Lyu, J. From Adaptive Plant Materials toward Hygro-Actuated Wooden Building Systems: A Review. Constr. Build. Mater. 2023, 369, 130479. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, X.; Li, L. The Potential for Storing Carbon by Harvested Wood Products. Front. For. Glob. Change 2022, 5, 1055410. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, W. Delivering Zero Carbon Buildings: The Role of Innovative Business Models. Procedia Eng. 2015, 118, 404–411. [Google Scholar] [CrossRef]
- Lea Bridge Library Pavilion. Available online: https://timberdevelopment.uk/case-studies/lea-bridge-library-pavilion/ (accessed on 1 July 2024).
- Orueta Etxea. Available online: https://egoin.com/projects/orueta-etxea/ (accessed on 1 July 2024).
- Spruce House Studio. Available online: https://timberdevelopment.uk/case-studies/spruce-house-studio/ (accessed on 5 July 2024).
- Cooperative Housing. Available online: https://worldgbc.org/case_study/cooperative-housing/ (accessed on 11 July 2024).
- The Black and White Building. Available online: https://timberdevelopment.uk/case-studies/the-black-and-white-building/ (accessed on 5 July 2024).
- Workstack. Available online: https://timberdevelopment.uk/case-studies/workstack/ (accessed on 21 July 2024).
- EÑE House. Available online: https://plataforma-pep.org/ejemplos-ph/casa-ene/ (accessed on 23 July 2024).
- The New Temple Complex. Available online: https://timberdevelopment.uk/case-studies/new-temple-complex/ (accessed on 23 July 2024).
- Durley Chine Environmental Hub. Available online: https://timberdevelopment.uk/case-studies/durley-chine-environmental-hub/ (accessed on 27 July 2024).
- The Humber Cultural Hub. Available online: https://www.cagbc.org/green-building-showcase/green-building-spotlight/case-studies/humber-cultural-hub/ (accessed on 27 July 2024).
- EN 15978:2011; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation method. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 15804:2012; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. European Committee for Standardization: Brussels, Belgium, 2012.
- Padilla-Rivera, A.; Amor, B.; Blanchet, P. Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada. Sustainability 2018, 10, 2715. [Google Scholar] [CrossRef]
- United Nations. Forum on Forests Report of the Seventh Session (24 February 2006 and 16 to 27 April 2007). Available online: https://www.un.org/esa/forests/wp-content/uploads/2013/09/E-2007-42-UNFF7Report.pdf (accessed on 12 June 2024).
- PEFC. Available online: www.pefc.org/discover-pefc/facts-and-figures (accessed on 10 July 2024).
- Area of Certified Forest Stewardship Council (FSC) Worldwide from 2016 to 2024. Available online: www.statista.com/statistics/807548/global-forest-stewardship-council-land-area/ (accessed on 10 July 2024).
- Di Girolami, E.; Arts, B. Environmental Impacts of Forest Certifications; Forest and Nature Conservation Policy Group—Wageningen University and Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- Cashore, B.; Van Kooten, G.C.; Vertinsky, I.; Auld, G.; Affolderbach, J. Private or Self-Regulation? A Comparative Study of Forest Certification Choices in Canada, the United States and Germany. For. Policy Econ. 2005, 7, 53–69. [Google Scholar] [CrossRef]
