Renewable Energy Generation Efficiency of Asian Economies: An Application of Dynamic Data Envelopment Analysis
Abstract
:1. Introduction
2. Theoretical Framework and Literature Review
2.1. Dynamic Slacks-Based Measure (DSBM)
2.2. Technological Dimensions
2.3. Social Dimensions
- (1)
- Population density—Hu et al. [28] showed that population density has a negative impact on the efficiency of renewable energy generation;
- (2)
- Population growth rate—Shah et al. [37] pointed out that population growth rate has a positive impact on renewable energy generation;
- (3)
- Per capita income—Koengkan et al. [34] showed that per capita income has a positive impact on the development of renewable energy. According to the conclusion of Nguyen et al. [44], increasing per capita income will be more conducive to the adoption of capital-intensive renewable energy generation technologies, especially for developing countries.
3. Research Methods, Variables, and Data Sources
3.1. Research Methods
3.1.1. DSBM
- (1)
- Restricted formula.
- (2)
- DMUo (o = 1, …, n) can be expressed as follows:
- (3)
- Target formula.
- (4)
- Combining the restricted formula and the target formula to reach the solution.
3.1.2. Tobit Regression Model
3.2. Variables and Data Sources
Indicator | Measurement | Definitions | Data Sources |
---|---|---|---|
Adjustable input | |||
Installed capacity | MW | Renewable energy installed capacity | International Renewable Energy Agency [49] |
Fixed input | |||
Forest size | km2 | Forest size | World Development Indicators [48] |
Agricultural land size | km2 | Agricultural land size | World Development Indicators [48] |
Surface size | km2 | Surface size | World Development Indicators [48] |
Free carry-overs | |||
Precipitation | mm/day | Average monthly total surface rainfall | NASA—Giovanni [47] |
Sunshine | W/m2 | Average monthly incident shortwave radiation on the surface | NASA—Giovanni [47] |
Wind speed | m/s | Monthly average surface wind speed | NASA—Giovanni [47] |
Output | |||
Renewable energy generation | GWh | Renewable energy generation | International Renewable Energy Agency [49] |
Variable | Code | Measurement | Definitions | Data Sources |
---|---|---|---|---|
Explained variable | ||||
Renewable energy generation efficiency | REGE | 0 to 1 | The value obtained from output-oriented DSBM model | DSBM model |
Explanatory variable of technological dimension | ||||
Information digitization | DIGI | % of population | Proportion of population using the Internet | World Development Indicators [48] |
Financial openness | KFI | Chinn-Ito Index | KAOPEN, an index measuring a country’s degree of capital account openness | The Chinn–Ito Index [50] |
Technological innovation capabilities | INV | Quantity | Patent applications of domestic residents and non-residents | World Development Indicators [48] |
Renewable energy device capacity share | RESHARE CAP | % | Proportion of renewable energy installation capacity to overall power installation capacity | International Renewable Energy Agency [49] |
Explanatory variable of social dimension | ||||
Life quality | QOL | % of population | Proportion of population with basic drinking water service | Health Nutrition and Population Statistics [51] |
Democracy degree | EDI | Electoral Democracy Index | V-Dem Democracy Index | V-Dem (Varieties of Democracy) [52] |
Control variable | ||||
Population density | POP DENS | People per sq. km | Population per unit land area | World Development Indicators [48] |
Population growth | POP GR | Annual % | Proportion of increasing in the population from year t−1 to t | Health Nutrition and Population Statistics [51] |
GDP based on PPP | PPP GDP | GDP per capita, PPP (2017 constant international $) | GDP based on purchasing power parity | World Development Indicators [48] |
Geographical latitude | TROP | Categorical variable | TL: Tropical (23.5° S–23.5° N), TE: Temperate (23.5° N–66.5° N), CZ: Cold zone (66.5° N–90° N) | NASA—Giovanni [47] |
Dummy variable | ||||
Middle-income economy | MI (including middle–high income and middle–low income) | Categorical variable | HI (high-income), UMI (upper-middle-income), LMI (lower-middle-income), LI (low-income) | World Development Indicators [48] |
