Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review
Abstract
:1. Introduction
2. Evolution of Thermal Insulation Materials
2.1. Early Insulation Materials
2.2. Nineteenth and Early Twentieth Century: Industrial Revolution
2.2.1. Cork
2.2.2. Insulation Materials from Wood Waste: Shavings, Sawdust, and Wood Pulp
2.2.3. Wood Wool
2.2.4. Asbestos
2.3. Mid- and Late 20th Century: Advances in Thermal Insulation Materials
2.3.1. Mineral Wool
2.3.2. Fiberglass and Foam Glass
2.3.3. Plastic Foams
2.3.4. Cellulose Insulation
2.4. Twenty-First Century: Sustainable and High-Performance Materials
2.4.1. Aerogel Insulation
2.4.2. Vacuum Insulation Panels (VIPs)
2.4.3. Phase Change Materials (PCMs)
2.4.4. Other Materials
2.5. Recap of Historical Milestones and Current Works
3. Properties and Performance Criteria of Insulation Materials
- -
- Thermal comfort: The maintenance of a stable indoor temperature, enhancing user comfort by preventing cold or excessively heated external surfaces.
- -
- Building integrity: Proper thermal insulation protects the building structure from damage caused by temperature fluctuations and moisture condensation. It also helps prevent thermal bridging, local dampness, and mold development.
- -
- Energy savings: A well-insulated building consumes less energy for heating in winter and cooling in summer, leading to lower energy consumptions.
- -
- Environmental protection: Reducing energy consumption for heating and cooling decreases greenhouse gas emissions, which are significant contributors to climate change.
- -
- Reduce refers to minimizing the amount of material used, which can lower the environmental impact during production and reduce waste generation.
- -
- Reuse involves extending the life of insulation materials by using them in multiple projects or applications, reducing the demand for new resources.
- -
- Recycle focuses on reclaiming insulation materials at the end of their life cycle, processing them into new products, and closing the resource loop.
- -
- Recover suggests utilizing energy recovery processes for materials that cannot be recycled, such as burning waste insulation in controlled conditions to generate energy.
- -
- Redesign encourages the development of new insulation materials that are easier to recycle, more durable, and less harmful to the environment.
- -
- Rethink promotes a shift in how we approach insulation, advocating for more sustainable materials, better design practices, and more efficient use of resources.
4. Classifications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leong, K.Y.; Saidur, R.; Khairulmaini, M.; Michael, Z.; Kamyar, A. Heat Transfer and Entropy Analysis of Three Different Types of Heat Exchangers Operated with Nanofluids. Int. Commun. Heat Mass Transf. 2012, 39, 838–843. [Google Scholar] [CrossRef]
- Zhan, N.; Xu, Y.; Wang, D.; Zhou, W.; Lv, H. Research on the Heat Transfer Rules of Natural Convection in a Building with Single Heat Source. Procedia Eng. 2016, 146, 75–82. [Google Scholar] [CrossRef]
- Jalghaf, H.K.; Kovács, E.; Bolló, B. Comparison of Old and New Stable Explicit Methods for Heat Conduction, Convection, and Radiation in an Insulated Wall with Thermal Bridging. Buildings 2022, 12, 1365. [Google Scholar] [CrossRef]
- Hofmeister, A.M. Theory and Measurement of Heat Transport in Solids: How Rigidity and Spectral Properties Govern Behavior. Materials 2024, 17, 4469. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2023. 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 20 October 2024).
- Kulovesi, K.; Oberthür, S.; van Asselt, H.; Savaresi, A. The European Climate Law: Strengthening EU Procedural Climate Governance? J. Environ. Law 2024, 36, 23–42. [Google Scholar] [CrossRef]
- European Commission. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/heating-and-cooling_en (accessed on 20 October 2024).
- European Commission. Energy Use in Buildings. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 20 October 2024).
- European Union. Available online: https://Climate-Pact.Europa.Eu/Index_en (accessed on 20 October 2024).
- Kośny, J.; Yarbrough, D.W. Short History of Thermal Insulation and Radiation Control Technologies Used in Architecture. In Thermal Insulation and Radiation Control Technologies for Buildings; Kośny, J., Yarbrough, D.W., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–35. ISBN 978-3-030-98693-3. [Google Scholar]
- Bozsaky, D. The Historical Development of Thermal Insulation Materials. Period. Polytech. Arch. 2010, 41, 49–56. [Google Scholar] [CrossRef]
- Okokpujie, I.P.; Essien, V.; Ikumapayi, O.M.; Nnochiri, E.S.; Okokpujie, K.; Akinlabi, E.T. An Overview of Thermal Insulation Material for Sustainable Engineering Building Application. Int. J. Des. Nat. Ecodynamics 2022, 17, 831–841. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation Materials for the Building Sector: A Review and Comparative Analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Ijjada, N.; Nayaka, R.R. Review on Properties of Some Thermal Insulating Materials Providing More Comfort in the Building. Mater. Today Proc. 2022, 58, 1354–1359. [Google Scholar] [CrossRef]
- EN 15804+A2; Updated EPD Standard. 2023. Available online: https://support.etoollcd.com/index.php/knowledgebase/updated-epd-standard-en-15804a2/ (accessed on 20 October 2024).
- Moutik, B.; Summerscales, J.; Graham-Jones, J.; Pemberton, R. Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis. Sustainability 2023, 15, 13408. [Google Scholar] [CrossRef]
- Ding, G.K.C. 3-Life Cycle Assessment (LCA) of Sustainable Building Materials: An Overview. In Eco-efficient Construction and Building Materials; Pacheco-Torgal, F., Cabeza, L.F., Labrincha, J., de Magalhães, A., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 38–62. ISBN 978-0-85709-767-5. [Google Scholar]
- Pargana, N.; Pinheiro, M.D.; Silvestre, J.D.; de Brito, J. Comparative Environmental Life Cycle Assessment of Thermal Insulation Materials of Buildings. Energy Build. 2014, 82, 466–481. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, State-of-the-Art and Renewable Thermal Building Insulation Materials: An Overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiao, Y.; Cao, M.; Jin, L. Simulation Analysis on Summer Conditions of Ancient Architecture of Tower Buildings Based on CFD. Energy Procedia 2017, 143, 313–319. [Google Scholar] [CrossRef]
- Gou, S.; Li, Z.; Zhao, Q.; Nik, V.M.; Scartezzini, J.-L. Climate Responsive Strategies of Traditional Dwellings Located in an Ancient Village in Hot Summer and Cold Winter Region of China. Build. Environ. 2015, 86, 151–165. [Google Scholar] [CrossRef]
- Hatamipour, M.S.; Abedi, A. Passive Cooling Systems in Buildings: Some Useful Experiences from Ancient Architecture for Natural Cooling in a Hot and Humid Region. Energy Convers. Manag. 2008, 49, 2317–2323. [Google Scholar] [CrossRef]
- Di Turi, S.; García-Pulido, L.J.; Ruggiero, F.; Stefanizzi, P. Recovery of Ancient Bioclimatic Strategies for Energy Retrofit in Historical Buildings: The Case of the Infants’ Tower in the Alhambra. Energy Procedia 2017, 133, 300–311. [Google Scholar] [CrossRef]
- Bozsaky, D. Historical Development and Special Building Structures of In-Earth Embedded Houses. Acta Tech. Jaurinensis 2015, 8, 113–130. [Google Scholar] [CrossRef]
- Milanović, A.R.; Kurtović Folić, N.; Folić, R. Earth-Sheltered House: A Case Study of Dobraca Village House near Kragujevac, Serbia. Sustainability 2018, 10, 3629. [Google Scholar] [CrossRef]
- Skara Brae. Available online: https://en.wikipedia.org/wiki/Skara_Brae (accessed on 28 September 2024).
