Multirod Pumping Approach with Fresnel Lens and Ce:Nd:YAG Media for Enhancing the Solar Laser Efficiency
Abstract
:1. Introduction
2. Multirod Ce:Nd:YAG Solar Laser System with a Fresnel Lens
- ▪
- Cgeo denotes the geometrical concentration, defined as the ratio of the Fresnel lens area to the target area. In the present case, the target is the 3D-CPC input aperture with radius rtarget = 32 mm. As both areas are circular, equals the ratio of the radii of these areas (rFL and rtarget).
- ▪
- k = 2π/λ is the wavelength number of the incoming solar light.
- ▪
- Δr is the pitch.
- ▪
- tanϕ = rFL/fFL.
3. Numerical Modeling of Several Multirod Configurations
- ▪
- A denotes the collection area of the primary concentrator, i.e., 1.767 m2.
- ▪
- Is is the terrestrial solar irradiance.
- ▪
- is the spectral overlap between the Nd3+ absorption spectrum and the solar emission spectrum, i.e., 16% [40].
- ▪
- is the spectral overlap between the Ce3+ absorption spectrum and the solar emission spectrum, i.e., 15.3% [40].
- ▪
- is representative of the proportion of energy absorbed by Ce3+ ions that could be transferred non-radiatively to Nd3+, i.e., 70% [31].
- ▪
- is the fraction of energy absorbed by Ce3+ ions that could be transferred radiatively to Nd3+, i.e., 30% [31].
4. Numerical Results of the Multirod Ce:Nd:YAG Solar Laser Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Z.; Zhao, C.M.; Yang, S.H.; Wang, Y.; Ke, J.Y.; Zhang, H.Y. Demonstration of a free-space optical communication system using a solar-pumped laser as signal transmitter. Laser Phys. Lett. 2017, 14, 055804. [Google Scholar] [CrossRef]
- DeYoung, R.J.; Walker, G.H.; Williams, M.D.; Schuster, G.L.; Conway, E.J. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station. NASA Tech. Memo. 1987, 4002, 27185. Available online: https://ntrs.nasa.gov/citations/19870017752 (accessed on 1 August 2023).
- Abdel-Hadi, Y. Space-based solar laser system simulation to transfer power onto the earth. NRIAG J. Astron. Geophys. 2020, 9, 558–562. [Google Scholar] [CrossRef]
- DeYoung, R.J.D.; Walberg, G.D.; Conway, E.J.; Jones, L.W. A NASA High-Power Space-Based Laser Research and Applications Program, IV. Ser. NASA SP-464. 1983. Available online: https://ntrs.nasa.gov/citations/19830018929 (accessed on 1 August 2023).
- Vasile, M.; Maddock, C.A. Design of a Formation of Solar Pumped Lasers for Asteroid Deflection. Adv. Space Res. 2012, 50, 891–905. [Google Scholar] [CrossRef]
- Johnson, C.S. Solar pumping converts broadband sunlight into efficient laser light. Laser Focus World 2022, 58, 10. Available online: https://www.laserfocusworld.com/lasers-sources/article/14283698/solar-pumping-converts-broadband-sunlight-into-efficient-laser-light (accessed on 1 August 2023).