4. Data Collection and Empirical Findings
4.1. Data Collection
4.2. Empirical Findings
4.2.1. Empirical Findings of DSBM
4.2.2. Empirical Findings of Tobit Regression Model
β6EDIit + β7POP DENSit + β8POP GRit + β9MI GDPit + β10TROPit + εit
5. Implications
5.1. Technological Dimensions for REGE
5.2. Social Dimensions and Middle-Income Trap for REGE
6. Conclusions, Research Limitations, and Future Suggestions
6.1. Conclusions
6.2. Research Limitations and Future Suggestions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Chen, Y.; Liu, X.; Yang, M.; Xu, L. Employment effects of solar PV industry in China: A spreadsheet-based analytical model. Energy Policy 2017, 109, 59–65. [Google Scholar] [CrossRef]
- Bakshi, P. A Balancing Act: Tracking Japan’s Energy Transition in the Age of COVID-19. Environ. Sci. Policy Sustain. Dev. 2021, 63, 29–37. [Google Scholar] [CrossRef]
- Akpan, U.F.; Akpan, G.E. The contribution of energy consumption to climate change: A feasible policy direction. Int. J. Energy Econ. Policy 2012, 2, 21–33. [Google Scholar]
- Abdmouleh, Z.; Alammari, R.A.; Gastli, A. Review of policies encouraging renewable energy integration & best practices. Renew. Sustain. Energy Rev. 2015, 45, 249–262. [Google Scholar]
- Dent, C.M. Renewable energy and East Asia’s new developmentalism: Towards a low carbon future? Pac. Rev. 2012, 25, 561–587. [Google Scholar] [CrossRef]
- Bakshi, P. A new leadership amidst Japan’s ongoing energy transition. Aust. J. Int. Aff. 2021, 75, 237–242. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach—2023 Update. Available online: https://iea.blob.core.windows.net/assets/9a698da4-4002-4e53-8ef3-631d8971bf84/NetZeroRoadmap_AGlobalPathwaytoKeepthe1.5CGoalinReach-2023Update.pdf (accessed on 13 August 2024).
- RE100. We Are Accelerating Change towards Zero Carbon Grids at Scale. Available online: https://www.there100.org/ (accessed on 13 August 2024).
- Moon, S.; Kim, K.; Seung, H.; Kim, J. Strategic analysis on effects of technologies, government policies, and consumer perceptions on diffusion of hydrogen fuel cell vehicles. Energy Econ. 2022, 115, 106382. [Google Scholar] [CrossRef]
- Han, D.; Baek, S. Status of renewable capacity for electricity generation and future prospects in Korea: Global trends and domestic strategies. Renew. Sustain. Energy Rev. 2017, 76, 1524–1533. [Google Scholar] [CrossRef]
- Majdi Nasab, N.; Kilby, J.; Bakhtiaryfard, L. Reducing emissions using renewable sources for electricity generation in Stewart Island. Electr. Eng. 2023, 105, 1709–1716. [Google Scholar] [CrossRef]
- Dumbrell, N.P.; Wheeler, S.A.; Zuo, A.; Adamson, D. Public willingness to make trade-offs in the development of a hydrogen industry in Australia. Energy Policy 2022, 165, 112987. [Google Scholar] [CrossRef]
- Foxon, T.J.; Pearson, P.J. Towards improved policy processes for promoting innovation in renewable electricity technologies in the UK. Energy Policy 2007, 35, 1539–1550. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Mao, G.; Zuo, J.; Du, H. Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014. Renew. Sustain. Energy Rev. 2017, 68, 57–69. [Google Scholar] [CrossRef]
- An, Y.; Zhang, L. The Thirst for Power: The Impacts of Water Availability on Electricity Generation in China. Energy J. 2023, 44, 205–240. [Google Scholar] [CrossRef]
- Cao, X. Climate change and energy development: Implications for developing economies. Resour. Policy 2003, 29, 61–67. [Google Scholar] [CrossRef]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Tran, V.T. The Middle-Income Trap: Issues for Members of the Association of Southeast Asian Nations; ADBI Working Paper; Asian Development Bank Institute (ADBI): Tokyo, Japan, 2013. [Google Scholar]
- Felipe, J.; Abdon, A.; Kumar, U. Tracking the Middle-Income Trap: What Is It, Who Is in It, and Why? Levy Economics Institute, Working Paper; Levy Economics Institute of Bard College: Annandale-on-Hudson, NY, USA, 2012. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef]