- Benrabah, A.; Senent Domínguez, S.; Carrera-Ramírez, F.; Álvarez-Alonso, D.; de Andrés-Herrero, M.; Jorda Bordehore, L. Structural and Geomechanical Analysis of Natural Caves and Rock Shelters: Comparison between Manual and Remote Sensing Discontinuity Data Gathering. Remote Sens. 2024, 16, 72. [Google Scholar] [CrossRef]
- Bacus, E.A. Southeast Asia, Archaeology Of. In International Encyclopedia of the Social & Behavioral Sciences; Smelser, N.J., Baltes, P.B., Eds.; Pergamon: Oxford, UK, 2001; pp. 14656–14661. ISBN 978-0-08-043076-8. [Google Scholar]
- Sharaf, F. The Impact of Thermal Mass on Building Energy Consumption: A Case Study in Al Mafraq City in Jordan. Cogent Eng. 2020, 7, 1804092. [Google Scholar] [CrossRef]
- Leo Samuel, D.G.; Dharmasastha, K.; Shiva Nagendra, S.M.; Maiya, M.P. Thermal Comfort in Traditional Buildings Composed of Local and Modern Construction Materials. Int. J. Sustain. Built Environ. 2017, 6, 463–475. [Google Scholar] [CrossRef]
- Desogus, G.; Felice Cannas, L.G.; Sanna, A. Bioclimatic Lessons from Mediterranean Vernacular Architecture: The Sardinian Case Study. Energy Build. 2016, 129, 574–588. [Google Scholar] [CrossRef]
- Abdel-Motelib, A.; Taher, A.; El Manawi, A.-H. Composition and Diagenesis of Ancient Shali City Buildings of Evaporite Stones (Kerchief), Siwa Oasis, Egypt. Quat. Int. 2015, 369, 78–85. [Google Scholar] [CrossRef]
- Sandrolini, F.; Franzoni, E. An Operative Protocol for Reliable Measurements of Moisture in Porous Materials of Ancient Buildings. Build. Environ. 2006, 41, 1372–1380. [Google Scholar] [CrossRef]
- Zhai, Z.; Previtali, J.M. Ancient Vernacular Architecture: Characteristics Categorization and Energy Performance Evaluation. Energy Build. 2010, 42, 357–365. [Google Scholar] [CrossRef]
- Radziewicz-Winnicki, R. Historical Solutions in Buildings in the Context of Current Problems of Green Architecture. Archit. Civ. Eng. Environ. 2021, 14, 45–55. [Google Scholar] [CrossRef]
- Bajno, D.; Grzybowska, A.; Bednarz, Ł. Old and Modern Wooden Buildings in the Context of Sustainable Development. Energies 2021, 14, 5975. [Google Scholar] [CrossRef]
- Radziewicz-Winnicki, R. Wybrane Zagadnienia Energooszczędności w Architekturze Sakralnej w Ujęciu Historycznym (Selected Issues of Energy Efficiency in Sacral Architecture from a Historical Perspective). Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland, 2005. [Google Scholar]
- Strickland, M. Roman Building Materials, Construction Methods, and Architecture: The Identity of an Empire. Master’s Thesis, Clemson University, Clemson, SC, USA, 2010. [Google Scholar]
- Illies, C.; Ray, N. Philosophy of Architecture. In Philosophy of Technology and Engineering Sciences; Meijers, A., Ed.; North-Holland: Amsterdam, The Netherlands, 2009; pp. 1199–1256. ISBN 18789846. [Google Scholar]
- Radziewicz-Winnicki, R. Wybrane Zagadnienia Wentylacji i Jakości Powietrza Wewnętrznego w Obliczu Zagrożeń COVID-19. Współczesne Problemy w Kontekście Historycznym (Selected Issues of Ventilation and Indoor Air Quality in the Face of COVID-19 Threats. Contemporary Issues in a Historical Context). Builder 2021, 285, 15–17. [Google Scholar] [CrossRef]
- Pospieszna, B. Urządzenia Grzewcze w Kompleksie Funkcjonalnym Wielkiego Refektarza (Heating Devices in the Functional Complex of the Great Refectary). In Wielki Refektarz Na Zamku Średnim w Malborku: Dzieje, Wystrój, Konserwacja (The Great Refectary in the Middle Castle in Malbork: History, Design, Conservation), 1st ed.; Trupinda, J., Ed.; The Malbork Castle Museum: Malbork, Poland, 2010. [Google Scholar]
- Jelle, B.P. Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Britannica. The Editors of Encyclopedia Industrial Revolution. Encyclopedia Britannica. Available online: https://www.britannica.com/event/Industrial-Revolution (accessed on 20 October 2024).
- Gil, A.; Juzwa, N.; Sulimowska, A.; Witeczek, A. Architecture and Urban Planning for Contemporary Industry; Architektura i Urbanistyka Współczesnego Przemysłu; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2016; Volume 642, ISBN 978-83-7880-433-8. [Google Scholar]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, Capabilities and Applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef]
- Mounir, S.; Maaloufa, Y.; Cherki, A.B.; Khabbazi, A. Thermal Properties of the Composite Material Clay/Granular Cork. Constr. Build. Mater. 2014, 70, 183–190. [Google Scholar] [CrossRef]
- de Sousa, R.J.A.; Anjos, O.S. Special Issue: Cork Material and Its Applications. Mater. Des. 2015, 82, 281. [Google Scholar] [CrossRef]
- Gil, L. New Cork-Based Materials and Applications. Materials 2015, 8, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Limam, A.; Zerizer, A.; Quenard, D.; Sallee, H.; Chenak, A. Experimental Thermal Characterization of Bio-Based Materials (Aleppo Pine Wood, Cork and Their Composites) for Building Insulation. Energy Build. 2016, 116, 89–95. [Google Scholar] [CrossRef]
- Shine, E.; Pritchard, J. Your Ultimate Guide to Cork Insulation: All You Need to Know; Building Renewable: Boulder, CO, USA, 2023; Available online: https://buildingrenewable.com/your-ultimate-guide-to-cork-insulation/ (accessed on 20 October 2024).