- Ayikoe Tettey, U.Y.; Dodoo, A.; Gustavsson, L. Carbon Balances for a Low Energy Apartment Building with Different Structural Frame Materials. Energy Procedia 2019, 158, 4254–4261. [Google Scholar] [CrossRef]
- Jaysawal, R.K.; Chakraborty, S.; Elangovan, D.; Padmanaban, S. Concept of Net Zero Energy Buildings (NZEB)—A Literature Review. Clean. Eng. Technol. 2022, 11, 100582. [Google Scholar] [CrossRef]
- Чoрна, Н.А. Перспективи Застoсування Вoдневих Технoлoгій Для Автoнoмних Енергетичних Кoмплексів На Оснoві Віднoвлюваних Джерел Енергії. Vidnovluvana Energ. 2021, 3, 18–32. [Google Scholar] [CrossRef]
- Meex, E.; Hollberg, A.; Knapen, E.; Hildebrand, L.; Verbeeck, G. Requirements for Applying LCA-Based Environmental Impact Assessment Tools in the Early Stages of Building Design. Build. Environ. 2018, 133, 228–236. [Google Scholar] [CrossRef]
- Passer, A.; Kreiner, H.; Maydl, P. Assessment of the Environmental Performance of Buildings: A Critical Evaluation of the Influence of Technical Building Equipment on Residential Buildings. Int. J. Life Cycle Assess. 2012, 17, 1116–1130. [Google Scholar] [CrossRef]
- Mirabella, N.; Röck, M.; Ruschi Mendes Saade, M.; Spirinckx, C.; Bosmans, M.; Allacker, K.; Passer, A. Strategies to Improve the Energy Performance of Buildings: A Review of Their Life Cycle Impact. Buildings 2018, 8, 105. [Google Scholar] [CrossRef]
- Peuportier, B.L.P. Life Cycle Assessment Applied to the Comparative Evaluation of Single Family Houses in the French Context. Energy Build. 2001, 33, 443–450. [Google Scholar] [CrossRef]
- Buchanan, A.H.; Honey, B.G. Energy and Carbon Dioxide Implications of Building Construction. Energy Build. 1994, 20, 205–217. [Google Scholar] [CrossRef]
- Venkatarama Reddy, B.V.; Jagadish, K.S. Embodied Energy of Common and Alternative Building Materials and Technologies. Energy Build. 2003, 35, 129–137. [Google Scholar] [CrossRef]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A Review of Structural, Thermo-Physical, Acoustical, and Environmental Properties of Wooden Materials for Building Applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Akhimien, N.G.; Latif, E.; Hou, S.S. Application of Circular Economy Principles in Buildings: A Systematic Review. J. Build. Eng. 2021, 38, 102041. [Google Scholar] [CrossRef]
- Larsen, V.G.; Tollin, N.; Sattrup, P.A.; Birkved, M.; Holmboe, T. What Are the Challenges in Assessing Circular Economy for the Built Environment? A Literature Review on Integrating LCA, LCC and S-LCA in Life Cycle Sustainability Assessment, LCSA. J. Build. Eng. 2022, 50, 104203. [Google Scholar] [CrossRef]
- Pittau, F.; Krause, F.; Lumia, G.; Habert, G. Fast-Growing Bio-Based Materials as an Opportunity for Storing Carbon in Exterior Walls. Build. Environ. 2018, 129, 117–129. [Google Scholar] [CrossRef]
- Peñaloza, D.; Erlandsson, M.; Falk, A. Exploring the Climate Impact Effects of Increased Use of Bio-Based Materials in Buildings. Constr. Build. Mater. 2016, 125, 219–226. [Google Scholar] [CrossRef]
- Sandin, G.; Peters, G.M.; Svanström, M. Life Cycle Assessment of Forest Products; Springer Briefs in Molecular Science; Springer International Publishing: Cham, Swizterland, 2016; ISBN 978-3-319-44026-2. [Google Scholar]
- Ramage, M.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The Wood from the Trees: The Use of Timber in Construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Klinge, A.; Roswag-Klinge, E.; Radeljic, L.; Lehmann, M. Strategies for Circular, Prefab Buildings from Waste Wood. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012052. [Google Scholar] [CrossRef]
