Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Data Preparation
2.3. Modelling and Simulation
Algorithm 1: Grid search for hyperparameter optimisation |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Shobaki, S.; Mohsen, M. Modeling and forecasting of electrical power demands for capacity planning. Energy Convers. Manag. 2008, 49, 3367–3375. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N.; Amaratunga, G. Random vector functional link network for short-term electricity load demand forecasting. Inf. Sci. 2016, 367, 1078–1093. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S. Load demand forecasting of residential buildings using a deep learning model. Electr. Power Syst. Res. 2020, 179, 106073. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Maiorino, E.; Kampffmeyer, M.C.; Rizzi, A.; Jenssen, R. An overview and comparative analysis of recurrent neural networks for short term load forecasting. arXiv 2017, arXiv:1705.04378. [Google Scholar]
- Nti, I.K.; Teimeh, M.; Nyarko-Boateng, O.; Adekoya, A.F. Electricity load forecasting: A systematic review. J. Electr. Syst. Inf. Technol. 2020, 7, 13. [Google Scholar] [CrossRef]
- Jalali, S.M.J.; Ahmadian, S.; Khosravi, A.; Shafie-khah, M.; Nahavandi, S.; Catalão, J.P. A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting. IEEE Trans. Ind. Inform. 2021, 17, 8243–8253. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.C.; Lee, S.J.; Park, N. Machine learning based hybrid system for imputation and efficient energy demand forecasting. Energies 2020, 13, 2681. [Google Scholar] [CrossRef]
- Taylor, J.W.; McSharry, P.E. Short-term load forecasting methods: An evaluation based on european data. IEEE Trans. Power Syst. 2007, 22, 2213–2219. [Google Scholar] [CrossRef]
- Hammad, M.A.; Jereb, B.; Rosi, B.; Dragan, D. Methods and models for electric load forecasting: A comprehensive review. Logist. Sustain. Transp. 2020, 11, 51–76. [Google Scholar] [CrossRef]
- Nepal, B.; Yamaha, M.; Yokoe, A.; Yamaji, T. Electricity load forecasting using clustering and ARIMA model for energy management in buildings. Jpn. Archit. Rev. 2020, 3, 62–76. [Google Scholar] [CrossRef]
- Grandón, T.G.; Schwenzer, J.; Steens, T.; Breuing, J. Electricity demand forecasting with hybrid classical statistical and machine learning algorithms: Case study of Ukraine. Appl. Energy 2024, 355, 122249. [Google Scholar] [CrossRef]
- Villalba, S.A.; Bel, C.À. Hybrid demand model for load estimation and short term load forecasting in distribution electric systems. IEEE Trans. Power Deliv. 2000, 15, 764–769. [Google Scholar] [CrossRef]
- Monteiro, T.O.; Barradas Filho, A.O.; Villa-Vélez, H.A.; Cruz, G. Estimation of the main air pollutants from different biomasses under combustion atmospheres by artificial neural networks. Chemosphere 2024, 352, 141484. [Google Scholar] [CrossRef]
- Chitalia, G.; Pipattanasomporn, M.; Garg, V.; Rahman, S. Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. Appl. Energy 2020, 278, 115410. [Google Scholar] [CrossRef]
- Talaat, M.; Farahat, M.; Mansour, N.; Hatata, A. Load forecasting based on grasshopper optimisation and a multilayer feed-forward neural network using regressive approach. Energy 2020, 196, 117087. [Google Scholar] [CrossRef]
- Khwaja, A.S.; Anpalagan, A.; Naeem, M.; Venkatesh, B. Joint bagged-boosted artificial neural networks: Using ensemble machine learning to improve short-term electricity load forecasting. Electr. Power Syst. Res. 2020, 179, 106080. [Google Scholar] [CrossRef]
- Eskandari, H.; Imani, M.; Moghaddam, M.P. Convolutional and recurrent neural network based model for short-term load forecasting. Electr. Power Syst. Res. 2021, 195, 107173. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Ji, H.; Zhang, S.; Li, P. Ultra-short-term load demand forecast model framework based on deep learning. Energies 2020, 13, 4900. [Google Scholar] [CrossRef]
- Somu, N.; Gauthama Raman, M.R.; Ramamritham, K. A hybrid model for building energy consumption forecasting using long short term memory networks. Appl. Energy 2020, 261, 114131. [Google Scholar] [CrossRef]
- Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly accurate energy consumption forecasting model based on parallel LSTM neural networks. Adv. Eng. Inform. 2022, 51, 101442. [Google Scholar] [CrossRef]
- Ramos, P.V.B.; Villela, S.M.; Silva, W.N.; Dias, B.H. Residential energy consumption forecasting using deep learning models. Appl. Energy 2023, 350, 121705. [Google Scholar] [CrossRef]