- Wilton, O.; Howland, M.B. Cork: An Historical Overview of Its Use in Building Construction. Int. J. Constr. Hist. Soc. 2020, 1, 1–22. [Google Scholar]
- Cetiner, I.; Shea, A.D. Wood Waste as an Alternative Thermal Insulation for Buildings. Energy Build. 2018, 168, 374–384. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Barkhad, M.S.; Mourad, A.-H.I.; Iqbal, M.Z. Date Palm Wood Waste-Based Composites for Green Thermal Insulation Boards. J. Build. Eng. 2021, 43, 103224. [Google Scholar] [CrossRef]
- Siciliano, A.P.; Zhao, X.; Fedderwitz, R.; Ramakrishnan, K.; Dai, J.; Gong, A.; Zhu, J.Y.; Kośny, J.; Hu, L. Sustainable Wood-Waste-Based Thermal Insulation Foam for Building Energy Efficiency. Buildings 2023, 13, 840. [Google Scholar] [CrossRef]
- Merli, F.; Buratti, C. Properties and Energy Performance of Wood Waste Sustainable Panels Resulting from the Fabrication of Innovative Monolithic Aerogel Glazing Systems. Constr. Build. Mater. 2024, 438, 137310. [Google Scholar] [CrossRef]
- Mirski, R.; Dukarska, D.; Walkiewicz, J.; Derkowski, A. Waste Wood Particles from Primary Wood Processing as a Filler of Insulation PUR Foams. Materials 2021, 14, 4781. [Google Scholar] [CrossRef]
- Bynum, R. Insulation Handbook; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Božiková, M.; Kotoulek, P.; Bilčík, M.; Kubík, Ľ.; Hlaváčová, Z.; Hlaváč, P. Thermal Properties of Wood and Wood Composites Made from Wood Waste. Int. Agrophys. 2021, 35, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Shakir, M.A.; Ahmad, M.I.; Ramli, N.K.; Yusup, Y.; Alosaimi, A.M.; Alorfi, H.S.; Hussein, M.A.; Rafatullah, M. Review on the Influencing Factors towards Improving Properties of Composite Insulation Panel Made of Natural Waste Fibers for Building Application. J. Ind. Text. 2023, 53, 1–33. [Google Scholar] [CrossRef]
- Snow, J.; Herzog, B.; O’Brian, L.; Li, L. Characterization of Wood Fiber Insulation for the Development of Wood Fiber-Insulated Panels (WIPs) for Use in Building Envelope. BioResources 2024, 19, 6142–6159. [Google Scholar] [CrossRef]
- Wood Wool. Available online: https://www.heraklith.com/about-wood-wool (accessed on 28 September 2024).
- Wood Wool. Available online: https://en.wikipedia.org/wiki/Wood_wool (accessed on 28 September 2024).
- Künzel, H.M. Characteristics of Bio-Based Insulation Materials. In Thermal Insulation and Radiation Control Technologies for Buildings; Kośny, J., Yarbrough, D.W., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 163–175. ISBN 978-3-030-98693-3. [Google Scholar]
- Koh, C.H.; Luo, Y.; Gauvin, F.; Schollbach, K. Utilization of Geopolymer in Wood Wool Insulation Boards: Design Optimization, Development and Performance Characteristics. Resour. Conserv. Recycl. 2024, 204, 107510. [Google Scholar] [CrossRef]
- Asdrubali, F.; Evangelisti, L.; Guattari, C.; Roncone, M.; Milone, D. Experimental Analysis of the Thermal Performance of Wood Fiber Insulating Panels. Sustainability 2023, 15, 1963. [Google Scholar] [CrossRef]
- Hemmati, N.; Mirzaei, R.; Soltani, P.; Berardi, U.; SheikhMozafari, M.J.; Edalat, H.; Rezaieyan, E.; Taban, E. Acoustic and Thermal Performance of Wood Strands-Rock Wool-Cement Composite Boards as Eco-Friendly Construction Materials. Constr. Build. Mater. 2024, 445, 137935. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Zhou, K.; Ni, S.; Lu, X.; Na, B. Study on Improvement of Hygroscopicity of Magnesite-Bonded Wood Wool Panel. J. Renew. Mater. 2021, 9, 1795–1803. [Google Scholar] [CrossRef]
- Latif, E.; Lawrence, R.M.H.; Shea, A.D.; Walker, P. An Experimental Investigation into the Comparative Hygrothermal Performance of Wall Panels Incorporating Wood Fibre, Mineral Wool and Hemp-Lime. Energy Build. 2018, 165, 76–91. [Google Scholar] [CrossRef]
- Wegerer, P.; Nackler, J.N.; Bednar, T. Measuring the Hygrothermal Performance of an Interior Insulation Made of Woodfibre Boards. Energy Procedia 2015, 78, 1478–1483. [Google Scholar] [CrossRef]
- Ashori, A.; Tabarsa, T.; Azizi, K.; Mirzabeygi, R. Wood–Wool Cement Board Using Mixture of Eucalypt and Poplar. Ind. Crops Prod. 2011, 34, 1146–1149. [Google Scholar] [CrossRef]
- Noh, M.S.M.; Ahmad, Z.; Ibrahim, A.; Walker, P. Development of New Prefabricated Wall Constructed Using Wood-Wool Cement Composite Panel. Procedia Environ. Sci. 2016, 34, 298–308. [Google Scholar] [CrossRef]
- Frank, A.L.; van Zandwijk, N. Asbestos History and Use. Lung Cancer 2024, 193, 107828. [Google Scholar] [CrossRef] [PubMed]
- Asbestos Insulation. Available online: https://www.asbestos.com/products/insulation/ (accessed on 28 September 2024).
- Asbestos Insulation. Available online: https://www.casaenvironmental.co.uk/asbestos-insulation-a-guide-to-asbestos-used-in-insulation/ (accessed on 28 September 2024).
