Application of Hydrodynamic Cavitation in the Disintegration of Aerobic Granular Sludge—Evaluation of Pretreatment Time on Biomass Properties, Anaerobic Digestion Efficiency and Energy Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organisation of the Experiment
2.2. Materials
2.2.1. Aerobic Granular Sludge (AGS)
2.2.2. Inokulum of the Anaerobic Sludge (AS)
2.2.3. Hydrodynamic Cavitation Generator
2.2.4. Respirometric Measurements
2.3. Calculation Methods
2.4. Analytical Procedures
2.5. Statistical Methods
3. Results and Discussion
3.1. Aerobic Granular Sludge Properties
3.2. Efficiency and Kinetics of Anaerobic Digestion
3.3. Energy Balance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guzmán-Fierro, V.; Arriagada, C.; Gallardo, J.J.; Campos, V.; Roeckel, M. Challenges of Aerobic Granular Sludge Utilization: Fast Start-up Strategies and Cationic Pollutant Removal. Heliyon 2023, 9, e13503. [Google Scholar] [CrossRef] [PubMed]
- Hamza, R.; Rabii, A.; Ezzahraoui, F.Z.; Morgan, G.; Iorhemen, O.T. A Review of the State of Development of Aerobic Granular Sludge Technology over the Last 20 Years: Full-Scale Applications and Resource Recovery. Case Stud. Chem. Environ. Eng. 2022, 5, 100173. [Google Scholar] [CrossRef]
- Guo, H.; van Lier, J.B.; de Kreuk, M. Digestibility of Waste Aerobic Granular Sludge from a Full-Scale Municipal Wastewater Treatment System. Water Res. 2020, 173, 115617. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, F.; Rasheduzzaman, M.; Manik, M.; Hasan, M.M. Activated Sludge Process for Wastewater Treatment. In Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment; Springer Nature: Singapore, 2023; pp. 23–50. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Sarvajith, M. Granular Stability, Nitrogen and Phosphorus Removal Pathways of Aerobic Granular Sludge Treating Real Municipal Wastewater at Different Temperatures. J. Environ. Chem. Eng. 2023, 11, 110769. [Google Scholar] [CrossRef]
- Sharma, K.S.; Panchal, K.; Chhimwal, M.; Kumar, D. Integrated Detection and Natural Remediation Technology as a Low-Cost Alternative for Wastewater Treatment. Health Sci. Rev. 2023, 8, 100111. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M. Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives. Sustainability 2022, 14, 10904. [Google Scholar] [CrossRef]
- Cheng, L.; Wei, M.; Guo, G.; Hu, Q.; Li, B.; Jiang, Y.; Hu, Z. Effects of Feeding Mode on the Formation and Stability of Aerobic Granular Sludge under Combined Antibiotic Stress. Chem. Eng. J. 2023, 475, 145996. [Google Scholar] [CrossRef]
- Zielinski, M.; Debowski, M.; Kazimierowicz, J. The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge. Energies 2021, 14, 590. [Google Scholar] [CrossRef]
- Hidaka, T.; Tsushima, I.; Tsumori, J. Comparative Analyses of Microbial Structures and Gene Copy Numbers in the Anaerobic Digestion of Various Types of Sewage Sludge. Bioresour. Technol. 2018, 253, 315–322. [Google Scholar] [CrossRef]