- Ximenes, F.A.; Grant, T. Quantifying the Greenhouse Benefits of the Use of Wood Products in Two Popular House Designs in Sydney, Australia. Int. J. Life Cycle Assess. 2013, 18, 891–908. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood Modification Technologies—A Review. iForest 2017, 10, 895–908. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, L.; Chang-Richards, A.; Zhang, Y.; Li, H. Understanding the Impact of Social Capital on the Innovation Performance of Construction Enterprises: Based on the Mediating Effect of Knowledge Transfer. Sustainability 2021, 13, 5099. [Google Scholar] [CrossRef]
- Pan, W. System Boundaries of Zero Carbon Buildings. Renew. Sustain. Energy Rev. 2014, 37, 424–434. [Google Scholar] [CrossRef]
- Attia, S. Towards Regenerative and Positive Impact Architecture: A Comparison of Two Net Zero Energy Buildings. Sustain. Cities Soc. 2016, 26, 393–406. [Google Scholar] [CrossRef]
- Harte, A.M. Mass Timber—The Emergence of a Modern Construction Material. J. Struct. Integr. Maint. 2017, 2, 121–132. [Google Scholar] [CrossRef]
- Izzi, M.; Casagrande, D.; Bezzi, S.; Pasca, D.; Follesa, M.; Tomasi, R. Seismic Behaviour of Cross-Laminated Timber Structures: A State-of-the-Art Review. Eng. Struct. 2018, 170, 42–52. [Google Scholar] [CrossRef]
- Hadden, R.M.; Bartlett, A.I.; Hidalgo, J.P.; Santamaria, S.; Wiesner, F.; Bisby, L.A.; Deeny, S.; Lane, B. Effects of Exposed Cross Laminated Timber on Compartment Fire Dynamics. Fire Saf. J. 2017, 91, 480–489. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Sun, C.; Chang, W.-S. Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach. Sustainability 2016, 8, 1047. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Boquera, L.; Chàfer, M.; Vérez, D. Embodied Energy and Embodied Carbon of Structural Building Materials: Worldwide Progress and Barriers through Literature Map Analysis. Energy Build. 2021, 231, 110612. [Google Scholar] [CrossRef]
- Marriage, G.; Sutherland, B. New Digital Housing Typologies: CNC Fabrications of CLT Structure and BIM Cladding; University of Genoa: Genoa, Italy, 2022. [Google Scholar]
- Risse, M.; Weber-Blaschke, G.; Richter, K. Eco-Efficiency Analysis of Recycling Recovered Solid Wood from Construction into Laminated Timber Products. Sci. Total Environ. 2019, 661, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhou, J.; Liu, Y. Financial Inclusion and Low-Carbon Architectural Design Strategies: Solutions for Architectural Climate Conditions and Architectural Temperature on New Buildings. Environ. Sci Pollut Res 2023, 30, 79497–79511. [Google Scholar] [CrossRef] [PubMed]
- Suresh Ramanan, S.; Arunachalam, A.; Handa, A.K. Timber Production Potential of Trees on Farmlands. Small-Scale For. 2023, 22, 371–380. [Google Scholar] [CrossRef]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Fiorese, G.; Cescatti, A. The European Forest Sector: Past and Future Carbon Budget and Fluxes under Different Management Scenarios. Biogeosciences 2017, 14, 2387–2405. [Google Scholar] [CrossRef]
- Östman, B.; Brandon, D.; Frantzich, H. Fire Safety Engineering in Timber Buildings. Fire Saf. J. 2017, 91, 11–20. [Google Scholar] [CrossRef]