- Elovenko, D.; Kräusel, V. The Study of Thermal Conductivity of Asbestos Cardboard and Fire Clay Powder to Assess the Possibility of Their Application in Prefabricated Structures of Cylindrical Housings of Pressure Vessels. Mater. Today Proc. 2019, 19, 2389–2395. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E.; Thives Júnior, J.J.; Vieira, A.S. Is Asbestos Still a Problem in the World? A Current Review. J. Environ. Manag. 2022, 319, 115716. [Google Scholar] [CrossRef]
- van Zandwijk, N.; Frank, A.L. A Multidisciplinary Review of Several Aspects of Asbestos-Related Lung Cancer (ARLC). Lung Cancer 2024, 189, 107474. [Google Scholar] [CrossRef]
- Metintas, M.; Ak, G.; Metintas, S. Environmental Asbestos Exposure and Lung Cancer. Lung Cancer 2024, 194, 107850. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Lipowska, B.; Kujawa, M.; Gerle, A. Problem of Asbestos-Containing Wastes in Poland. Clean. Waste Syst. 2023, 4, 100085. [Google Scholar] [CrossRef]
- Park, S.-H. Types and Health Hazards of Fibrous Materials Used as Asbestos Substitutes. Saf. Health Work 2018, 9, 360–364. [Google Scholar] [CrossRef]
- Nielsen, E.R.; Augustesen, M.; Ståhl, K. Devitrification and High Temperature Properties of Mineral Wool. Mater. Sci. Forum 2007, 558–559, 1255–1260. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, T. Development and Application Status of Glass Wool, Rock Wool, and Ceramic Wool. In Thermal Insulation and Radiation Control Technologies for Buildings; Kośny, J., Yarbrough, D.W., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 129–161. ISBN 978-3-030-98693-3. [Google Scholar]
- Kozub, B. 11-Mineral Wool: Composites and Applications. In Synthetic and Mineral Fibers, Their Composites and Applications; Rangappa, S.M., Ayyappan, V., Manik, G., Siengchin, S., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 321–336. ISBN 978-0-443-13623-8. [Google Scholar]
- Nagy, B.; Simon, T.K.; Nemes, R. Effect of Built-in Mineral Wool Insulations Durability on Its Thermal and Mechanical Performance. J. Therm. Anal. Calorim. 2020, 139, 169–181. [Google Scholar] [CrossRef]
- Marchant, G.; Connelly, R.; Crane, A.; Fayerweather, W.; Puhala, E.; Sandin, K. Occupational Exposure to Glass Wool Fibers: An Update. J. Occup. Environ. Hyg. 2021, 18, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Stazi, F.; Tittarelli, F.; Politi, G.; Di Perna, C.; Munafò, P. Assessment of the Actual Hygrothermal Performance of Glass Mineral Wool Insulation Applied 25 Years Ago in Masonry Cavity Walls. Energy Build. 2014, 68, 292–304. [Google Scholar] [CrossRef]
- Mathewson, G. A History of U.S. Building Codes. Uniform Building Code 1927. 2023. Available online: https://www.finehomebuilding.com/2023/07/19/a-history-of-u-s-building-codes (accessed on 20 October 2024).
- Zhao, D.; Zhang, Z.; Tang, X.; Liu, L.; Wang, X. Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application. Energies 2014, 7, 3121–3135. [Google Scholar] [CrossRef]
- Kowatsch, S. Mineral Wool Insulation Binders. In Phenolic Resins: A Century of Progress; Pilato, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–242. ISBN 978-3-642-04714-5. [Google Scholar]
- Ojanen, T. Moisture Performance of Mineral Wool Insulation Products in Highly Insulated Structures. Energy Procedia 2017, 132, 795–800. [Google Scholar] [CrossRef]
- Lu, F.; Kaviany, M.; Williams, J.; Addison-Smith, T. Heat, Mass and Momentum Transport in Wet Mineral-Wool Insulation: Experiment and Simulation. Int. J. Heat Mass Transf. 2024, 228, 125644. [Google Scholar] [CrossRef]
- Gromicko, N.; Shepar, K. Fiberglass Insulation: History, Hazards and Alternatives; InterNACHI: Boulder, CO, USA. Available online: https://www.nachi.org/fiberglass-insulation-history-hazards-alternatives.htm (accessed on 20 October 2024).
- Braish, T.; Tinel, L.; Depelchin, L.; Gaudion, V.; Andres, Y.; Caudron, C.; Antczak, E.; Brachelet, F.; Locoge, N. Evaluation of the Seasonal Variation of VOC Surface Emissions and Indoor Air Concentrations in a Public Building with Bio-Based Insulation. Build. Environ. 2023, 238, 110312. [Google Scholar] [CrossRef]
- Krüger, E.L.; Suetake, G.; Matoski, A. Evaluation of the Thermal Performance of Insulation Sheets in Fiberglass Security Booths. Build. Environ. 2018, 136, 1–10. [Google Scholar] [CrossRef]
- Al-Sammar, R.; Aleisa, E. Evaluating Energy Efficiency and Environmental Sustainability in Fiberglass Prefabricated Modular Structures. Energy 2024, 310, 133234. [Google Scholar] [CrossRef]
- Liu, S.; Dun, C.; Wei, J.; An, L.; Ren, S.; Urban, J.J.; Swihart, M.T. Creation of Hollow Silica-Fiberglass Soft Ceramics for Thermal Insulation. Chem. Eng. J. 2023, 454, 140134. [Google Scholar] [CrossRef]
- Benli, A. Sustainable Use of Waste Glass Sand and Waste Glass Powder in Alkali-Activated Slag Foam Concretes: Physico-Mechanical, Thermal Insulation and Durability Characteristics. Constr. Build. Mater. 2024, 438, 137128. [Google Scholar] [CrossRef]