- Tsangas, M.; Papamichael, I.; Banti, D.; Samaras, P.; Zorpas, A.A. LCA of Municipal Wastewater Treatment. Chemosphere 2023, 341, 139952. [Google Scholar] [CrossRef]
- Kosar, S.; Isik, O.; Akdag, Y.; Gulhan, H.; Koyuncu, I.; Ozgun, H.; Ersahin, M.E. Impact of Seed Sludge Characteristics on Granulation and Performance of Aerobic Granular Sludge Process. J. Clean. Prod. 2022, 363, 132424. [Google Scholar] [CrossRef]
- Dababat, S.; Berzio, S.; Wichern, M.; Lübken, M. Anaerobic Digestibility of Aerobic Granular Sludge from Continuous Flow Reactors: The Role of Granule Size Distribution. Water Sci. Technol. 2023, 87, 3047–3058. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Kisielewska, M.; Nowicka, A.; Rokicka, M.; Szwarc, K. Comparison of Ultrasonic and Hydrothermal Cavitation Pretreatments of Cattle Manure Mixed with Straw Wheat on Fermentative Biogas Production. Waste Biomass Valorization 2019, 10, 747–754. [Google Scholar] [CrossRef]
- Yuan, Q.; Gong, H.; Xi, H.; Wang, K. Aerobic Granular Sludge Formation Based on Substrate Availability: Effects of Flow Pattern and Fermentation Pretreatment. Front. Environ. Sci. Eng. 2020, 14, 49. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Chang, S.W.; Ngo, H.H.; Guo, W.; Nghiem, L.D.; Banu, J.R.; Jeon, B.H.; Nguyen, D.D. Influence of Thermal Hydrolysis Pretreatment on Physicochemical Properties and Anaerobic Biodegradability of Waste Activated Sludge with Different Solids Content. Waste Manag. 2019, 85, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Cydzik-Kwiatkowska, A.; Bernat, K.; Zielińska, M.; Gusiatin, M.Z.; Wojnowska-Baryła, I.; Kulikowska, D. Valorization of Full-Scale Waste Aerobic Granular Sludge for Biogas Production and the Characteristics of the Digestate. Chemosphere 2022, 303, 135167. [Google Scholar] [CrossRef] [PubMed]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion. Int. J. Environ. Res. Public Health 2023, 20, 4234. [Google Scholar] [CrossRef]
- Zou, X.; Yang, R.; Zhou, X.; Cao, G.; Zhu, R.; Ouyang, F. Effects of Mixed Alkali-Thermal Pretreatment on Anaerobic Digestion Performance of Waste Activated Sludge. J. Clean. Prod. 2020, 259, 120940. [Google Scholar] [CrossRef]
- Dębowski, M.; Kisielewska, M.; Zieliński, M.; Kazimierowicz, J. The Influence of the Ultrasound Disintegration of Microalgal–Bacterial Granular Sludge on Anaerobic Digestion Efficiency. Appl. Sci. 2023, 13, 7387. [Google Scholar] [CrossRef]
- EN 15934:2012; Sludge, Treated Biowaste, Soil and Waste—Calculation of Dry Matter Fraction after. Available online: https://standards.iteh.ai/catalog/standards/cen/c7e440f9-c400-4318-8ee5-637e7f127c5d/en-15934-2012 (accessed on 9 October 2023).
- PN-C-04527:1981; Chemical Analysis—Determination of Total Nitrogen by Distillation. Available online: https://sklep.pkn.pl/pn-c-04527-1981p.html (accessed on 9 October 2023).