- Wang, J.Y.; Stirling, R.; Morris, P.I.; Taylor, A.; Lloyd, J.; Kirker, G.; Lebow, S.; Mankowski, M.; Barnes, H.M.; Morrell, J.J. Durability of mass timber structures: A review of the biological risks. Wood Fiber Sci. 2018, 50, 110–127. [Google Scholar] [CrossRef]
- Johnston, C.M.T.; Radeloff, V.C. Global Mitigation Potential of Carbon Stored in Harvested Wood Products. Proc. Natl. Acad. Sci. USA 2019, 116, 14526–14531. [Google Scholar] [CrossRef]
Example Ref. | Countries of Study | Thematic Scope | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Abed et al. (2022) [42] | World | x | x | x | ||
Ahmed et al. (2024) [43] | Kirkuk, Iraq | x | ||||
Alvarez et al. (2023) [14] | World | x | x | |||
Andersen et al. (2021) [12] | World | x | x | x | x | |
Andersen et al. (2024) [20] | World | x | x | |||
Arlet (2021) [44] | Europe, Japan, Canada, New Zealand | x | x | x | x | x |
Arumägi et al. (2020) [28] | World | x | x | x | ||
Bai et al. (2018) [45] | World | x | x | |||
Barclay et al. (2024) [46] | World | x | ||||
Besana et al. (2022) [18] | World | x | x | |||
Blay-Armah et al. (2023) [47] | World | x | x | x | ||
Bøe et al. (2023) [48] | World | x | ||||
Bougiatioti et al. (2023) [49] | Greece | |||||
Branchi et al. (2023) [1] | World | x | ||||
Broda (2020) [50] | World | x | ||||
Brogi et al. (2019) [51] | Europe | x | x | x | x | |
BuHamdan et al. (2021) [52] | World | x | ||||
Cabeza et al. (2021) [53] | World | x | x | |||
Calquin et al. (2024) [54] | World | x | ||||
Carletti et al. (2024) [24] | World | x | x | x | ||
Chen et al. (2020) [55] | World | x | x | |||
Chen (2023) [56] | World | x | x | x | ||
Ching et al. (2024) [6] | World | x | ||||
Churkina et al. (2020) [57] | World | x | ||||
Dai et al. (2023) [3] | World | x | x | |||
Defloor et al. (2022) [58] | Belgium | x | x | x | ||
Devarajan et al. (2024) [59] | World | x | ||||
Ding et al. (2022) [19] | World | x | x | |||
Dong et al. (2021) [60] | China | x | x | |||
Duan et al. (2022) [61] | World | x | ||||
Dzhurko et al. (2024) [62] | Germany | x | ||||
Elaouzy et al.(2022) [63] | World | x | ||||
Elginoz et al. (2024) [64] | World | x | ||||
El-Shorbagy (2020) [22] | World | x | x | x | ||
European Innovation Agenda, European Commission, (2022) [65] | EU | x | x | x | ||
Evans et al. (2022) [66] | World | x | ||||
Feder (2023) [7] | World | x | ||||
Fereidani et al. (2021) [67] | World | x | ||||
Ferreira et al. (2023) [34] | World | x | ||||
Furhana Shereen et al. (2023) [68] | World | x | ||||
Garzon et al. (2020) [69] | Bulgaria, Turkey, North America | x | ||||
Ghobadi et al. (2023) [70] | Australia | x | ||||
Giridhar et al. (2022) [71] | World | x | ||||
Grinham et al. (2021) [72] | World | x | x | |||
Groll (2023) [8] | World | x | ||||
Hamida et al. (2023) [73] | World | x | x | |||
Hanifa et al. (2023) [74] | India | x | ||||
He et al. (2024) [75] | World | x | x | |||
Himes et al. (2020) [76] | USA | x | ||||
Hoxha et al. (2020) [77] | World | x | ||||
Hu (2023) [21] | World | x | x | x | ||
Huang et al. (2024) [78] | China | x | ||||
Hurmekoski et al. (2022) [79] | Finland | x | ||||
Ibrahim et al. (2023) [80] | World | x | ||||
Kazemian et al. (2023) [81] | World | x | ||||
Keržič et al. (2021) [82] | World | x | ||||
Király et al. (2022) [83] | Hungary | x | ||||
Koval et al. (2023) [84] | World | x | ||||