- Fallahi, A.; Ebrahimi, R.; Ghaderi, S.F. Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study. Energy 2011, 36, 6398–6405. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis. Energy Econ. 2014, 42, 271–288. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Y.; Xiao, X.; Mao, C. Efficiency assessment of wind farms in China using two-stage data envelopment analysis. Energy Convers. Manag. 2016, 123, 46–55. [Google Scholar] [CrossRef]
- Sağlam, Ü. A two-stage data envelopment analysis model for efficiency assessments of 39 state’s wind power in the United States. Energy Convers. Manag. 2017, 146, 52–67. [Google Scholar] [CrossRef]
- Hu, J.L.; Honma, S.; Chang, S.Y. Renewable energy generation efficiency of Japan’s administrative regions: An application of the dynamic slacks-based measure. Next Energy 2023, 1, 100029. [Google Scholar] [CrossRef]
- Rakshit, I.; Mandal, S.K. A global level analysis of environmental energy efficiency: An application of data envelopment analysis. Energy Effic. 2020, 13, 889–909. [Google Scholar] [CrossRef]
- Chien, T.; Hu, J.-L. Renewable energy and macroeconomic efficiency of OECD and non-OECD economies. Energy Policy 2007, 35, 3606–3615. [Google Scholar] [CrossRef]
- Rehman, F.U.; Islam, M.M.; Ullah, M.; Khan, S.; Rehman, M.Z. Information digitalization and renewable electricity generation: Evidence from South Asian economies. Energy Rep. 2023, 9, 4721–4733. [Google Scholar] [CrossRef]
- Lin, B.; Huang, C. Promoting variable renewable energy integration: The moderating effect of digitalization. Appl. Energy 2023, 337, 120891. [Google Scholar] [CrossRef]
- Zheng, M.; Wong, C.Y. The impact of digital economy on renewable energy development in China. Innov. Green Dev. 2024, 3, 100094. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Vieira, I. Effects of financial openness on renewable energy investments expansion in Latin American economies. J. Sustain. Financ. Invest. 2020, 10, 65–82. [Google Scholar] [CrossRef]
- Chinn, M.D.; Ito, H. A New Measure of Financial Openness. J. Comp. Policy Anal. Res. Pract. 2008, 10, 309–322. [Google Scholar] [CrossRef]
- Wang, L.; Hafeez, M.; Ullah, S.; Yonter, I.U. Cross-sectional dependence in financial openness and its influence on renewable energy consumption in Asia. Energy Environ. 2023, 0958305X231219786. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Zhang, Q.; Abbas, J.; Tang, H.; Al-Sulaiti, K.I. Waste management, quality of life and natural resources utilization matter for renewable electricity generation: The main and moderate role of environmental policy. Util. Policy 2023, 82, 101584. [Google Scholar] [CrossRef]
- Huijts, N.M.A.; van Wee, B. The evaluation of hydrogen fuel stations by citizens: The interrelated effects of socio-demographic, spatial and psychological variables. Int. J. Hydrog. Energy 2015, 40, 10367–10381. [Google Scholar] [CrossRef]
- Guo, Y.; Ru, P.; Su, J.; Anadon, L.D. Not in my backyard, but not far away from me: Local acceptance of wind power in China. Energy 2015, 82, 722–733. [Google Scholar] [CrossRef]
- Wolsink, M. Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation. Energy Policy 2007, 35, 2692–2704. [Google Scholar] [CrossRef]
- O’Neil, S.G. Community obstacles to large scale solar: NIMBY and renewables. J. Environ. Stud. Sci. 2021, 11, 85–92. [Google Scholar] [CrossRef]
- Lio, M.-C.; Hu, J.-L. Governance and Agricultural Production Efficiency: A Cross-Economy Aggregate Frontier Analysis. J. Agric. Econ. 2009, 60, 40–61. [Google Scholar] [CrossRef]
- Chen, C.; Pinar, M.; Stengos, T. Determinants of renewable energy consumption: Importance of democratic institutions. Renew. Energy 2021, 179, 75–83. [Google Scholar] [CrossRef]
- Nguyen, J.; Valadkhani, A.; Hajargasht, G. The Choice between Renewables and Non-renewables: Evidence from Electricity Generation in 29 Economies. Energy J. 2023, 42, 49–68. [Google Scholar] [CrossRef]
- Honoré, B.E. Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects. Econometrica 1992, 60, 533–565. [Google Scholar] [CrossRef]
- Liu, L.; Moon, H.R.; Schorfheide, F. Forecasting with a panel tobit model. Quant. Econ. 2023, 14, 117–159. [Google Scholar] [CrossRef]
- NASA-Giovanni. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 8 September 2024).