- Krul, E.S. Calculation of Nitrogen-to-Protein Conversion Factors: A Review with a Focus on Soy Protein. J. Am. Oil Chem. Soc. 2019, 96, 339–364. [Google Scholar] [CrossRef]
- Das, A.; Mondal, C. Comparative Kinetic Study of Anaerobic Treatment of Thermally Pretreated Source-Sorted Organic Market Refuse. J. Eng. 2015, 2015, 684749. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Zhu, N.; Yuan, H.; Shen, Y. The Extent of Sludge Solubilization Allows to Estimate the Efficacy of Ozonation for Removal of Polycyclic Aromatic Hydrocarbons (PAHs) in Municipal Sewage Sludge. J. Hazard. Mater. 2021, 413, 125404. [Google Scholar] [CrossRef] [PubMed]
- Ndobeni, A.; Oyekola, O.; Welz, P.J. Organic Removal Rates and Biogas Production of an Upflow Anaerobic Sludge Blanket Reactor Treating Sugarcane Molasses. S. Afr. J. Chem. Eng. 2019, 28, 1–7. [Google Scholar] [CrossRef]
- Kasinath, A.; Fudala-Ksiazek, S.; Szopinska, M.; Bylinski, H.; Artichowicz, W.; Remiszewska-Skwarek, A.; Luczkiewicz, A. Biomass in Biogas Production: Pretreatment and Codigestion. Renew. Sustain. Energy Rev. 2021, 150, 111509. [Google Scholar] [CrossRef]
- Li, C.; Nges, I.A.; Lu, W.; Wang, H. Assessment of the Degradation Efficiency of Full-Scale Biogas Plants: A Comparative Study of Degradation Indicators. Bioresour. Technol. 2017, 244, 304–312. [Google Scholar] [CrossRef]
- Kim, M.; Kim, B.C.; Nam, K.; Choi, Y. Effect of Pretreatment Solutions and Conditions on Decomposition and Anaerobic Digestion of Lignocellulosic Biomass in Rice Straw. Biochem. Eng. J. 2018, 140, 108–114. [Google Scholar] [CrossRef]
- Şaǧban, F.O.T.; Dindar, E.; Cirakoglu, C.; Keskinler, B. Hydrodynamic Cavitation of Waste-Activated Sludge. Environ. Eng. Sci. 2018, 35, 775–784. [Google Scholar] [CrossRef]
- Kim, H.; Sun, X.; Koo, B.; Yoon, J.Y. Experimental Investigation of Sludge Treatment Using a Rotor-Stator Type Hydrodynamic Cavitation Reactor and an Ultrasonic Bath. Process 2019, 7, 790. [Google Scholar] [CrossRef]
- Lee, I.; Han, J.I. The Effects of Waste-Activated Sludge Pretreatment Using Hydrodynamic Cavitation for Methane Production. Ultrason. Sonochem. 2013, 20, 1450–1455. [Google Scholar] [CrossRef]
- Mancuso, G.; Langone, M.; Andreottola, G.; Bruni, L. Effects of Hydrodynamic Cavitation, Low-Level Thermal and Low-Level Alkaline Pre-Treatments on Sludge Solubilisation. Ultrason. Sonochem. 2019, 59, 104750. [Google Scholar] [CrossRef]