- Yabe, T.; Bagheri, B.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Funatsu, T.; Oishi, T.; Daito, K.; Ishioka, M.; Yasunaga, N.; et al. 100 W-Class Solar Pumped Laser for Sustainable Magnesium-Hydrogen Energy Cycle. J. Appl. Phys. 2008, 104, 083104. [Google Scholar] [CrossRef]
- Yan, B.; Li, Y.; Cao, W.; Zeng, Z.; Liu, P.; Ke, Z.; Yang, G. Efficient and Rapid Hydrogen Extraction from Ammonia–Water via Laser Under Ambient Conditions without Catalyst. J. Am. Chem. Soc. 2024, 146, 4864–4871. [Google Scholar] [CrossRef]
- Motohiro, T.; Takeda, Y.; Ito, H.; Hasegawa, K.; Ikesue, A.; Ichikawa, T.; Higuchi, K.; Ichiki, A.; Mizuno, S.; Ito, T.; et al. Concept of the Solar-Pumped Laser-Photovoltaics Combined System and Its Application to Laser Beam Power Feeding to Electric Vehicles. Jpn. J. Appl. Phys. 2017, 56, 08MA07. [Google Scholar] [CrossRef]
- Kiss, Z.J.; Lewis, H.R.; Duncan, R.C., Jr. Sun Pumped Continuous Optical Maser. Appl. Phys. Lett. 1963, 2, 93–94. [Google Scholar] [CrossRef]
- Young, C.G. A Sun-Pumped cw One-Watt Laser. Appl. Opt. 1966, 5, 993–997. [Google Scholar] [CrossRef]
- Arashi, H.; Oka, Y.; Sasahara, N.; Kaimai, A.; Ishigame, M. A Solar-Pumped cw 18 W Nd:YAG Laser. Jpn. J. Appl. Phys. 1984, 23, 1051–1053. [Google Scholar] [CrossRef]
- Weksler, M.; Shwartz, J. Solar-pumped solid-state lasers. IEEE J. Quantum Electron. 1988, 24, 1222–1228. [Google Scholar] [CrossRef]
- Lando, M.; Kagan, J.; Linyekin, B.; Dobrusin, V. A solar-pumped Nd:YAG laser in the high collection efficiency regime. Opt. Commun. 2003, 222, 371–381. [Google Scholar] [CrossRef]
- Yabe, T.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Nakatsuka, M.; Funatsu, T.; Mabuti, A.; Oyama, A.; Nakagawa, K.; Oishi, T.; et al. High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium. Appl. Phys. Lett. 2007, 90, 261120. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J. Highly efficient solar-pumped Nd:YAG laser. Opt. Express 2011, 19, 26399–26405. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.H.; Ohkubo, T.; Yabe, T.; Kuboyama, H. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod. Opt. Lett. 2012, 37, 2670–2672. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.; Li, J.; He, D.; Zhang, H. 32.1 W/m2 continuous wave solar-pumped laser with a bonding Nd:YAG/YAG rod and a Fresnel lens. Opt. Laser Technol. 2018, 107, 158–161. [Google Scholar] [CrossRef]
- Mizuno, S.; Ito, H.; Hasegawa, K.; Suzuki, T.; Ohishi, Y. Laser emission from a solar-pumped fiber. Opt. Express 2012, 20, 5891–5895. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ito, H.; Kato, T.; Phuc, L.T.A.; Watanabe, K.; Terazawa, H.; Hasegawa, K.; Ichikawa, T.; Mizuno, S.; Ichiki, A.; et al. Continuous oscillation of a compact solar-pumped Cr, Nd-doped YAG ceramic rod laser for more than 6.5 h tracking the sun. Sol. Energy 2019, 177, 440–447. [Google Scholar] [CrossRef]
- Masuda, T.; Iyoda, M.; Yasumatsu, Y.; Dottermusch, S.; Howard, I.A.; Richards, B.S.; Bisson, J.-F.; Endo, M. A Fully Planar Solar Pumped Laser Based on a Luminescent Solar Collector. Commun. Phys. 2020, 3, 60. [Google Scholar] [CrossRef]
- Endo, M.; Yamamoto, K.; Dottermusch, S.; Howard, I.A.; Richards, B.S.; Tomizawa, R.; Masuda, T. Solar-pumped fiber laser using a solid-state luminescent solar collector. Opt. Express 2023, 31, 26040–26053. [Google Scholar] [CrossRef] [PubMed]
