Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region
Abstract
:1. Introduction
- -
- separation of three groups of farms based on the comprehensiveness of realized investments;
- -
- indication of changes in production value and in energy costs recorded by farms as a function of investment comprehensiveness;
- -
- calculation of changes in energy intensity of production recorded by farms as a function of investment comprehensiveness.
2. Materials and Methods
2.1. Investment Comprehensiveness
- (a)
- comprehensive investments: if total investments across the study period (2009–2021) were more than half the value of fixed assets (as recorded in 2009–2021);
- (b)
- non-comprehensive, if total investments were between 0% and 50% of the value of assets;
- (c)
- negative investments, if the farms recorded a decline (decapitalization) in the value of assets.
2.2. Statistical Significance of Differences
3. Results and Discussion
4. Conclusions
- As the farms grew, so did the costs of energy consumption.
- This study has proven that, upon reaching a sufficiently large amount of investments, farms may become able to reduce the energy intensity of their production activities (but this will also be influenced by other factors, e.g., the type of agricultural production conducted).
- A decline in energy intensity was recorded in farms which implemented comprehensive investments.
- Conversely, the worst performance was recorded in farms with negative investments, i.e., those which witnessed decapitalization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Williges, K.; Mechler, R.; Bowyer, P.; Balkovic, J. Towards an assessment of adaptive capacity of the Europesna agricultural sector to droughts. Clim. Serv. 2017, 7, 47–48. [Google Scholar] [CrossRef]
- Khanian, M.; Marshall, N.; Zakerhaghighi, K.; Salimi, M.; Naghdi, A. Transforming agriculture to climate change in Famenin County, West Iran through a focus on environmental, economic and social factors. Weather Clim. Extrem. 2018, 21, 52–64. [Google Scholar] [CrossRef]
- Pauw, E.D.; Ramasamy, S. Rapid detection of stressed agricultural environments in Africa under climatic change 2000–2050 using agricultural resource indices and a hotspot mapping approach. Weather Clim. Extrem. 2020, 27, 100211. [Google Scholar] [CrossRef]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef]
- Singh, R.L.; Singh, P.K. Global environmental problems. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Singapore, 2017; pp. 13–41. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Food, agriculture & the environment: Can we feed the world & save the earth? Daedalus 2015, 144, 8–23. [Google Scholar] [CrossRef]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Zhang, J.; Drury, M. Sustainable agriculture in the EU and China: A comparative critical policy analysis approach. Environ. Sci. Policy 2024, 157, 103789. [Google Scholar] [CrossRef]
- Akzar, R.; Amandaria, R. Climate change effects on agricultural productivity and its implication for food security. IOP Conf. Ser. Earth Environ. Sci. 2021, 681, 012059. [Google Scholar] [CrossRef]
- Veysset, P.; Lherm, M.; Bébin, D.; Roulenc, M.; Benoit, M. Variability in greenhouse gas emissions, fossil energy consumption and farm economics in suckler beef production in 59 French farms. Agric. Ecosyst. Environ. 2014, 188, 180–191. [Google Scholar] [CrossRef]
- Yetgin, A. Exploring the Link between Soil Microbial Diversity and Nutritional Deficiencies. J. Agric. Prod. 2023, 4, 81–90. [Google Scholar] [CrossRef]
- Waaswa, A.; Nkurumwa, A.O.; Kibe, A.M. Communicating climate change adaptation strategies: Climate-smart agriculture information dissemination pathways among smallholder potato farmers in Gilgil Sub-County, Kenya. Heliyon 2021, 7, e07873. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.D.; Daioglou, V.; van Ittersum, M.; Reidsma, P.; Doelman, J.C.; van Middelaar, C.E.; van Vuuren, D.P. Reconciling global sustainability targets and local action for food production and climate change mitigation. Glob. Environ. Chang. 2019, 59, 101983. [Google Scholar] [CrossRef]