- Petkovšek, M.; Mlakar, M.; Levstek, M.; Stražar, M.; Širok, B.; Dular, M. A Novel Rotation Generator of Hydrodynamic Cavitation for Waste-Activated Sludge Disintegration. Ultrason. Sonochem. 2015, 26, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Langone, M.; Di Maggio, R.; Toscano, A.; Andreottola, G. Effect of Hydrodynamic Cavitation on Flocs Structure in Sewage Sludge to Increase Stabilization for Efficient and Safe Reuse in Agriculture. Bioremediat. J. 2022, 26, 41–52. [Google Scholar] [CrossRef]
- Ferrentino, R.; Andreottola, G. Investigation of Sludge Solubilization and Phosphorous Release in Anaerobic Side-Stream Reactor with a Low Pressure Swirling Jet Hydrodynamic Cavitation Treatment. J. Environ. Chem. Eng. 2020, 8, 104389. [Google Scholar] [CrossRef]
- Lee, G.; Lee, I.; Han, J.I. A Combined Method of Hydrodynamic Cavitation and Alkaline Treatment for Waste-Activated Sludge Solubilization; N/P Recovery from Anaerobic Granular Sludge. J. Environ. Chem. Eng. 2019, 7, 103329. [Google Scholar] [CrossRef]
- Zupanc, M.; Humar, B.B.; Dular, M.; Gostiša, J.; Hočevar, M.; Repinc, S.K.; Krzyk, M.; Novak, L.; Ortar, J.; Pandur, Ž.; et al. The Use of Hydrodynamic Cavitation for Waste-to-Energy Approach to Enhance Methane Production from Waste Activated Sludge. J. Environ. Manag. 2023, 347, 119074. [Google Scholar] [CrossRef]
- Garlicka, A.; Zubrowska-Sudol, M.; Umiejewska, K.; Roubinek, O.; Palige, J.; Chmielewski, A. Effects of Thickened Excess Sludge Pre-Treatment Using Hydrodynamic Cavitation for Anaerobic Digestion. Energies 2020, 13, 2483. [Google Scholar] [CrossRef]
- Islam, M.S.; Ranade, V. Enhancing Bmp and Digestibility of Daf Sludge Via Hydrodynamic Cavitation. SSRN 2023, 1–33. [Google Scholar] [CrossRef]
Stage 1 | ||||
---|---|---|---|---|
Variant | HC Time (Min) | Energy Consumption | Temperature of AGS after HC (°C) | |
(Wh/L) | (Wh/gTS) | |||
V0 | 0 | - | - | 21.2 |
V1 | 1 | 1.2 | 0.02 | 21.6 |
V2 | 2.5 | 2.8 | 0.05 | 21.9 |
V3 | 5 | 5.2 | 0.09 | 22.4 |
V4 | 10 | 9.6 | 0.16 | 23.8 |
V5 | 15 | 13.6 | 0.23 | 27.0 |
V6 | 20 | 15.6 | 0.27 | 27.5 |
V7 | 25 | 17.2 | 0.29 | 28.2 |
V8 | 50 | 26.0 | 0.44 | 28.4 |
Stage 2 | ||||
Respirometric measurement of anaerobic digestion: Temerature—38 °C Initial organic load rate—5.0 gVS/L Retention time—20 days Frequency of partial pressure measurement—2 h |
Parameter | Unit | Value | |
---|---|---|---|
AGS | AS | ||
Total solids (TS) | [mg/gFM] | 58.6 ± 3.1 | 21.0 ± 2.2 |
Mineral solids (MS) | [mg/gFM] | 16.0 ± 1.8 | 6.4 ± 1.5 |
Volatile solids (VS) | [mg/gFM] | 42.5 ± 1.8 | 14.6 ± 1.5 |
Total nitrogen (TN) | [mgN/gTS] | 32.4 ± 2.3 | 30.5 ± 1.9 |
COD | [mgO2/L] | 225.0 ± 19.8 | 412.0 ± 67.2 |
TOC | [mg/L] | 72.2 ± 13.7 | 290 ± 11.4 |
TC | [mg/L] | 175.5 ± 13.5 | 352 ± 10.9 |
IC | [mg/L] | 31.0 ± 9.1 | 62 ± 7.2 |
Lipids | [mg/gTS] | 0.42 ± 0.1 | 0.34 ± 0.1 |