- World Development Indicators. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 8 September 2024).
- International Renewable Energy Agency. Available online: https://www.irena.org/Data (accessed on 8 September 2024).
- The Chinn-Ito Index. Available online: https://web.pdx.edu/~ito/Chinn-Ito_website.htm (accessed on 8 September 2024).
- Health Nutrition and Population Statistics. Available online: https://databank.worldbank.org/source/health-nutrition-and-population-statistics (accessed on 8 September 2024).
- V-Dem. Available online: https://www.v-dem.net/ (accessed on 8 September 2024).
- Hu, J.-L.; Chen, Y.-C.; Yang, Y.-P. The development and issues of energy-ICT: A review of literature with economic and managerial viewpoints. Energies 2022, 15, 594. [Google Scholar] [CrossRef]
- Banos, R.; Manzano-Agugliaro, F.; Montoya, F.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Song, M.; Xie, Q.; Wang, S.; Zhou, L. Intensity of environmental regulation and environmentally biased technology in the employment market. Omega 2021, 100, 102201. [Google Scholar] [CrossRef]
- Mohsin, M.; Taghizadeh-Hesary, F.; Iqbal, N.; Saydaliev, H.B. The role of technological progress and renewable energy deployment in green economic growth. Renew. Energy 2022, 190, 777–787. [Google Scholar] [CrossRef]
- Yadav, A.; Pal, N.; Patra, J.; Yadav, M. Strategic planning and challenges to the deployment of renewable energy technologies in the world scenario: Its impact on global sustainable development. Environ. Dev. Sustain. 2020, 22, 297–315. [Google Scholar] [CrossRef]
Authors | Methods | Measurement Target | Inputs | Outputs |
---|---|---|---|---|
Fallahi et al. (2011) [24] | DEA | Generation efficiency | (1) Installed capacity (2) Fuel (3) Labor (4) Electricity used (5) Average operational time | Net electricity produced |
Sueyoshi and Goto (2014) [25] | DEA | Generation efficiency | (1) Estimated annual insolation (2) Photovoltaic modules (3) Land area (4) Estimated annual average sunshine | (1) Installed capacity (2) Annual generation |
Wu et al. (2016) [26] | Two-stage DEA | Generation efficiency | (1) Installed capacity (2) Auxiliary electricity consumption (3) Wind power density | (1) Electricity generated (2) Availability |
Sağlam (2017) [27] | Two-stage DEA | Generation efficiency | (1) Installed wind capacity (2) Number of wind turbines (3) Total project(s) investment (4) Annual land lease payment | (1) Net generation (2) Percentage of in-state energy production (3) Number of U.S. homes powered (4) Wind industry employment (5) Annual water savings (6) CO2 emissions avoided |
Hu et al. (2023) [28] | Output-oriented DSBM model, random effect Tobit regression analysis of longitudinal and cross-sectional data | Renewable energy generation efficiency | (1) Installed capacity (2) Forest size (3) Natural park size (4) Precipitation (5) Sunshine (6) Wind speed * | Renewable electricity generation |
Method | Purpose | Input | Output |