- Sanaullah, M.; Usman, M.; Wakeel, A.; Cheema, S.A.; Ashraf, I.; Farooq, M. Terrestrial ecosystem functioning affected by agricultural management systems: A review. Soil. Tillage Res. 2020, 196, 104464. [Google Scholar] [CrossRef]
- Mason-D’Croz, D.; Sulser, T.B.; Wiebie, K.; Rosegrant, M.W.; Lowder, S.K.; Nin-Pratt, A.; Willenbockel, D.; Robinson, S.; Zhu, T.; Cenacchi, N.; et al. Agricultural invetsments and hunger in Africa modelling potential contributions to SDG2—Zero Hunger. World Dev. 2019, 116, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Mensah, J.; Casadevall, S.R. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Social. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Rau, H.; Edmondson, R. Responding to the environmental crisis: Culture, power and possibilities of change. Eur. J. Cult. Political Sociol. 2022, 9, 259–272. [Google Scholar] [CrossRef]
- FAO. The State of Food Security and Nutrition in the World. In Food and Agriculture Organization of the United Nations; Food and Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
- Qaim, M. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Omotayo, A.O.; Omotayo, O.P. Potentials of microbe-plant assisted bioremediation in reclaiming heavy metal polluted soil environments for sustainable agriculture. Environ. Sustain. Indic. 2024, 22, 100396. [Google Scholar] [CrossRef]
- Bajar, R.G.C.A.; Ong, A.K.S.; German, J.D. Determining Sustainable Purchase Behavior for Green Products from Name-Brand Shops: A Gen Z Perspective in a Developing Country. Sustainability 2024, 16, 3747. [Google Scholar] [CrossRef]
- Ferreira, J.; Pardini, R.; Metzger, J.P.; Fonseca, C.R.; Pompeu, P.S.; Sparovek, G.; Louzada, J. Towards environmentally sustainable agriculture in Brazil: Challenges and opportunities for applied ecological research. J. Appl. Ecol. 2012, 49, 535–541. [Google Scholar] [CrossRef]
- Pelosi, C.; Goulard, M.; Balent, G. The spatial scale mismatch between ecological processes and agricultural management: Do difficulties come from underlying theoretical frameworks? Agric. Ecosyst. Environ. 2010, 139, 455–462. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Vågsholm, I.; Arzoomand, N.S.; Boqvist, S. Food security, safety, and sustainability—Getting the trade-offs right. Front. Sustain. Food Syst. 2020, 4, 16. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, T.; Yadav, M.; Gill, S.S.; Chauhan, N.S. Plant-microbe interactions for the sustainable agriculture and food security. Plant Gene 2021, 28, 100325. [Google Scholar] [CrossRef]
- Thapa, G.; Kumar, A.; Joshi, P.K. Agricultural Transformation in Nepal; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Keutgen, A.J. Climate change: Challenges and limitations in agriculture. IOP Conf. Ser. Earth Environ. Sci. 2023, 1183, 012069. [Google Scholar] [CrossRef]
- Sadowski, A.; Wojcieszak-Zbierska, M.M.; Zmyślona, J. Agricultural production in the least developed countries and its impact on emission of greenhouse gases—An energy approach. Land Use Policy 2024, 136, 106968. [Google Scholar] [CrossRef]
- Walker, R. Deforestation and economic development. Can. J. Reg. Sci. 1993, 16, 481–497. [Google Scholar] [CrossRef]
- Smith, L.E.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef]
- Zmyślona, J.; Sadowski, A.; Genstwa, N. Plant Protection and Fertilizer Use Efficiency in Farms in a Context of Overinvestment: A Case Study from Poland. Agriculture 2023, 13, 1567. [Google Scholar] [CrossRef]
- Spolador, H.F.; Roe, T.L. The Role of Agriculture on the Recent B razilian Economic Growth: How Agriculture Competes for Resources. Dev. Econ. 2013, 51, 333–359. [Google Scholar] [CrossRef]
- Pfeiffer, D.A. Eating Fossil Fuels: Oil, Food, and the Coming Crisis in Agriculture; New Society Publishers: Gabriola Island, BC, Canada, 2006. [Google Scholar]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renew. Sustain. Energy Rev. 2022, 158, 112098. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Qadri, M.A. A pervasive study on Green Manufacturing towards attaining sustainability. Green Technol. Sustain. 2023, 1, 100018. [Google Scholar] [CrossRef]