- Adam, Q.F.; Segui, P.; Côté, J.; Bilodeau, J.-P.; Doré, G. Thermal Insulation of Flexible Pavements Utilizing Foam Glass Aggregates to Mitigate Frost Action in Cold Regions—Development of Design Tools. Constr. Build. Mater. 2024, 414, 134841. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.; Sun, M.; Wang, S.; Xu, T.; Xu, Y.; Ding, X.; Shi, Y.; Zhang, L. Preparation and Study of Borosilicate Foam Glass with High Thermal Insulation and Mechanical Strength. J. Renew. Mater. 2023, 11, 2125–2141. [Google Scholar] [CrossRef]
- Owoeye, S.S.; Matthew, G.O.; Ovienmhanda, F.O.; Tunmilayo, S.O. Preparation and Characterization of Foam Glass from Waste Container Glasses and Water Glass for Application in Thermal Insulations. Ceram. Int. 2020, 46, 11770–11775. [Google Scholar] [CrossRef]
- Sooksaen, P.; Sudyod, N.; Thongtha, N.; Simsomboonphol, R. Fabrication of Lightweight Foam Glasses for Thermal Insulation Applications. Mater. Today Proc. 2019, 17, 1823–1830. [Google Scholar] [CrossRef]
- Kyaw Oo D’Amore, G.; Caniato, M.; Travan, A.; Turco, G.; Marsich, L.; Ferluga, A.; Schmid, C. Innovative Thermal and Acoustic Insulation Foam from Recycled Waste Glass Powder. J. Clean. Prod. 2017, 165, 1306–1315. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, B.; Cremaschi, L. Review of Moisture Behavior and Thermal Performance of Polystyrene Insulation in Building Applications. Build. Environ. 2017, 123, 50–65. [Google Scholar] [CrossRef]
- Leng, G.; Zhang, X.; Shi, T.; Chen, G.; Wu, X.; Liu, Y.; Fang, M.; Min, X.; Huang, Z. Preparation and Properties of Polystyrene/Silica Fibres Flexible Thermal Insulation Materials by Centrifugal Spinning. Polymer 2019, 185, 121964. [Google Scholar] [CrossRef]
- Khoukhi, M.; Fezzioui, N.; Draoui, B.; Salah, L. The Impact of Changes in Thermal Conductivity of Polystyrene Insulation Material under Different Operating Temperatures on the Heat Transfer through the Building Envelope. Appl. Therm. Eng. 2016, 105, 669–674. [Google Scholar] [CrossRef]
- Fu, Y.; Qiu, C.; Ni, L.; Ye, H.; Zou, H.; Luo, Y.; Liang, M. Cell Structure Control and Performance of Rigid Polyurethane Foam with Lightweight, Good Mechanical, Thermal Insulation and Sound Insulation. Constr. Build. Mater. 2024, 447, 138068. [Google Scholar] [CrossRef]
- Simonini, L.; Sorze, A.; Maddalena, L.; Carosio, F.; Dorigato, A. Mechanical Reprocessing of Polyurethane and Phenolic Foams to Increase the Sustainability of Thermal Insulation Materials. Polym. Test. 2024, 138, 108539. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Ye, L.; Zhao, T.; Li, H. Microphase Separation Regulation of Polyurethane Modified Phenolic Resin Aerogel to Enhance Mechanical Properties and Thermal Insulation. Chem. Eng. J. 2024, 495, 153532. [Google Scholar] [CrossRef]
- Fan, T.-H.; Pang, H.-Q.; Zhang, S.-N.; Yu, G.L.; Wu, X. Enable Solar Regulation and Thermal Insulation Improvement of Transparent Wood with Oriented VO2-Cellulose Fiber. Energy Build. 2024, 319, 114533. [Google Scholar] [CrossRef]
- Song, S.; Lyu, Y.; Zhao, J.; Ren, W.; Wang, J.; Li, L.; Wang, Q.; Zhang, M. Broadband Sound Absorption Cellulose/Basalt Fiber Composite Paper with Excellent Thermal Insulation and Hydrophobic Properties. Ind. Crops Prod. 2024, 218, 118985. [Google Scholar] [CrossRef]
- Abdallah, H.A.; Tannous, J.H.; Abu-Jdayil, B. Date Palm Wood-Derived Cellulose Aerogel Dissolved in Ionic Liquids as a Green Thermal Insulation Construction Material. Constr. Build. Mater. 2024, 436, 136957. [Google Scholar] [CrossRef]
- Su, G.; Jiang, P.; Guo, L.; Zhang, H.; Cheng, X.; Zhang, H. Robust Cellulose Composite Aerogels with Enhanced Thermal Insulation and Mechanical Properties from Cotton Waste. Ind. Crops Prod. 2024, 211, 118242. [Google Scholar] [CrossRef]
- Liao, J.; Hou, Y.; Li, J.; Zhang, M.; Dong, Y.; Chen, X. Lightweight and Recyclable Hybrid Multifunctional Foam Based Cellulose Fibers with Excellent Flame Retardant, Thermal, and Acoustic Insulation Property. Compos. Sci. Technol. 2023, 244, 110315. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, H.; Li, H.; Yang, K.; Xu, Z.; Li, K.; Xu, X.; Xie, X.; Yang, M.; Yan, Y. Multifunctional Bacterial Cellulose-derived Carbon Hybrid Aerogel for Ultrabroad Microwave Absorption and Thermal Insulation. J. Colloid Interface Sci. 2025, 677, 804–815. [Google Scholar] [CrossRef]
- Thapliyal, P.C.; Singh, K. Aerogels as Promising Thermal Insulating Materials: An Overview. J. Mater. 2014, 2014, 127049. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Dong, W.; Lin, L.; Zhu, X.; Liu, Q.; Zhang, Y.; Zhai, N.; Zhou, Z.; Wang, Y.; et al. A Review of Silicon-Based Aerogel Thermal Insulation Materials: Performance Optimization through Composition and Microstructure. J. Non-Cryst. Solids 2021, 553, 120517. [Google Scholar] [CrossRef]
- Fang, R.; Wang, Z.; Xie, Y.; Hu, Y.; Zhang, M.; Wang, H.; Wang, X.; Zhuang, X. Modeling and Calculation of Thermal Insulation Performance of Aramid Aerogel Fibers Based on Fabric Structural Parameters. Int. J. Heat Mass Transf. 2024, 235, 126200. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Zhang, C.; Long, L.; Zhao, X.; Zhu, C.; Li, B.; Yi, X. Superhydrophobic Nanocellulose Aerogel for Thermal Insulation and Thermal Resistance up to 1300 °C. Chem. Eng. J. 2024, 499, 156043. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Q. Application of Vacuum Insulation Panels (VIPs) in Buildings. In Thermal Insulation and Radiation Control Technologies for Buildings; Kośny, J., Yarbrough, D.W., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 289–346. ISBN 978-3-030-98693-3. [Google Scholar]