Proteins | [mg/gTS] | 202.5 ± 14.4 | 190.6 ± 11.9 |
Parametr | Unit | HC Time [Min] (Variant) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 (V0) | 1 (V1) | 2.5 (V2) | 5 (V3) | 10 (V4) | 15 (V5) | 20 (V6) | 25 (V7) | 50 (V8) | ||
Total solids (TS) | [mg/gFM] | 58.6 ± 3.1 | 53.4 ± 1.7 | 54.5 ± 2.1 | 55.0 ± 1.3 | 56.2 ± 2.6 | 56.7 ± 2.9 | 56.0 ± 2.3 | 55.8 ± 1.4 | 55.7 ± 3.2 |
Mineral solids (MS) | [mg/gFM] | 16.0 ± 1.8 | 15.0 ± 1.2 | 15.1 ± 0.9 | 15.1 ± 1.5 | 15.7 ± 2.1 | 16.1 ± 0.7 | 15.9 ± 1.3 | 15.8 ± 1.1 | 15.4 ± 2.4 |
Volatile solids (VS) | [mg/gFM] | 42.5 ± 1.8 | 38.4 ± 1.2 | 39.3 ± 0.9 | 39.9 ± 1.5 | 40.6 ± 2.1 | 40.6 ± 0.7 | 40.1 ± 1.3 | 40.1 ± 1.1 | 40.4 ± 2.4 |
Total nitrogen (TN) | [mgN/gTS] | 32.4 ± 2.3 | 32.2 ± 1.9 | 31.5 ± 1.4 | 32.2 ± 1.6 | 34.5 ± 1.6 | 36.4 ± 2.1 | 38.8 ± 1.2 | 38.5 ± 2.0 | 37.5 ± 0.9 |
COD | [mgO2/L] | 225.0 ± 19.8 | 356.0 ± 21.3 | 429.0 ± 19.8 | 514.0 ± 39.2 | 878.0 ± 32.6 | 1217.0 ± 70.8 | 1318.0 ± 77.2 | 1332.0 ± 62.6 | 1305.0 ± 91.1 |
TOC | [mg/L] | 72.2 ± 13.7 | 111.9 ± 12.9 | 144.5 ± 9.1 | 221.5 ± 17.9 | 352.4 ± 21.2 | 354.1 ± 20.6 | 370.6 ± 23.8 | 370.9 ± 19.9 | 372.8 ± 16.2 |
TC | [mg/L] | 175.5 ± 13.5 | 138.4 ± 19.1 | 163.1 ± 14.3 | 271.3 ± 17.7 | 410.4 ± 29.2 | 405.0 ± 20.7 | 426.2 ± 31.2 | 427.2 ± 17.4 | 118.7 ± 14.6 |
IC | [mg/L] | 31.0 ± 9.1 | 47.0 ± 7.2 | 51.2 ± 12.9 | 49.8 ± 17.9 | 58.0 ± 21.2 | 50.9 ± 20.6 | 55.6 ± 23.8 | 56.3 ± 19.9 | 46.5 ± 13.7 |
Lipids | [mg/gTS] | 0.42 ± 0.1 | 0.6 ± 0.11 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.5 ± 0.2 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.2 |
Protein | [mg/gTS] | 202.5 ± 14.4 | 201.3 ± 11.9 | 196.9 ± 8.7 | 201.3 ± 10.0 | 215.6 ± 10.0 | 227.5 ± 13.1 | 242.5 ± 7.5 | 240.6 ± 12.5 | 234.4 ± 5.6 |
Cavitation Time [Min] (Variant) | Biogas | Methane | Biogas Composition | ||||||
---|---|---|---|---|---|---|---|---|---|
mL/gFM | mL/gTS | mL/gVS | mL/gFM | mL/gTS | mL/gVS | CH4 [%] | CO2 [%] | O2 [%] | |
0 (V0) | 25.6 ± 1.5 | 457.2 ± 26.8 | 631.0 ± 37.0 | 16.2 ± 0.9 | 289.0 ± 16.9 | 398.8 ± 23.4 | 63.2 ± 1.2 | 36.3 ± 1.1 | 0.4 ± 0.1 |
1 (V1) | 26.2 ± 1.9 | 461.7 ± 33.5 | 650.3 ± 47.2 | 16.3 ± 1.2 | 288.1 ± 20.9 | 405.8 ± 29.2 | 62.4 ± 1.1 | 37.1 ± 1.0 | 0.4 ± 0.1 |
2.5 (V2) | 27.8 ± 1.3 | 480.1 ± 22.4 | 680.0 ± 31.8 | 18.4 ± 0.8 | 324.6 ± 14.1 | 427.8 ± 11.5 | 62.9 ± 0.9 | 36.0 ± 0.6 | 1.1 ± 0.3 |
5 (V3) | 29.2 ± 1.7 | 505.2 ± 29.4 | 710.3 ± 41.4 | 18.1 ± 1.1 | 331.9 ± 18.3 | 441.0 ± 20.1 | 62.1 ± 2.3 | 36.7 ± 2.1 | 1.2 ± 0.2 |
10 (V4) | 30.6 ± 1.6 | 527.9 ± 27.6 | 730.6 ± 38.3 | 19.2 ± 1.0 | 342.6 ± 17.4 | 452.3 ± 14.7 | 61.9 ± 1.6 | 37.0 ± 1.5 | 1.1 ± 0.1 |