- Fluck, R.C. (Ed.) Energy in Farm Production; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Bamisile, O.; Jing, H.; Adedeji, M.; Li, J.; Anane, P.O.; Dagbasi, M.; Huang, Q. Towards cleaner/sustainable energy consumption in agriculture farms: Performance assessment of two innovative high-performance solar-based multigeneration systems. Energy Convers. Manag. 2021, 244, 114507. [Google Scholar] [CrossRef]
- Sadowski, A.; Czubak, W. Czynniki determinujące wykonanie inwestycji finansowanych ze środków prywatnych. Zagadnienia Ekon. Rolnej 2012, 1, 126–138. [Google Scholar]
- Woodhouse, P. Beyond industrial agriculture? Some questions about farm size, productivity and sustainability. J. Agrar. Chang. 2010, 10, 437–453. [Google Scholar] [CrossRef]
- Mudakkar, S.R.; Zaman, K.; Khan, M.M.; Ahmad, M. Energy for economic growth, industrialization, environment and natural resources: Living with just enough. Renew. Sustain. Energy Rev. 2013, 25, 580–595. [Google Scholar] [CrossRef]
- De Wit, C.T.; Huisman, H.; Rabbinge, R. Agriculture and its environment: Are there other ways? Agric. Syst. 1987, 23, 211–236. [Google Scholar] [CrossRef]
- Panel, M.M. Mechanized: Transforming Africa’s Agriculture Value Chains; International Food Policy Research Institute: Dhaka, Bangladesh, 2018. [Google Scholar]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef]
- Zegar, J.S. Rola drobnych gospodarstw rolnych w procesie społecznie zrównoważonego rozwoju obszarów wiejskich [The Role of Small Farms in the Socially Sustainable Development of Rural Areas]. Probl. Drobnych Gospod. Rolnych 2012, 1, 129–148. [Google Scholar]
- Conforti, P.; Giampietro, M. Fossil energy use in agriculture: An international comparison. Agric. Ecosyst. Environ. 1997, 65, 231–243. [Google Scholar] [CrossRef]
- Günther, F. Fossil energy and food security. Energy Environ. 2001, 12, 253–273. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Parcerisas, L.; Dupras, J. From mixed farming to intensive agriculture: Energy profiles of agriculture in Quebec, Canada, 1871–2011. Reg. Environ. Chang. 2018, 18, 1047–1057. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Genstwa, N.; Zmyślona, J. Greenhouse Gas Emissions Efficiency in Polish Agriculture. Agriculture 2024, 14, 56. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Qin, L. Incentives for promoting agricultural clean production technologies in China. J. Clean. Prod. 2014, 74, 54–61. [Google Scholar] [CrossRef]
- Lal, R. Carbon management in agricultural soils. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Zhang, Y.; Collins, A.L.; Jones, J.I.; Johnes, P.J.; Inman, A.; Freer, J.E. The potential benefits of on-farm mitigation scenarios for reducing multiple pollutant loadings in prioritised agri-environment areas across England. Environ. Sci. Policy 2017, 73, 100–114. [Google Scholar] [CrossRef]
- Friedmann, H.; McMichael, P. Agriculture and the state system. Sociol. Rural. 1989, 29, 93–117. [Google Scholar] [CrossRef]
- Ickowitz, A.; Powell, B.; Rowland, D.; Jones, A.; Sunderland, T. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Secur. 2019, 20, 9–16. [Google Scholar] [CrossRef]
- Cleveland, C.J. The direct and indirect use of fossil fuels and electricity in USA agriculture, 1910–1990. Agric. Ecosyst. Environ. 1995, 55, 111–121. [Google Scholar] [CrossRef]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- Engström, R.; Nilsson, M.; Finnveden, G. Which environmental problems get policy attention? Examining energy and agricultural sector policies in Sweden. Environ. Impact Assess. Rev. 2008, 28, 241–255. [Google Scholar] [CrossRef]
- El Chami, D.; Daccache, A.; El Moujabber, M. How can sustainable agriculture increase climate resilience? A systematic review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef]
- Singh, R.; Singh, H.; Raghubanshi, A.S. Challenges and opportunities for agricultural sustainability in changing climate scenarios: A perspective on Indian agriculture. Trop. Ecol. 2019, 60, 167–185. [Google Scholar] [CrossRef]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Agricultural productivity and food supply to meet increased demands. In Future Foods; Academic Press: Cambridge, MA, USA, 2022; pp. 539–553. [Google Scholar] [CrossRef]