---|---|---|---|
Output-oriented DSBM model | Obtain renewable energy generation efficiency for Asian economies | (1) Adjustable input: installed capacity (2) Fixed inputs: forest size, agricultural land size, and surface size (3) Free carry-overs: precipitation, sunshine, and wind speed | Renewable energy generation |
No. | Economy | Code | Income | Latitude | No. | Economy | Code | Income | Latitude |
---|---|---|---|---|---|---|---|---|---|
1 | Afghanistan | AFG | LI | Temperate | 23 | Lebanon | LBN | LMI | Temperate |
2 | Armenia | ARM | UMI | Temperate | 24 | Malaysia | MYS | UMI | Tropical |
3 | Azerbaijan | AZE | UMI | Temperate | 25 | Maldives | MDV | UMI | Tropical |
4 | Bahrain | BHR | HI | Temperate | 26 | Mongolia | MNG | LMI | Temperate |
5 | Bangladesh | BGD | LMI | Tropical | 27 | Nepal | NPL | LMI | Temperate |
6 | Bhutan | BTN | LMI | Temperate | 28 | Pakistan | PAK | LMI | Temperate |
7 | Brunei Darussalam | BRN | HI | Tropical | 29 | Philippines | PHL | LMI | Tropical |
8 | Cambodia | KHM | LMI | Tropical | 30 | Russian Federation | RUS | UMI | Cold zone |
9 | China | CHN | UMI | Temperate | 31 | Saudi Arabia | SAU | HI | Temperate |
10 | Georgia | GEO | UMI | Temperate | 32 | Singapore | SGP | HI | Tropical |
11 | India | IND | LMI | Tropical | 33 | Sri Lanka | LKA | LMI | Tropical |
12 | Indonesia | IDN | UMI | Tropical | 34 | Syrian Arab Republic | SYR | LI | Temperate |
13 | Iran, Islamic Rep. | IRN | LMI | Temperate | 35 | Taiwan | TWN | HI | Tropical |
14 | Iraq | IRQ | UMI | Temperate | 36 | Tajikistan | TJK | LMI | Temperate |
15 | Israel | ISR | HI | Temperate | 37 | Thailand | THA | UMI | Tropical |
16 | Japan | JPN | HI | Temperate | 38 | Timor-Leste | TLS | LMI | Tropical |
17 | Jordan | JOR | LMI | Temperate | 39 | Turkiye | TUR | UMI | Temperate |
18 | Kazakhstan | KAZ | UMI | Temperate | 40 | Turkmenistan | TKM | UMI | Temperate |
19 | Korea, Dem. People’s Rep. | PRK | LI | Temperate | 41 | United Arab Emirates | ARE | HI | Tropical |
20 | Korea, Rep. | KOR | HI | Temperate | 42 | Uzbekistan | UZB | LMI | Temperate |
21 | Kyrgyz Republic | KGZ | LMI | Temperate | 43 | Viet Nam | VNM | LMI | Tropical |
22 | Lao PDR | LAO | LMI | Tropical | 44 | Yemen, Rep. | YEM | LI | Tropical |
Indicator | Mean | Std. Dev. | Minimum | Maximum | Measurement |
---|---|---|---|---|---|
Adjustable input | |||||
Installed capacity | 21,068.81 | 90,853.87 | 0.4680 | 1,020,234 | MW |
Fixed input | |||||
Forest size | 319,004.5 | 1,245,718 | 5.2000 | 8,153,116 | km2 |
Agricultural land size | 423,557.4 | 926,832.7 | 6.6000 | 5,274,623 | km2 |
Surface size | 1,092,298 | 2,890,399 | 300.0000 | 17,098,250 | km2 |
Free carry-overs | |||||
Precipitation | 4.2396 | 4.2645 | 0.0539 | 21.9883 | mm/day |
Sunshine | 214.3452 | 29.8243 | 116.4437 | 281.3223 | W/m2 |
Wind speed | 4.8560 | 1.0113 | 2.3678 | 6.7301 | m/s |
Output | |||||
Renewable energy generation | 57,030.40 | 236,147.5 | 0.8100 | 2,405,538 | GWh |