- Volschenk, G.; Shaughnessy, B.; O’Shea, M. A Novel Approach to Thermal Insulation Modelling in Soft and Medium Vacuum Insulation Systems. Cryogenics 2024, 144, 103946. [Google Scholar] [CrossRef]
- Mukhopadhyaya, P. High Performance Thermal Insulations—Vacuum Insulation Panels (VIPs). In Thermal Insulation and Radiation Control Technologies for Buildings; Kośny, J., Yarbrough, D.W., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 275–288. ISBN 978-3-030-98693-3. [Google Scholar]
- Pei, Y.; Shen, Z.; Zhou, J.; Yang, B. Experimental and Theoretical Thermal Performance Analysis of Additively Manufactured Polymer Vacuum Insulation Panels. Appl. Therm. Eng. 2024, 256, 123957. [Google Scholar] [CrossRef]
- Memon, S.A. Phase Change Materials Integrated in Building Walls: A State of the Art Review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Bat-Erdene, P.-E.; Pareek, S.; Koenders, E.; Mankel, C.; Löher, M.; Xiao, P. Evaluation of the Thermal Performance of Fly Ash Foam Concrete Containing Phase Change Materials (PCMs). Buildings 2023, 13, 2481. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, X.; Fu, E.; Li, Q.; Jiang, W.; Huang, L.; Zhang, Y.; Ju, Z. Thermophysical Properties and Energy-Saving Efficiency of Phase Change Microcapsule Foamed Cement Composite Insulation Materials. Energy Build. 2024, 323, 114747. [Google Scholar] [CrossRef]
- Bre, F.; Lamberts, R.; Flores-Larsen, S.; Koenders, E.A.B. Multi-Objective Optimization of Latent Energy Storage in Buildings by Using Phase Change Materials with Different Melting Temperatures. Appl. Energy 2023, 336, 120806. [Google Scholar] [CrossRef]
- Afaynou, I.; Faraji, H.; Choukairy, K.; Arıcı, M.; Khallaki, K. Heat Transfer Improvement of Phase Change Materials by Metal Foams and Nanoparticles for Efficient Electronic Thermal Management: A Comprehensive Study. Int. J. Heat Mass Transf. 2024, 227, 125534. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, X.; Hu, M.; Zhang, L.; Fan, J. Adaptive Dynamic Building Envelope Integrated with Phase Change Material to Enhance the Heat Storage and Release Efficiency: A State-of-the-Art Review. Energy Build. 2023, 286, 112928. [Google Scholar] [CrossRef]
- Behzadi Hamooleh, M.; Torabi, A.; Baghoolizadeh, M. Multi-Objective Optimization of Energy and Thermal Comfort Using Insulation and Phase Change Materials in Residential Buildings. Build. Environ. 2024, 262, 111774. [Google Scholar] [CrossRef]
- Wu, X.; Ding, J.; Lei, Y.; Chen, Y.; Fu, X.; Lei, J.; Jiang, L. One-Step Preparation of Macropore Phase Change Materials Enabled Exceptional Thermal Insulation, Thermal Energy Storage and Long-Term Stability. Polymer 2024, 307, 127250. [Google Scholar] [CrossRef]
- Asghari, M.; Fereidoni, S.; Fereidooni, L.; Nabisi, M.; Kasaeian, A. Energy Efficiency Analysis of Applying Phase Change Materials and Thermal Insulation Layers in a Building. Energy Build. 2024, 312, 114211. [Google Scholar] [CrossRef]
- Arumugam, P.; Ramalingam, V. Thermal Comfort Enhancement of Office Buildings Located under Warm and Humid Climate through Phase Change Material and Insulation Coupled with Natural Ventilation. Sustain. Energy Technol. Assess. 2024, 63, 103657. [Google Scholar] [CrossRef]
- Zhilyaev, D.; Fachinotti, V.D.; Zanoni, F.; Ortega, A.; Goracci, G.; Mankel, C.; Koenders, E.A.B.; Jonkers, H.M. Early-Stage Analysis of a Novel Insulation Material Based on MPCM-Doped Cementitious Foam: Modelling of Properties, Identification of Production Process Hotspots and Exploration of Performance Trade-Offs. Dev. Built Environ. 2023, 16, 100243. [Google Scholar] [CrossRef]
- Guimarães, T.C.; Gomes, O.D.; Oliveira de Araújo, O.M.; Tadeu Lopes, R.; da-Gloria, M.Y.; Toledo Filho, R.D.; Koenders, E.; Caggiano, A.; Mankel, C.; Nazari Sam, M.; et al. PCM-Impregnated Textile-Reinforced Cementitious Composite for Thermal Energy Storage. Textiles 2023, 3, 98–114. [Google Scholar] [CrossRef]
- Fachinotti, V.D.; Bre, F.; Mankel, C.; Koenders, E.A.B.; Caggiano, A. Optimization of Multilayered Walls for Building Envelopes Including PCM-Based Composites. Materials 2020, 13, 2787. [Google Scholar] [CrossRef]
- Klemczak, B.; Gołaszewski, J.; Cygan, G.; Smolana, A.; Gołaszewska, M. Shrinkage Strains Development in Ultralight Cementitious Foams with Embedded MPCM. Dev. Built Environ. 2024, 17, 100299. [Google Scholar] [CrossRef]