- Majeed, Y.; Khan, M.U.; Waseem, M.; Zahid, U.; Mahmood, F.; Majeed, F.; Sultan, M.; Raza, A. Renewable energy as an alternative source for energy management in agriculture. Energy Rep. 2023, 10, 344–359. [Google Scholar] [CrossRef]
- Dumitran, G.E.; Vuta, L.I.; Negrusa, E.; Birdici, A.C. Reducing greenhouse gas emissions in Romanian agriculture using renewable energy sources. J. Clean. Prod. 2024, 467, 142918. [Google Scholar] [CrossRef]
- Shah, M.I.A.; Wahid, A.; Barrett, E.; Mason, K. Peer-to-peer energy trading in dairy farms using multi-agent systems. Comput. Electr. Eng. 2024, 118, 109437. [Google Scholar] [CrossRef]
- Castoldi, N.; Bechini, L. Integrated sustainability assessment of cropping systems with agro-ecological and economic indicators in northern Italy. Eur. J. Agron. 2010, 32, 59–72. [Google Scholar] [CrossRef]
- Dalgaard, R.; Halberg, N.; Kristensen, I.S.; Larsen, I. Modelling representative and coherent Danish farm types based on farm accountancy data for use in environmental assessments. Agric. Ecosyst. Environ. 2006, 117, 223–237. [Google Scholar] [CrossRef]
- Czyżewski, B.; Guth, M. Impact of policy and factor intensity on sustainable value of European agriculture: Exploring trade-offs of environmental, economic and social efficiency at the regional level. Agriculture 2021, 11, 78. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Safarzadeh, D.; Ahmadi, E.; Nabavi-Pelesaraei, A. Optimization of energy consumption of dairy farms using data envelopment analysis—A case study: Qazvin city of Iran. J. Saudi Soc. Agric. Sci. 2018, 17, 217–228. [Google Scholar] [CrossRef]
- Han, H.; Zhou, Z. The rebound effect of energy consumption and its determinants in China’s agricultural production. Energy 2024, 290, 129961. [Google Scholar] [CrossRef]
- Gołaś, Z. Analiza rentowności kapitału w rolnictwie. J. Agribus. Rural. Dev. 2009, 11, 63–74. [Google Scholar]
- Bezat-Jarzębowska, A. Relacje czynnikowe w rolnictwie–zarys koncepcji wraz z weryfikacją empiryczną. Zagadnienia Ekon. Rolnej 2021, 366, 59–73. [Google Scholar] [CrossRef]
- Kuta, Ł. Wpływ inwestycji w gospodarstwach rolnych na poprawę bezpieczeństwa rolników. Inżynieria Rol. 2013, 17, 191–200. [Google Scholar]
- Arizpe, N.; Giampietro, M.; Ramos-Martin, J. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991–2003). Crit. Rev. Plant Sci. 2011, 3, 45–63. [Google Scholar] [CrossRef]
- Czubak, W.; Sadowski, A.; Wigier, M. Ocena funkcjonowania i skutków wdrażanych programów wsparcia inwestycji w gospodarstwach rolnych z wykorzystaniem funduszy UE. Zagadnienia Ekon. Rolnej 2010, 322, 41–57. [Google Scholar]
- Ragazou, K.; Garefalakis, A.; Zafeiriou, E.; Passas, I. Agriculture 5.0: A new strategic management mode for a cut cost and an energy efficient agriculture sector. Energies 2022, 15, 3113. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.I.; de Molina, M.G.; Soto, D.; Infante-Amate, J. From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900–2014. J. Clean. Prod. 2019, 221, 295–305. [Google Scholar] [CrossRef]
- Mantoam, E.J.; Angnes, G.; Mekonnen, M.M.; Romanelli, T.L. Energy, carbon and water footprints on agricultural machinery. Biosyst. Eng. 2020, 198, 304–322. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L.; Dong, K.; Xie, M.; Du, Y. Agricultural mechanization, large-scale operation and agricultural carbon emissions. Cogent Food Agric. 2023, 9, 2238430. [Google Scholar] [CrossRef]
- Guru, P.K.; Shrivastava, A.K.; Tiwari, P.; Khandai, S.; Chandel, N.S. Estimation of carbon emissions of agricultural machinery use in India. ORYZA An. Int. J. Rice 2022, 59, 260–268. [Google Scholar] [CrossRef]
- Martinho VJ, P.D. Energy consumption across European Union farms: Efficiency in terms of farming output and utilized agricultural area. Energy 2016, 103, 543–556. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.D.J.; Torres-Pacheco, I.; Matsumoto, Y.; Toledano-Ayala, M.; Soto-Zarazúa, G.M.; Zelaya-Ángel, O.; Méndez-López, A. Applications of solar and wind renewable energy in agriculture: A review. Sci. Prog. 2019, 102, 127–140. [Google Scholar] [CrossRef]
- Le, T.L.; Lee, P.P.; Peng, K.C.; Chung, R.H. Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries. Agric. Econ. Zemědělská Ekon. 2019, 65, 249–258. [Google Scholar] [CrossRef]