15 (V5) | 30.8 ± 1.4 | 548.3 ± 24.9 | 767.6 ± 34.9 | 19.3 ± 0.9 | 342.8 ± 15.6 | 487.6 ± 12.1 | 63.5 ± 1.2 | 36.1 ± 1.1 | 0.3 ± 0.1 |
20 (V6) | 29.6 ± 1.3 | 557.5 ± 24.5 | 769.3 ± 33.8 | 18.7 ± 0.8 | 352.9 ± 15.5 | 487.0 ± 18.2 | 63.3 ± 0.6 | 35.8 ± 0.4 | 0.9 ± 0.2 |
25 (V7) | 29.9 ± 1.6 | 539.4 ± 28.9 | 772.1 ± 41.3 | 18.7 ± 1.0 | 336.6 ± 18.0 | 489.5 ± 10.7 | 63.4 ± 0.8 | 36.0 ± 0.6 | 0.5 ± 0.2 |
50 (V8) | 30.5 ± 1.2 | 541.0 ± 21.3 | 785.2 ± 30.9 | 21.4 ± 0.7 | 393.4 ± 13.2 | 495.9 ± 12.3 | 63.2 ± 1.4 | 35.9 ± 1.0 | 0.9 ± 0.4 |
Variant | HK Time [Min] | Energy Consumption [kWh] | Specific Energy Input (Es) [Wh/gTS] | CH4 Yeld mL/gTS | CH4 Energy Value (YCH4) [Wh/L] | Gross Energy Output (EGout) Wh/gTS | Net Energy Output (ENout) kWh/MgTS | Net Energy Gain (Enet) kWh/MgTS |
---|---|---|---|---|---|---|---|---|
V0 | 0 | 0 | 0 | 278.6 | 9.17 | 2.55 | 2550 | 0.000 |
V1 | 1 | 0.03 | 0.02 | 283.4 | 2.60 | 2580 | 45 | |
V2 | 2.5 | 0.07 | 0.05 | 298.8 | 2.74 | 2690 | 141 | |
V3 | 5 | 0.13 | 0.09 | 308.1 | 2.82 | 2730 | 85 | |
V4 | 10 | 0.24 | 0.16 | 316.0 | 2.90 | 2740 | 73 | |
V5 | 15 | 0.34 | 0.23 | 340.6 | 3.12 | 2890 | 226 | |
V6 | 20 | 0.39 | 0.27 | 340.2 | 3.12 | 2850 | −4 | |
V7 | 25 | 0.43 | 0.29 | 342.0 | 3.14 | 2850 | 16 | |
V8 | 50 | 0.65 | 0.44 | 346.4 | 3.18 | 2740 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, M.; Dębowski, M.; Kazimierowicz, J.; Nowicka, A.; Dudek, M. Application of Hydrodynamic Cavitation in the Disintegration of Aerobic Granular Sludge—Evaluation of Pretreatment Time on Biomass Properties, Anaerobic Digestion Efficiency and Energy Balance. Energies 2024, 17, 335. https://doi.org/10.3390/en17020335
Zieliński M, Dębowski M, Kazimierowicz J, Nowicka A, Dudek M. Application of Hydrodynamic Cavitation in the Disintegration of Aerobic Granular Sludge—Evaluation of Pretreatment Time on Biomass Properties, Anaerobic Digestion Efficiency and Energy Balance. Energies. 2024; 17(2):335. https://doi.org/10.3390/en17020335
Chicago/Turabian StyleZieliński, Marcin, Marcin Dębowski, Joanna Kazimierowicz, Anna Nowicka, and Magda Dudek. 2024. "Application of Hydrodynamic Cavitation in the Disintegration of Aerobic Granular Sludge—Evaluation of Pretreatment Time on Biomass Properties, Anaerobic Digestion Efficiency and Energy Balance" Energies 17, no. 2: 335. https://doi.org/10.3390/en17020335
APA StyleZieliński, M., Dębowski, M., Kazimierowicz, J., Nowicka, A., & Dudek, M. (2024). Application of Hydrodynamic Cavitation in the Disintegration of Aerobic Granular Sludge—Evaluation of Pretreatment Time on Biomass Properties, Anaerobic Digestion Efficiency and Energy Balance. Energies, 17(2), 335. https://doi.org/10.3390/en17020335