- Vistas, C.R.; Liang, D.; Garcia, D.; Almeida, J.; Tibúrcio, B.D.; Guillot, E. Ce:Nd:YAG continuous-wave solar-pumped laser. Optik 2020, 207, 163795. [Google Scholar] [CrossRef]
- Cai, Z.; Zhao, C.; Zhao, Z.; Zhang, J.; Zhang, Z.; Zhang, H. Efficient 38.8 W/m2 Solar Pumped Laser with a Ce:Nd:YAG Crystal and a Fresnel Lens. Opt. Express 2023, 31, 1340–1353. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Almeida, J.; Catela, M.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Lowest Threshold Solar-Pumped Ce:Nd:YAG Laser with 2.06% Solar-to-TEM00 Mode Laser Conversion Efficiency. Sol. Energy Mater. Sol. Cells 2024, 270, 112817. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Garcia, D.; Tibúrcio, B.D.; Catela, M.; Costa, H.; Guillot, E.; Almeida, J. Most efficient simultaneous solar laser emissions from three Ce:Nd:YAG rods within a single pump cavity. Sol. Energy Mater. Sol. Cells 2022, 246, 111921. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Catela, M.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Solar-Pumped Dual-Rod Ce:Nd:YAG Laser with 58 W Continuous-Wave Output Power and 5.1° Tracking Error Compensation Width. Opt. Express 2023, 31, 40041–40055. [Google Scholar] [CrossRef]
- Sherniyozov, A.; Payziyev, S.; Begimqulov, S. Enhancing solar laser performance through multirod configurations. J. Photon. Energy 2024, 14, 024501. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Simultaneous Solar Laser Emissions from Three Nd:YAG Rods within a Single Pump Cavity. Sol. Energy 2020, 199, 192–197. [Google Scholar] [CrossRef]
- Lupei, V.; Lupei, A.; Gheorghe, C.; Ikesue, A. Emission sensitization processes involving Nd3+ in YAG. J. Lumin. 2016, 170, 594–601. [Google Scholar] [CrossRef]
- Wang, L.; Xia, C.; Xu, P.; Di, J.; Sai, Q.; Mou, F. Energy transfer in Ce, Nd, and Yb co-doped YAG phosphors. Chin. Opt. Lett. 2013, 11, 061604. [Google Scholar] [CrossRef]
- Tai, Y.; Zheng, G.; Wang, H.; Bai, J. Near-infrared quantum cutting of Ce3+–Nd3+ co-doped Y3Al5O12 crystal for crystalline silicon solar cells. J. Photochem. Photobiol. A 2015, 303–304, 80–85. [Google Scholar] [CrossRef]
- Payziyev, S.; Sherniyozov, A.; Bakhramov, S.; Zikrillayev, K.; Khalikov, G.; Makhmudov, K.; Ismailov, M.; Payziyeva, D. Luminescence sensitization properties of Ce:Nd:YAG materials for solar pumped lasers. Opt. Commun. 2021, 499, 127283. [Google Scholar] [CrossRef]
- Garcia, D.; Liang, D.; Almeida, J.; Tiburcio, B.D.; Costa, H.; Catela, M.; Vistas, C.R. Elliptical-Shaped Fresnel Lens Design through Gaussian Source Distribution. Energies 2022, 15, 668. [Google Scholar] [CrossRef]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z.; Sumathy, K. Concentrated Solar Energy Applications Using Fresnel Lenses: A Review. Renew. Sustain. Energy Rev. 2011, 15, 2588–2606. [Google Scholar] [CrossRef]
- Hornung, T.; Nitz, P. Optical loss due to diffraction by concentrator Fresnel lenses. AIP Conf. Proc. 2014, 1616, 63–66. [Google Scholar] [CrossRef]
- Hornung, T.; Nitz, P. Light diffraction by concentrator Fresnel lenses. Opt. Express 2014, 22, A686–A704. [Google Scholar] [CrossRef]
- Welford, W.T.; Winston, R. High Collection Nonimaging Optics, 1st ed.; Academic Press: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Heraeus Properties of Fused Silica. Heraeus Conamic|Heraeus Conamic-Properties. Available online: https://www.heraeus-conamic.com (accessed on 1 August 2023).