- Xiong, L.; Shah, F.; Wu, W. Environmental and socio-economic performance of intensive farming systems with varying agricultural resource for maize production. Sci. Total Environ. 2022, 850, 158030. [Google Scholar] [CrossRef] [PubMed]
- Wysokiński, M.; Trębska, P.; Gromada, A. Energochłonność polskiego rolnictwa na tle innych sektorów gospodarki. Rocz. Ann. Pol. Assoc. Agric. Econ. Agribus. Stow. Ekon. Rol. E Agrobiznesu SERiA 2017, 2017, 294530. [Google Scholar] [CrossRef]
- Kuś, J.; Matyka, M. Zmiany organizacyjne w polskim rolnictwie w ostatnim 10-leciu na tle rolnictwa UE [Organisation changes in polish agriculture in the last 10 years on the background of the eu]. Zagadnienia Ekon. Rolnej Probl. Agric. Econ. 2014, 4, 50–67. [Google Scholar]
- Woś, A. Szanse i ograniczenia przekształceń strukturalnych polskiego rolnictwa [Opportunities and limitations of structural transformation of Polish agriculture]. Komun. Rap. Ekspertyzy. Inst. Ekon. Rol. I Gospod. Żywnościowej 2003, 491, 1–24. [Google Scholar]
- Sadowski, A.; Poczta, W. Ocena Skutków Inwestycji Wspieranych Kredytem Preferencyjnym dla Gospodarstw Rolnych [Evaluation of the Impact of Investments Supported by Preferential Credit for Farms]; Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego: Poznań, Poland, 2007. [Google Scholar]
- Kołodziejczak, W. Nadwyżka zatrudnienia w polskim rolnictwie-projekcja na tle państw Unii Europejskiej [The Surplus of Employment in Polish Agriculture—A Simulation Against the European Union Countries]. Probl. World Agric. Probl. Rol. Swiat. 2016, 16, 129–141. [Google Scholar]
- Pyrgies, J. Rynek ziemi rolnej w Polsce [Environmental, economic and social determinants of transformations in agriculture of mountainous areas on the example of the Polish Carpathians]. In Struktura Polskiego Rolnictwa na tle Unii Europejskiej [The Structure of Polish Agriculture Compared to the European Union]; Poczta, W., Rowiński, J., Eds.; CeDeWu Publishing House: Warszawa, Poland, 2019; pp. 181–216. [Google Scholar]
- Kundera, J. Poland in the European Union. The economic effects of ten years of membership. Riv. Di Studi Politici Internazionali 2014, 81, 377–396. [Google Scholar] [CrossRef]
- Bórawski, P.; Bełdycka-Bórawska, A. Polski handel zagraniczny artykułami rolno-spożywczymi i jego prognoza [Polish international trade of agri food products and its prognosis]. Probl. World Agric. Probl. Rol. Swiat. 2016, 16, 48–59. [Google Scholar] [CrossRef]
- Sadowski, A. Zrównoważony Rozwój gospodarstw Rolnych z Uwzględnieniem Wpływu Wspólnej Polityki Rolnej Unii Europejskiej [Sustainable Farm Development with the Impact of the European Union’s Common Agricultural Policy]; Wydawnictwo Uniwersytetu Przyrodniczego: Poznań, Poland, 2012. [Google Scholar]
- Kraatz, S. Energy intensity in livestock operations–Modeling of dairy farming systems in Germany. Agric. Syst. 2012, 110, 90–106. [Google Scholar] [CrossRef]
- Sandén, B.A.; Azar, C. Near-term technology policies for long-term climate targets—Economy wide versus technology specific approaches. Energy Policy 2005, 33, 1557–1576. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Poczta, W.; Kołodziejczak, M. Production Potential of the Polish Agriculture Sector and Farming Efficiency in the Context of Integration into the European Union; AR w Poznaniu: Poznan, Poland, 2004; p. 120. ISBN 83-7160-345-2. [Google Scholar]
- Żełobowska, E. Agriculture in Wielkopolskie Voivodship in 2020–2021; Statistical Office in Poznań: Poznań, Poland, 2022. [Google Scholar]
- Szalaty, N.; Czubak, W. Agriculture in the southwest functional area of wielkopolskie voivodeship. Intercathedra 2018, 4, 389–396. [Google Scholar] [CrossRef]
- Maciulewski, B.; Pawlak, J. Wartość produkcji rolniczej a koszty energii w świetle badań Polskiego FADN [Value of agricultural production and energy costs in the light of Polish FADN]. Probl. Inżynierii Rol. 2016, 2, 41–51. [Google Scholar]
- Directorate-General for Agriculture and Rural Development. European Commission. 2024. Available online: https://data.europa.eu/data/datasets/farm-accountancy-data-network-public-database (accessed on 28 July 2024).