- Hu, X.; Kankkunen, A.; Seppälä, A.; Yazdani McCord, M.R. Scaling up Hybrid Insulation: Integration of Lignocellulose and Phase Change Materials for Sustainable Thermal Management. Mater. Today Commun. 2024, 41, 110281. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, D.; Cui, H.; Chen, X.; Liang, R.; Sun, G. Green Building Material with Superior Thermal Insulation and Energy Storage Properties Fabricated by Paraffin and Foam Cement Composite. Constr. Build. Mater. 2024, 444, 137729. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, T.; Chen, Y.; Zhang, S.; Yu, D.; Wang, W. Radiative Cooling Materials Prepared by SiO2 Aerogel microspheres@PVDF-HFP Nanofilm for Building Cooling and Thermal Insulation. Ceram. Int. 2024, 50, 48031–48040. [Google Scholar] [CrossRef]
- El Assaad, M.; Plantec, Y.; Colinart, T.; Lecompte, T. Influence of Moisture Transfer on Thermal Conductivity Measurement by HFM: Measurement Accuracy on Insulation Materials and Consequences on Building Energy Assessments. Energy Build. 2024, 320, 114635. [Google Scholar] [CrossRef]
- Ren, W.R.; Wang, C.H.; Han, C.B.; Han, D.; Zheng, J.Y.; Cui, Y.N.; Song, X.M.; Jiang, Q.; Yan, H. Cement-Based External Wall Insulation Material with Thermal Performance Improvement by Partial Substitution of Calcium Silicate. Energy Build. 2024, 317, 114415. [Google Scholar] [CrossRef]
- Liao, S.; Ma, K.; Xu, H.; Zhang, Y.; Zhang, Z.; Wu, L. Integrated Gypsum Composite Material for Energy Storage and Thermal Insulation: Assessment of Mechanical Performance, Thermal Properties and Environmental Impact. J. Build. Eng. 2024, 93, 109846. [Google Scholar] [CrossRef]
- Thandavamoorthy, R.; Devarajan, Y. Study on the Nuclear Shield Behaviors of Basalt/Carbon Fibers Reinforced PbO Blended Epoxy Matrix Composite—A Novel Material for Thermal Insulation Applications. Nucl. Eng. Technol. 2024; in press. [Google Scholar] [CrossRef]
- Ribeiro, G.D.; Hiranobe, C.T.; Araújo, S.d.S.; Filgueira, M.d.S.; Rocha, J.A.; Mukuno, J.S.; Salmazo, L.O.; Gomes, A.S.; Tolosa, G.R.; Gennaro, E.M.; et al. Sustainable Construction Materials for Low-Cost Housing: Thermal Insulation Potential of Expanded SBR Composites with Leather Waste. J. Mater. Res. Technol. 2024, 30, 5590–5604. [Google Scholar] [CrossRef]
- Li, Z.; Yang, W.; Zhang, G.; Ren, W.; Shi, Z. Impact of Thermal Conductivity of Aerogel-Enhanced Insulation Materials on Building Energy Efficiency in Environments with Different Temperatures and Humidity Levels. Therm. Sci. Eng. Prog. 2024, 50, 102540. [Google Scholar] [CrossRef]
- Laatiri, Y.; Sammouda, H.; Aloulou, F. Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation. J. Renew. Mater. 2024, 12, 771–798. [Google Scholar] [CrossRef]
- Lakatos, Á.; Lucchi, E. Thermal Performances of Super Insulation Materials (SIMs): A Comprehensive Analysis of Characteristics, Heat Transfer Mechanisms, Laboratory Tests, and Experimental Comparisons. Int. Commun. Heat Mass Transf. 2024, 152, 107293. [Google Scholar] [CrossRef]
- Kowalska, B.Z.; Szajding, A.; Zakrzewska, P.; Kuźnia, M.; Stanik, R.; Gude, M. Disposal of Rigid Polyurethane Foam with Fly Ash as a Method to Obtain Sustainable Thermal Insulation Material. Constr. Build. Mater. 2024, 417, 135329. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, M.; Chen, Z.; Lu, L.; Ma, Z.; Ding, Y.; Yin, L.; Liu, T.; Li, M.; Yang, L.; et al. A Layered Aerogel Composite with Silica Fibers, SiC Nanowires, and Silica Aerogels Ternary Networks for Thermal Insulation at High-Temperature. J. Mater. Sci. Technol. 2025, 204, 71–80. [Google Scholar] [CrossRef]
- Xiao, Y.; Mao, T.; Zhao, Z.; Pan, Y.; Zhang, H.; Cheng, X. Experimental Study of Dual Nano-Network, High-Temperature Resistant Aerogel Material as an Integration of Thermal Management Functions. J. Energy Chem. 2025, 100, 157–170. [Google Scholar] [CrossRef]
- Jeong, T.-H.; Park, P.-J.; Anand, S.; Mani, D.; Kim, J.-B.; Kim, S.-R. Metal Ion-Crosslinked Thermoconductive Sugar-Functionalized Graphene Fluoride-Based Cellulose Papers with Enhanced Mechanical Properties and Electrical Insulation. J. Mater. Sci. Technol. 2025, 214, 204–213. [Google Scholar] [CrossRef]
- Lai, D.J.Y.; Chua, E.M.; Koyande, A.K.; Hong, W.T.; Khoiroh, I. Harnessing Acrylic-PVDF Binders in Paint Formulation for Enhanced Passive Cooling Performance. Appl. Energy 2025, 377, 124510. [Google Scholar] [CrossRef]
- Shahedan, N.F.; Abdullah, M.M.A.B.; Kusbiantoro, A.; Tanyildizi, H.; Hadibarata, T.; Jusoh, M.N.H. 14-Statistical Analysis of Development Geopolymer Concrete with Glass Bubble toward Thermal Insulation Performance. In Recent Developments of Geopolymer Materials; Al Bakri Abdullah, M.M., Abd Razak, R., Wan Ibrahim, W.M., Mohd Salleh, M.A.A., Eds.; Woodhead Publishing: Sawston, UK, 2025; pp. 287–303. ISBN 978-0-443-24068-3. [Google Scholar]
- Yan, J.; Sun, Y.; Jia, T.; Tao, B.; Hong, M.; Song, P.; Xu, M. Vertically Aligned Cellulose Nanofiber/Carbon Nanotube Aerogel-Infused Epoxy Nanocomposites for Highly Efficient Solar-Thermal-Electric Conversion. J. Mater. Sci. Technol. 2025, 214, 313–321. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A Review of Unconventional Sustainable Building Insulation Materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- EN 13501-1:2019; Fire Classification of Construction Products and Building Elements Classification Using Data from Reaction to Fire Tests. European Standards: Plzen, Czech Republic, 2019.