No. | Code | Income | Latitude | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total Efficiency | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | AFG | LI | Temperate | 0.710 | 0.596 | 0.582 | 0.661 | 0.752 | 0.867 | 0.733 | 0.712 | 0.826 | 1 | 0.943 | 0.951 | 0.755 | 23 |
2 | ARM | UMI | Temperate | 0.400 | 0.379 | 0.341 | 0.281 | 0.242 | 0.254 | 0.256 | 0.265 | 0.302 | 0.380 | 0.336 | 0.502 | 0.313 | 39 |
3 | AZE | UMI | Temperate | 0.353 | 0.272 | 0.181 | 0.148 | 0.140 | 0.196 | 0.255 | 0.261 | 0.304 | 0.342 | 0.279 | 0.326 | 0.232 | 42 |
4 | BHR | HI | Temperate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
5 | BGD | LMI | Tropical | 0.297 | 0.303 | 0.300 | 0.271 | 0.238 | 0.326 | 0.466 | 0.485 | 0.508 | 0.542 | 0.518 | 0.477 | 0.364 | 35 |
6 | BTN | LMI | Temperate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
7 | BRN | HI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
8 | KHM | LMI | Tropical | 1 | 1 | 1 | 0.999 | 0.999 | 0.566 | 0.570 | 0.556 | 0.720 | 0.625 | 0.520 | 0.706 | 0.721 | 24 |
9 | CHN | UMI | Temperate | 0.294 | 0.252 | 0.301 | 0.289 | 0.322 | 0.347 | 0.371 | 0.391 | 0.458 | 0.562 | 0.587 | 0.718 | 0.370 | 34 |
10 | GEO | UMI | Temperate | 0.392 | 0.329 | 0.308 | 0.334 | 0.382 | 0.455 | 0.543 | 0.531 | 0.707 | 0.821 | 0.775 | 0.931 | 0.473 | 30 |
11 | IND | LMI | Tropical | 0.233 | 0.255 | 0.280 | 0.269 | 0.299 | 0.312 | 0.285 | 0.299 | 0.359 | 0.464 | 0.548 | 0.600 | 0.321 | 38 |
12 | IDN | UMI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
13 | IRN | LMI | Temperate | 0.102 | 0.129 | 0.126 | 0.146 | 0.143 | 0.196 | 0.245 | 0.282 | 0.449 | 0.798 | 0.685 | 0.471 | 0.203 | 43 |
14 | IRQ | UMI | Temperate | 1 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1 | 1 | 1 | 0.999 | 18 |
15 | ISR | HI | Temperate | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1 | 1 | 1 | 1 | 1 | 0.999 | 18 |
16 | JPN | HI | Temperate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
17 | JOR | LMI | Temperate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
18 | KAZ | UMI | Temperate | 0.353 | 0.346 | 0.313 | 0.302 | 0.326 | 0.424 | 0.589 | 0.645 | 0.689 | 0.724 | 0.741 | 0.802 | 0.456 | 31 |
19 | PRK | LI | Temperate | 0.334 | 0.351 | 0.349 | 0.340 | 0.346 | 0.283 | 0.381 | 0.398 | 0.518 | 0.540 | 0.662 | 0.888 | 0.405 | 32 |
20 | KOR | HI | Temperate | 0.265 | 0.245 | 0.235 | 0.233 | 0.202 | 0.233 | 0.308 | 0.351 | 0.437 | 0.485 | 0.597 | 0.642 | 0.305 | 40 |
21 | KGZ | LMI | Temperate | 1 | 1 | 1 | 1 | 1 | 0.854 | 0.899 | 1 | 1 | 1 | 1 | 1 | 0.977 | 22 |
22 | LAO | LMI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
23 | LBN | LMI | Temperate | 0.353 | 0.368 | 0.488 | 0.385 | 0.078 | 0.214 | 0.186 | 0.245 | 0.248 | 0.680 | 0.805 | 0.344 | 0.257 | 41 |
24 | MYS | UMI | Tropical | 0.279 | 0.284 | 0.357 | 0.435 | 0.521 | 0.919 | 0.774 | 0.928 | 0.901 | 0.941 | 0.821 | 0.836 | 0.541 | 27 |
25 | MDV | UMI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