- Available online: https://fadn.pl/ (accessed on 28 July 2024).
- Fusco, G.; Campobasso, F.; Laureti, F.; Frittelli, M.; Valente, D.; Petrosillo, I. The Environmental Impact of Agriculture: An Instrument to Support Public Policy. Ecol. Indic. 2023, 147, 109961. [Google Scholar] [CrossRef]
- Stanisz, A. Przystępny Kurs Statystyki z Zastosowaniem STATISTICA PL na Przykładach z Medycyny—Modele Liniowe i Nieliniowe; StatSoft Polska: Kraków, Poland, 2007; p. 868. ISBN 978-83-88724-30-5. [Google Scholar]
- Pawlak, J. Energy costs in the Polish agriculture [Koszty energii w rolnictwie polskim]. Zagadnienia Ekon. Rolnej 2013, 3, 83–99. [Google Scholar]
- Czubak, W.; Pawłowski, K. Sustainable Economic Development of Farms in Central and Eastern European Countries Driven by Pro-investment Mechanisms of the Common Agricultural Policy. Agriculture 2020, 10, 93. [Google Scholar] [CrossRef]
- Parzonko, A.; Hornowski, A.; Kotyza, P. Energy costs in dairy farms—Assessment in the years 2005–2016. Ann. Ann. Pol. Assoc. Agric. Econ. Agribus. 2019, XXI, 225–234. [Google Scholar] [CrossRef]
- Gołasa, P. Znaczenie kosztów energii w zależności od typu gospodarstw rolnych [The importance of energy costs depending on the type of farms]. Zesz. Nauk. SGGW Ekon. I Organ. Gospod. Żywnościowej 2014, 108, 45–54. [Google Scholar] [CrossRef]
- Zhang, W.; Qian, C.; Carlson, K.M.; Ge, X.; Wang, X.; Chen, X. Increasing farm size toimprove energy use efficiency and sustainability inmaize production. Food Energy Secur. 2021, 10, e271. [Google Scholar] [CrossRef]
- Samson, E.; Werf, H.V.D.; Dupraz, P.; Ruas, J.F.; Corson, M.S. Estimating environmental impacts of agricultural systems with LCA using data from the French Farm Accountancy Data Network (FADN). Cah. Agric. 2012, 21, 248–257. [Google Scholar] [CrossRef]
- De Koeijer, T.J.; Wossink, G.A.A.; Struik, P.C.; Renkema, J.A. Measuring agricultural sustainability in terms of efficiency: The case of Dutch sugar beet growers. J. Environ. Manag. 2002, 66, 9–17. [Google Scholar] [CrossRef]
- Jokiniemi, T.; Mikkola, H.; Rossner, H.; Talgre, L.; Lauringson, E.; Hovi, M.; Ahokas, J. Energy savings in plant production. Agron. Res. 2012, 10, 85–96. Available online: http://agronomy.emu.ee/vol10Spec1/p10s109.pdf (accessed on 28 July 2024).