- Ryu, S.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting. Energies 2016, 10, 3. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting. Energies 2020, 13, 391. [Google Scholar] [CrossRef]
- Somu, N.; Gauthama Raman, M.R.; Ramamritham, K. A deep learning framework for building energy consumption forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [Google Scholar] [CrossRef]
- Setiawan, A.; Koprinska, I.; Agelidis, V.G. Very short-term electricity load demand forecasting using support vector regression. In Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 2888–2894. [Google Scholar]
- Pellegrini, M. Short-term load demand forecasting in Smart Grids using support vector regression. In Proceedings of the 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), Turin, Italy, 16–18 September 2015; pp. 264–268. [Google Scholar]
- Fan, G.F.; Yu, M.; Dong, S.Q.; Yeh, Y.H.; Hong, W.C. Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling. Util. Policy 2021, 73, 101294. [Google Scholar] [CrossRef]
- Wu, K.; Wu, J.; Feng, L.; Yang, B.; Liang, R.; Yang, S.; Zhao, R. An attention-based CNN-LSTM-BiLSTM model for short-term electric load forecasting in integrated energy system. Int. Trans. Electr. Energy Syst. 2021, 31, e12637. [Google Scholar] [CrossRef]
- Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long short-term memory. Energy 2022, 238, 121756. [Google Scholar] [CrossRef]
- Mosetlhe, T.; Ntombela, M.; Yusuff, A.; Ayodele, T.; Ogunjuyibe, A. Appraising the efficacy of the hybrid grid-PV power supply for a household in South Africa. Renew. Energy Focus 2021, 37, 14–19. [Google Scholar] [CrossRef]
- Machina, V.S.P.; Suprabhath, K.S.; Madichetty, S. Fault Detection in Solar Photovoltaic Systems During Winter Season-A Deep Learning Approach. In Proceedings of the 2022 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 28 February–1 March 2022; pp. 1–6. [Google Scholar]
- Kane, M.J.; Price, N.; Scotch, M.; Rabinowitz, P. Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinform. 2014, 15, 276. [Google Scholar] [CrossRef]
- Zhang, R.; Xiaofeng, W.; Zhang, Y.; Yanfei, L. Comparison of random forests and SARIMA in Predicting Brucellosis Incidence. J. Public Health Prev. Med. 2022, 6, 1–5. [Google Scholar]
- Balogun, A.L.; Tella, A. Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression. Chemosphere 2022, 299, 134250. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wu, T.; Zhu, M.; Jiang, G.; Xu, Y.; Wang, X.; Pu, L. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Statistics South Africa. Quarterly Financial Statistics of Municipalities, December 2015. 2016. Available online: https://www.statssa.gov.za/?page_id=1856&PPN=P9110&SCH=6437 (accessed on 20 August 2024).
Partition | Base Data Points | Remaining Data Points | Difference |
---|---|---|---|
Annual dataset | 8760 | 7487 | |
Summer dataset | 2114 | 1808 | |
Autumn dataset | 2185 | 1882 | |
Winter dataset | 2185 | 1776 | |
Spring dataset | 2161 | 1849 |
Partition | Model Description | |||
---|---|---|---|---|
Annual dataset | RF—Base Model | |||
Annual dataset | DT—Base Model | |||
Annual dataset | RF—Tuned Model | |||
Annual dataset | DT—Tuned Model |
(a) Model performance evaluation for summer sub-dataset | |||
Model description | |||
RF—Base Model | |||
DT—Base Model | |||
RF—Tuned Model | |||
DT—Tuned Model | |||
(b) Model performance evaluation for autumn sub-dataset | |||
Model description | |||
RF—Base Model | |||
DT—Base Model | |||
RF—Tuned Model | |||
DT—Tuned Model | |||
(c) Model performance evaluation for winter sub-dataset | |||
Model description | |||
RF—Base Model | |||
DT—Base Model | |||
RF—Tuned Model | |||
DT—Tuned Model | |||
(d) Model performance evaluation for spring sub-dataset | |||
Model description | |||
RF—Base Model | |||
DT—Base Model | |||
RF—Tuned Model | |||
DT—Tuned Model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosetlhe, T.; Yusuff, A.A. Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes. Energies 2024, 17, 4681. https://doi.org/10.3390/en17184681
Mosetlhe T, Yusuff AA. Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes. Energies. 2024; 17(18):4681. https://doi.org/10.3390/en17184681
Chicago/Turabian StyleMosetlhe, Thapelo, and Adedayo Ademola Yusuff. 2024. "Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes" Energies 17, no. 18: 4681. https://doi.org/10.3390/en17184681
APA StyleMosetlhe, T., & Yusuff, A. A. (2024). Forecasting of Residential Energy Utilisation Based on Regression Machine Learning Schemes. Energies, 17(18), 4681. https://doi.org/10.3390/en17184681