26 | MNG | LMI | Temperate | 1 | 1 | 1 | 0.999 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
27 | NPL | LMI | Temperate | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1 | 1 | 1 | 1 | 1 | 0.999 | 0.999 | 18 |
28 | PAK | LMI | Temperate | 0.571 | 0.560 | 0.537 | 0.538 | 0.551 | 0.591 | 0.610 | 0.620 | 0.600 | 0.755 | 0.977 | 1 | 0.630 | 25 |
29 | PHL | LMI | Tropical | 0.329 | 0.408 | 0.424 | 0.406 | 0.400 | 0.462 | 0.477 | 0.561 | 0.666 | 0.745 | 0.782 | 0.846 | 0.497 | 29 |
30 | RUS | UMI | Cold zone | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
31 | SAU | HI | Temperate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.999 | 1 | 1 |
32 | SGP | HI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
33 | LKA | LMI | Tropical | 0.347 | 0.301 | 0.207 | 0.418 | 0.394 | 0.438 | 0.338 | 0.354 | 0.613 | 0.555 | 0.609 | 0.901 | 0.397 | 33 |
34 | SYR | LI | Temperate | 0.328 | 0.408 | 0.396 | 0.342 | 0.215 | 0.040 | 0.090 | 0.082 | 0.095 | 0.117 | 0.143 | 0.176 | 0.125 | 44 |
35 | TWN | HI | Tropical | 0.349 | 0.354 | 0.420 | 0.363 | 0.300 | 0.300 | 0.340 | 0.341 | 0.351 | 0.414 | 0.425 | 0.474 | 0.362 | 36 |
36 | TJK | LMI | Temperate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
37 | THA | UMI | Tropical | 0.949 | 1 | 0.999 | 0.998 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 1 | 0.999 | 1 | 0.995 | 21 |
38 | TLS | LMI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
39 | TUR | UMI | Temperate | 0.279 | 0.270 | 0.283 | 0.266 | 0.199 | 0.323 | 0.350 | 0.335 | 0.414 | 0.652 | 0.643 | 0.650 | 0.337 | 37 |
40 | TKM | UMI | Temperate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
41 | ARE | HI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
42 | UZB | LMI | Temperate | 0.460 | 0.466 | 0.454 | 0.449 | 0.467 | 0.550 | 0.613 | 0.716 | 0.626 | 0.833 | 0.649 | 0.644 | 0.555 | 26 |
43 | VNM | LMI | Tropical | 0.365 | 0.370 | 0.430 | 0.404 | 0.431 | 0.438 | 0.526 | 0.785 | 0.852 | 0.606 | 0.542 | 0.737 | 0.499 | 28 |
44 | YEM | LI | Tropical | 1 | 1 | 1 | 1 | 1 | 1 | 0.999 | 0.999 | 1 | 1 | 1 | 1 | 1 | 1 |
Classification | Quantity | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Income | ||||||||||||||
HI | 9 | 0.846 | 0.844 | 0.850 | 0.844 | 0.833 | 0.837 | 0.850 | 0.855 | 0.865 | 0.878 | 0.891 | 0.902 | 0.858 |
UMI | 13 | 0.638 | 0.625 | 0.622 | 0.619 | 0.625 | 0.686 | 0.703 | 0.720 | 0.752 | 0.802 | 0.783 | 0.828 | 0.700 |
LMI | 18 | 0.670 | 0.675 | 0.680 | 0.682 | 0.667 | 0.664 | 0.679 | 0.717 | 0.758 | 0.811 | 0.813 | 0.818 | 0.719 |
LI | 4 | 0.593 | 0.589 | 0.582 | 0.586 | 0.578 | 0.548 | 0.551 | 0.548 | 0.610 | 0.664 | 0.687 | 0.754 | 0.607 |
Latitude | ||||||||||||||
Tropical | 17 | 0.715 | 0.722 | 0.730 | 0.739 | 0.740 | 0.751 | 0.751 | 0.783 | 0.822 | 0.817 | 0.810 | 0.857 | 0.770 |
Temperate | 26 | 0.661 | 0.653 | 0.650 | 0.643 | 0.629 | 0.647 | 0.670 | 0.686 | 0.718 | 0.796 | 0.801 | 0.809 | 0.697 |