- Pellizzi, G.; Guidobono Cavalchini, A.; Lazzari, M. Energy Savings in Agricultural Machinery and Mechanization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; p. 144. [Google Scholar] [CrossRef]
- Pimentel, D. Energy inputs in food crop production in developing and developed nations. Energies 2009, 2, 1–24. [Google Scholar] [CrossRef]
- Pawlak, J. Value of production versus inputs and costs of energy in agriculture. Probl. Agric. Econ. 2016, 346, 80–96. [Google Scholar] [CrossRef]
- Nasalski, Z.; Juchniewicz, M. Investment in farms with various directions of production development. Econ. Reg. Stud. 2023, 16, 676–693. [Google Scholar] [CrossRef]
- Latruffe, L. Competitiveness, Productivity and Efficiency in the Agricultural and Agri-Food Sectors; OECD Food, Agriculture and Fisheries Papers; OECD Publishing: Bristol, UK, 2010; p. 62. ISSN 18156797. [Google Scholar] [CrossRef]
- Kulawik, J.; Soliwoda, M.; Kurdyś-Kujawska, A.; Herda-Kopańska, J.; Klimkowski, C. Cost of energy consumption and return of excise tax on motor fuels vs. the durability of operations and financial sustainability in Polish agriculture. Energies 2023, 17, 124. [Google Scholar] [CrossRef]
- Dabkienė, V.; Baležentis, T.; Štreimikienė, D. Reconciling the micro-and macro-perspective in agricultural energy efficiency analysis for sustainable development. Sustain. Dev. 2022, 30, 149–164. [Google Scholar] [CrossRef]
Investment Scale | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total production value (PLN 1000) | |||||||||||||
Comprehensive | 351.5 | 399.0 | 479.0 | 529.3 | 547.5 | 560.4 | 524.1 | 589.4 | 664.8 | 634.3 | 693.0 | 698.6 | 796.9 |
Non-comprehensive | 215.1 | 228.6 | 253.0 | 274.5 | 264.1 | 246.0 | 226.7 | 240.0 | 268.8 | 244.7 | 239.0 | 240.2 | 276.6 |
Negative | 162.8 | 177.0 | 193.5 | 195.7 | 184.5 | 163.8 | 142.8 | 144.0 | 163.0 | 139.9 | 141.0 | 134.4 | 145.7 |
Energy costs (PLN 1000) | |||||||||||||
Comprehensive | 25.6 | 28.2 | 33.1 | 36.8 | 39.2 | 40.9 | 36.4 | 37.1 | 38.3 | 42.2 | 44.4 | 38.5 | 45.1 |
Non-comprehensive | 15.6 | 16.9 | 19.4 | 20.9 | 19.7 | 18.8 | 16.5 | 16.5 | 16.9 | 18.4 | 17.7 | 15.7 | 17.0 |
Negative | 10.3 | 11.8 | 13.3 | 14.0 | 14.9 | 13.3 | 11.7 | 11.6 | 11.8 | 12.7 | 12.5 | 12.5 | 14.1 |
Kruskal–Wallis Test T0 (2009–2011) | Kruskal–Wallis Test T1 (2019–2021) | ||||
---|---|---|---|---|---|
Farm groups | Comprehensive (N = 97; Me = 7.6) | Negative (N = 45; Me = 8.4) | Farm groups | Comprehensive (N = 97; Me = 6.4) | Negative (N = 45; Me = 9.0) |
Non-comprehensive (N = 217; Me = 7.9) | 0.4429 | 1.0000 | Non-comprehensive (N = 217; Me = 7.6) | 0.0083 | 0.474887 |
Comprehensive (N = 97; Me = 7.6) | x | 1.0000 | Comprehensive (N = 97; Me = 6.4) | x | 0.0028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czubak, W.; Zmyślona, J. Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region. Energies 2024, 17, 4713. https://doi.org/10.3390/en17184713
Czubak W, Zmyślona J. Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region. Energies. 2024; 17(18):4713. https://doi.org/10.3390/en17184713
Chicago/Turabian StyleCzubak, Wawrzyniec, and Jagoda Zmyślona. 2024. "Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region" Energies 17, no. 18: 4713. https://doi.org/10.3390/en17184713
APA StyleCzubak, W., & Zmyślona, J. (2024). Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region. Energies, 17(18), 4713. https://doi.org/10.3390/en17184713