Leszczyszyn et al. (2022) [85] | Europe, Chile | x | x | x | ||
Li et al. (2022) [86] | Europe | x | ||||
Lin et al. (2023) [13] | World | x | x | |||
Linkevičius et al. (2023) [87] | World | x | x | |||
Lo et al. (2021) [88] | USA | x | x | x | ||
Lou et al. (2024) [17] | World | x | x | x | ||
Lu et al. (2024) [89] | World | x | ||||
Meleti et al. (2021) [9] | World | x | ||||
Michalak et al. (2024) [90] | World | x | ||||
Michálková et al. (2022) [23] | World | x | x | |||
Mirashk-Daghiyan et al. (2022) [91] | Tehran, Iran | x | ||||
Motamedi et al. (2023) [92] | World | x | ||||
Mulya et al. (2024) [33] | World | x | x | x | ||
Mushtaha et al. (2021) [93] | World | x | ||||
Nidhin et al. (2023) [10] | World | x | ||||
Ouellet-Plamondon et al. (2023) [94] | Canada, Switzerland, Germany, Belgium, Australia, Sweden, Spain, Austria, Denmark, France, New Zealand, USA, Brazil, Norway | x | ||||
Pasternack et al. (2022) [95] | World | x | ||||
Pecio (2024) [96] | World | x | ||||
Pedreño-Rojas et al. (2024) [97] | World | x | ||||
Phillips et al. (2020) [98] | USA | x | ||||
Pilli et al. (2022) [99] | World | x | x | |||
Pomponi et al. (2020) [100] | World | x | ||||
Porter et al. (2001) [101] | World | x | x | x | ||
Premrov et al. (2023) [102] | World | x | x | |||
Prieur-Richard et al. (2018) [103] | World | x | x | |||
Prins et al. (2023) [104] | World | x | ||||
Ridhosari et al. (2020) [5] | World | x | ||||
Röck et al. (2020) [105] | World | x | ||||
Salata et al. (2024) [106] | World | x | ||||
Sandoli et al. (2021) [107] | World | x | ||||
Sasaki (2021) [108] | Thajland | x | ||||
Schmidt et al. (2023) [109] | World | x | ||||
Schneider-Marin et al. (2020) [110] | World | x | x | |||
Schwarzschachner et al. (2024) [111] | Germany, Austria | x | ||||
Scouse et al. (2020) [112] | USA | x | x | |||
Sher et al. (2021) [113] | UK, Malaysia | x | ||||
de Oliveira et al. (2023) [114] | World | x | x | |||
Stanciu et al. (2024) [115] | World | x | ||||
Starzyk et al. (2023) [25] | World | x | x | |||
Tupenaite et al. (2023) [116] | Lithuania | x | ||||
Udele et al. (2021) [117] | USA | x | ||||
Ürge-Vorsatz et al. (2020) [118] | USA, Canada, China, EU (Germany, Belgium …) | x | x | x | x | x |
Veichtlbauer et al. (2022) [119] | World | x | ||||
Veloso et al. (2023) [120] | Belo Horizonte, Brazil | x | ||||
Veillette et al. (2021) [121] | Quebec, Canada | x | ||||
Wang et al. (2021) [51] | World | x | ||||
Wang et al. (2024) [122] | World | x | x | |||
Warmling et al. (2022) [123] | World | x | ||||
Wilberforce et al. (2023) [124] | (EU), USA, China | x | x | x | x | |
Yang (2021) [125] | China | x | x | |||
Younis et al. (2022) [126] | World | x | ||||
Zawada et al. (2024) [127] | World | x | ||||
Zhan et al. (2023) [128] | World | x | x | x | ||
Zhao et al. (2022) [129] | World | x | x | x | ||
Zhao et al. (2015) [130] | World | x | x | |||
Duan et al. (2022) [61] | China | x |
Project (Authors) | City, Country (Date) | Thematic Scope | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Lea Bridge Library Pavilion (Studio Weave) [131] | London, UK (2021) | x | x | x | x | x |
Orueta Etxea (Emiliano López Mónica Rivera Arquitectos) [132] | Bilbao, Spain (2021) | x | x | x | x | x |
Spruce House and studio (ao-ft) [133] | London, UK (2021) | x | x | x | x | - |
Cooperative housing (Urban Power) [134] | Stavnsholt, Denamrk (2021) | x | x | x | - | - |