Cold zone | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Asia | 44 | 0.690 | 0.687 | 0.689 | 0.688 | 0.680 | 0.695 | 0.709 | 0.730 | 0.765 | 0.809 | 0.809 | 0.832 | 0.732 |
Variable | Mean | Std. Dev. | Minimum | Maximum | Measurement |
---|---|---|---|---|---|
Explained variable | |||||
Renewable energy generation efficiency | 0.7199 | 0.3027 | 0.0781 | 1 | 0 to 1 |
Explanatory variable of technological dimension | |||||
Information digitization | 53.9479 | 28.0135 | 3.7 | 100 | % of population |
Financial openness | 0.2809 | 1.5179 | −1.9311 | 2.2994 | Chinn-Ito Index |
Technological innovation capabilities | 64,388.03 | 225,139.4 | 4 | 1,585,663 | Quantity |
Renewable energy device capacity share | 28.5001 | 26.9735 | 0.01 | 100 | % |
Explanatory variable of social dimension | |||||
Life quality | 94.2145 | 6.3019 | 69.2777 | 100 | % of population |
Democracy degree | 0.3973 | 0.229 | 0.015 | 0.866 | Electoral Democracy Index |
Control variable | |||||
Population density | 536.4035 | 1437.274 | 1.7354 | 7965.878 | People per sq. km |
Population growth | 1.2103 | 1.3933 | −4.1703 | 11.794 | Annual % |
GDP based on PPP | 21,705.3 | 20,777.36 | 2359.996 | 107,741.1 | GDP per capita, PPP (2017 constant international $) |
Explained Variable | |||
---|---|---|---|
Equation (6) Renewable Energy Generation Efficiency | |||
Explanatory Variable | Coefficient | Standard Errors | |
Constant | 3.0995 | *** | 0.5377 |
Explanatory variable of technological dimension | |||
Information digitization | 0.0030 | ** | 0.0013 |
Financial openness | 0.0888 | *** | 0.0220 |
Technological innovation capabilities | 2.82 × 10−7 | *** | 1.02 × 10−7 |
Renewable energy device capacity share | 0.0039 | *** | 0.0011 |
Explanatory variable of social dimension | |||
Life quality | −0.0216 | *** | 0.0055 |
Democracy degree | −0.4661 | *** | 0.1260 |
Control variable | |||
Population density | 3.41 × 10−5 | 3.16 × 10−5 | |
Population growth | 0.0365 | * | 0.0198 |
Geographical latitude | 0.0574 | 0.0552 | |
Dummy variable | |||
Middle-income economy | −0.4766 | *** | 0.1037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-L.; Huang, Y.-S.; You, C.-Y. Renewable Energy Generation Efficiency of Asian Economies: An Application of Dynamic Data Envelopment Analysis. Energies 2024, 17, 4682. https://doi.org/10.3390/en17184682
Hu J-L, Huang Y-S, You C-Y. Renewable Energy Generation Efficiency of Asian Economies: An Application of Dynamic Data Envelopment Analysis. Energies. 2024; 17(18):4682. https://doi.org/10.3390/en17184682
Chicago/Turabian StyleHu, Jin-Li, Yu-Shih Huang, and Chian-Yi You. 2024. "Renewable Energy Generation Efficiency of Asian Economies: An Application of Dynamic Data Envelopment Analysis" Energies 17, no. 18: 4682. https://doi.org/10.3390/en17184682
APA StyleHu, J.-L., Huang, Y.-S., & You, C.-Y. (2024). Renewable Energy Generation Efficiency of Asian Economies: An Application of Dynamic Data Envelopment Analysis. Energies, 17(18), 4682. https://doi.org/10.3390/en17184682