- Dodoo, A.; Gustavsson, L.; Sathre, R. Effect of Thermal Mass on Life Cycle Primary Energy Balances of a Concrete- and a Wood-Frame Building. Appl. Energy 2012, 92, 462–472. [Google Scholar] [CrossRef]
Century | Material Type |
---|---|
Ancient Times | Natural materials: wool, straw, mud, leaves, and reeds; materials with a high thermal mass such as stone and wood |
19th and Early 20th | Cork, insulation materials from wood waste, wood wool, and asbestos |
Mid- and late 20th Century | Mineral wool, fiberglass, foam glass, plastic foams, and cellulose |
21st Century | Aerogels, vacuum insulation panels, functional materials with phase change materials (PCMs) |
Type of Barrier (ti—Indoor Temperature) | Heat Transfer Coefficient U, W/(m2·K) | |||
---|---|---|---|---|
Up to 31 December 2013 | From 1 January 2014 | From 1 January 2017 | From 1 January 2021 | |
External walls: | ||||
| 0.28 | 0.25 | 0.23 | 0.20 |
| 0.65 | 0.45 | 0.45 | 0.45 |
| 0.90 | 0.90 | 0.90 | 0.90 |
Roofs, flat roofs, and ceilings under unheated attics or above passages: | ||||
| 0.25 | 0.20 | 0.18 | 0.15 |
| 0.50 | 0.30 | 0.30 | 0.30 |
| 0.70 | 0.70 | 0.70 | 0.70 |
Floors on the ground: | ||||
| 0.45 | 0.30 | 0.30 | 0.30 |
| 1.20 | 1.20 | 1.20 | 1.20 |
| 1.50 | 1.50 | 1.50 | 1.50 |
Ceilings above unheated rooms and enclosed underfloor spaces: | ||||
| 0.45 | 0.25 | 0.25 | 0.25 |
| 1.20 | 0.30 | 0.30 | 0.30 |
| 1.50 | 1.00 | 1.00 | 1.00 |
Category | Material Type | Thermal Conductivity (λ), W/(mK) | Thermal Characteristics | Examples | Intensity of Use in Building Insulation |
---|---|---|---|---|---|
High Thermal Resistance | Low thermal conductivity | 0.020–0.025 | High R-value (resistance to heat flow) | Polyisocyanurate, polyurethane foams | High |
Moderate Thermal Resistance | Balanced thermal properties, suitable for various applications | 0.035–0.045 | Moderate R-value | Fiberglass, foam glass, mineral wool | Widely used |
Low Thermal Resistance | Higher thermal conductivity, typically used in specific contexts | 0.050–0.075 | Lower R-value, used where insulation is not the primary concern | Stone wool, certain types of polystyrene | Moderate |
Phase Change Materials (PCMs) | Absorb and release thermal energy, helping to regulate temperature | 0.100–0.200 | Change phase at specific temperatures, improving comfort and energy efficiency | Paraffin wax | Low (new technology) |
Reflective or Radiant Barriers | Reflect radiant heat rather than absorbing it | 0.002–0.005 | High energy efficiency | Radiant barrier foil, reflective insulation | Moderate |
Composite Materials | Combine different insulation properties | 0.020–0.045 | Optimized thermal resistance for specific applications | Structural insulated panels | Moderate to High (increasing popularity) |
Natural Fiber Insulation | Derived from natural sources; offers moderate thermal performance | 0.035–0.045 | Effective insulation with additional benefits like breathability | Sheep wool, cotton, hemp, cork | Low to moderate (niche markets) |
Aerogels | Extremely low-density materials with exceptional thermal insulation properties | 0.007–0.020 | Very low thermal conductivity; lightweight | Silica aerogels, polymer-based aerogels | Low (specialized applications) |
Recycled Materials | Made from recycled content, offering variable thermal characteristics | 0.040–0.055 | Varies based on composition; often moderate thermal resistance | Recycled cellulose, denim insulation | Growing (increasing interest in sustainability) |
Fire Resistance Class | Material Type | Description |
---|---|---|
A1 (non-combustible) | Glass Mineral Wool | Non-flammable: does not contribute to fire development or flame spread. |
Rock Mineral Wool | Similar to glass wool: excellent fire resistance and thermal stability. | |
A2 (limited combustibility) | Wood Wool | Nearly non-flammable: may emit negligible heat in intense fire conditions. |
B (combustible with limited flame spread) | Polyurethane Foams | Provides insulation but has some combustibility; may emit smoke under fire. |
C (combustible) | Expanded Polystyrene (EPS) | Flammable: can contribute to flame spread but often treated to reduce risk. |
Polyurethane Foam (PUR) | Self-extinguishing but can be highly flammable; treated products are available. | |
D (highly combustible) | Fiberglass | May contribute to flame spread. |
E (flammable) | Some Spray, Foam Insulation, Cork | Combustible and can produce smoke; not recommended for high-risk areas; cork burns slowly and does not contribute significantly to the spread of fire; the gases are not toxic |
F (non-combustible) | Certain Low-Quality Foam Products | Can easily ignite and may contribute significantly to fire spread. |
Category | Material | Recyclability |
---|---|---|
Natural Materials | Wool | Biodegradable; can be composted or recycled. |
Cotton | ||
Hemp | ||
Straw Cork | ||
Wood-Based Materials | Wood Fiber | Recyclable; can be processed into new products. |
Wood Wool Cork | ||
Mineral-Based Materials | Mineral Wool (Rock Wool) | Difficult to recycle; some facilities may reclaim. |
Glass Wool | ||
Synthetic Materials | Expanded Polystyrene (EPS) | Recyclable; can be processed into new EPS products. |
Extruded Polystyrene (XPS) | Limited recyclability; can be downcycled in some cases. | |
Polyurethane Foam | Difficult to recycle; often ends up in landfills. | |
Composite Materials | Bio-based Composites | Can be recycled depending on components. |
Recycled Materials | Recycled Cotton Batts | Recyclable; made from post-consumer textiles. |
Recycled Plastic Insulation | Recyclable; made from post-consumer plastic waste. | |
Non-Recyclable Materials | Asbestos | Hazardous; requires specialized disposal methods. |
Trend/Need | Description | Examples |
---|---|---|
Sustainability | Eco-friendly, sustainable materials. | Recycled materials; bio-based insulation; cork |
Energy Efficiency | Materials that enhance energy efficiency in buildings. | Vacuum insulation panels (VIPs); aerogels; PCMs; reflective foil-faced boards or blanket |
High Thermal Performance | Materials with superior insulation properties. | Vacuum insulation panels (VIPs); aerogels; reflective foil-faced boards or blanket |
Indoor Air Quality | Materials that contribute to better indoor air quality. | Natural fibers; low-VOC (volatile organic compound) materials; cork |
Moisture Release | Moisture-resistant materials to prevent mold growth. | Hydrophobic insulation; breathable membranes |
Fire Resistance | Materials that offer improved fire resistance. | Glass mineral wool; rock mineral wool |
Lightweight Solutions | Lighter materials to reduce structural load. | Expanded polystyrene (EPS) |
Cost-Effectiveness | Need for affordable insulation solutions without compromising quality. | Recycled cellulose; low-cost foams |
Biodegradability | Materials that can naturally decompose. | Hemp; wool; cork |
Smart Insulation | Integration of technology for adaptive insulation properties. | Phase change materials (PCMs) |
Modular Design | Modular construction with adaptable insulation. | Insulated panels for prefabricated units, cork panels; reflective foil-faced boards or blanket |
Regulatory Compliance | Need to meet building codes and energy standards. | Building standards; other certifications (e.g., LEED, BREEAM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klemczak, B.; Kucharczyk-Brus, B.; Sulimowska, A.; Radziewicz-Winnicki, R. Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review. Energies 2024, 17, 5535. https://doi.org/10.3390/en17225535
Klemczak B, Kucharczyk-Brus B, Sulimowska A, Radziewicz-Winnicki R. Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review. Energies. 2024; 17(22):5535. https://doi.org/10.3390/en17225535
Chicago/Turabian StyleKlemczak, Barbara, Beata Kucharczyk-Brus, Anna Sulimowska, and Rafał Radziewicz-Winnicki. 2024. "Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review" Energies 17, no. 22: 5535. https://doi.org/10.3390/en17225535
APA StyleKlemczak, B., Kucharczyk-Brus, B., Sulimowska, A., & Radziewicz-Winnicki, R. (2024). Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review. Energies, 17(22), 5535. https://doi.org/10.3390/en17225535