The black and white building (Waugh Thistleton Architects) [135] | London, UK (2022) | x | x | x | x | - |
Workstack (dRMM) [136] | London, UK (2023) | x | x | x | x | - |
EÑE House (Estudio Albar) [137] | Madrid, Spain (2023) | x | x | x | x | x |
New Temple Complex (James Gorst Architects) [138] | Hampshire, UK (2023) | x | x | x | x | x |
Durley Chine Environmental Hub (Footprint Architects) [139] | Bournemouth, UK (2024) | x | x | x | x | - |
Humber Cultural Hub (Diamond Schmitt) [140] | Ontario, Canada (2024) | x | x | x | - | - |
Project (Author) | Building Type | Location | Year | Area | Operational Energy [kgCO2e/m2/y] | Upfront Carbon Emissions (A1–A5) [kgCO2e/m2] | Criteria * |
---|---|---|---|---|---|---|---|
Lea Bridge Library Pavilion (Studio Weave) [131] | Public building (library) | London, UK | 2021 | 250 m2 | 9.69 | 147 | 1, 2, 3, 4, 5 |
Orueta Etxea (Emiliano López Mónica Rivera Arquitectos) [132] | Residential | Bilbao, Spain | 2021 | 308 m2 | 3.83 | - | 1, 2, 3, 4, 5 |
Spruce house and studio (ao-ft) [133] | Residential | London, UK | 2021 | 132 m2 | - | 336 | 1, 2, 3, 4 |
Cooperative housing (Urban Power) [134] | Residential | Stavnsholt, Denamrk | 2021 | 3100 m2 | 8.70 | - | 1, 2, 3 |
The black and white building (Waugh Thistleton Architects) [135] | Commercial, office | London, UK | 2022 | 4480 m2 | 9.11 | 329 | 1, 2, 3, 4 |
Workstack (dRMM) [136] | Commercial | London, UK | 2023 | 1583 m2 | 48.41 | 271 | 1, 2, 3, 4 |
EÑE House (Estudio Albar) [137] | Residential | Madrid, Spain | 2023 | 250 m2 | 14.50 | - | 1, 2, 3, 4, 5 |
New Temple Complex (James Gorst Architects) [138] | Public building | Hampshire, UK | 2023 | 585 m2 | 42.60 | 407 | 1, 2, 3, 4, 5 |
Durley Chine Environmental Hub (Footprint Architects) [139] | Public building | Bournemouth, UK | 2024 | 887 m2 | 15.73 | 210 | 1, 2, 3, 4 |
Humber Cultural Hub (Diamond Schmitt) [140] | Public building | Ontario, Canada | 2024 | 23,244 m2 | 6.63 | - | 1, 2, 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starzyk, A.; Rybak-Niedziółka, K.; Nowysz, A.; Marchwiński, J.; Kozarzewska, A.; Koszewska, J.; Piętocha, A.; Vietrova, P.; Łacek, P.; Donderewicz, M.; et al. New Zero-Carbon Wooden Building Concepts: A Review of Selected Criteria. Energies 2024, 17, 4502. https://doi.org/10.3390/en17174502
Starzyk A, Rybak-Niedziółka K, Nowysz A, Marchwiński J, Kozarzewska A, Koszewska J, Piętocha A, Vietrova P, Łacek P, Donderewicz M, et al. New Zero-Carbon Wooden Building Concepts: A Review of Selected Criteria. Energies. 2024; 17(17):4502. https://doi.org/10.3390/en17174502
Chicago/Turabian StyleStarzyk, Agnieszka, Kinga Rybak-Niedziółka, Aleksandra Nowysz, Janusz Marchwiński, Alicja Kozarzewska, Joanna Koszewska, Anna Piętocha, Polina Vietrova, Przemysław Łacek, Mikołaj Donderewicz, and et al. 2024. "New Zero-Carbon Wooden Building Concepts: A Review of Selected Criteria" Energies 17, no. 17: 4502. https://doi.org/10.3390/en17174502
APA StyleStarzyk, A., Rybak-Niedziółka, K., Nowysz, A., Marchwiński, J., Kozarzewska, A., Koszewska, J., Piętocha, A., Vietrova, P., Łacek, P., Donderewicz, M., Langie, K., Walasek, K., Zawada, K., Voronkova, I., Francke, B., & Podlasek, A. (2024). New Zero-Carbon Wooden Building Concepts: A Review of Selected Criteria. Energies, 17(17), 4502. https://doi.org/10.3390/en17174502