- Liang, D.; Almeida, J.; Vistas, C.R.; Tibúrcio, B.D.; Garcia, D. Solar-Pumped Lasers. In Green Energy and Technology; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- ASTM G173-03; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Payziyev, S.; Sherniyozov, A. Influence of thermal population of lower laser levels on the performance of end-side-pumped Ce:Nd:YAG solar laser. J. Photon. Energy 2022, 12, 044501. [Google Scholar] [CrossRef]
- Payziyev, S.; Sherniyozov, A.; Bakhramov, S.; Parpiev, O.; Nurmatov, S.; Khalikov, G.; Payziyeva, D.; Begimkulov, S.A.; Kamoliddinov, F.M.; Aliboyev, A.; et al. Solar-pumped composite YAG/Ce:Nd:YAG/YAG laser with reduced thermal effects. J. Photon. Energy 2024, 14, 014501. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Tibúrcio, B.D.; Catela, M.; Garcia, D.; Costa, H.; Vistas, C.R. Seven-Rod Pumping Approach for the Most Efficient Production of TEM00 Mode Solar Laser Power by a Fresnel Lens. ASME. J. Sol. Energy Eng. 2021, 143, 061004. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Catela, M.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Almeida, J. Fresnel Lens Solar Pumping for Uniform and Stable Emission of Six Sustainable Laser Beams under Non-Continuous Solar Tracking. Sustainability 2023, 15, 8218. [Google Scholar] [CrossRef]
- Tibúrcio, B.D.; Liang, D.; Almeida, J.; Garcia, D.; Catela, M.; Costa, H.; Vistas, C.R. Fresnel Lens Solar-Pumped Laser with Four Rods and Beam Merging Technique for Uniform and Stable Emission under Tracking Error Influence. Energies 2023, 16, 4815. [Google Scholar] [CrossRef]
- Costa, H.; Liang, D.; Matos, A.; Almeida, J. Multi-Fresnel-Lens Pumping Approach for Simultaneous Emission of Seven TEM00-Mode Beams with 3.73% Conversion Efficiency. Photonics 2024, 11, 889. [Google Scholar] [CrossRef]
Material | PMMA |
---|---|
Radius, rFL | 0.75 m |
Focal length, fFL | 2.0 m |
f-number | 1.33 |
Thickness | 5 mm |
Pitch, Δr | 850 μm |
Transmission efficiency | 78% |
Weight | 102.2 N |
Doping Concentration | Ce:0.1 at%, Nd:1.1 at% |
---|---|
Orientation | <111> |
Parallelism | ≤10″ |
Perpendicularity | ≤5′ |
Flatness | λ/10 @632.8 nm |
Laser wavelength | 1064 nm |
Coatings | HR (R ≥ 99.9% @1064 nm) AR (R < 0.2% @1064 nm) |
Refractive index | 1.8197 @1064 nm |
Stimulated emission cross-section | 2.8 × 10−19 cm2 |
Fluorescence lifetime | 230 µs |
Absorption and scattering loss | 0.002 cm−1 |
Design configuration | ||||||
Number of rods | 3 | 4 | 5 | 6 | 6 | 7 |
Rods diameter (mm) | 4.5 | 4.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Maximum total laser power (W) | 122.8 (3 × 40.93) | 120.0 (4 × 29.99) | 118.2 (5 × 23.65) | 115.4 (6 × 19.23) | 121.2 (5 × 17.49 + 33.73) | 122.2 (6 × 15.60 + 28.57) |
Solar-to-laser conversion efficiency (%) | 7.31 | 7.15 | 7.04 | 6.87 | 7.22 | 7.28 |
Collection efficiency (W/m2) | 69.50 | 67.91 | 66.89 | 65.31 | 68.59 | 69.16 |
Maximum stress intensity (N/mm2) | 127.4 | 97.28 | 77.89 | 67.29 | Central rod: 88.06 External rod: 58.09 | Central rod: 75.61 External rod: 52.56 |
Parameters | Numerical Work | ||||
---|---|---|---|---|---|
Liang et al., 2021 [44] | Vistas et al., 2023 [45] | Tibúrcio et al., 2023 [46] | Costa et al., 2024 [47] | Present Work | |
Number of Fresnel lenses | 1 | 1 | 2 | 12 | 1 |
Effective collection area | 4.0 m2 | 1.767 m2 | 3.53 m2 | 6.0 m2 | 1.767 m2 |
Rod material | Nd:YAG | Nd:YAG | Nd:YAG | Ce:Nd:YAG | Ce:Nd:YAG |
Number of rods | 7 | 6 | 4 | 7 | From 3 to 7 |
Pumping configuration | End-side pumping | End-side pumping | Side pumping | Side pumping | End-side pumping |
Regime | TEM00 mode | Multimode | Multimode | TEM00 mode | Multimode |
Maximum total solar laser power | 54.65 W | 34 W | 104.4 W | 212.39 W | 122.8 W |
Maximum solar-to-laser conversion efficiency | 1.44% | 2.0% | 2.96% | 3.73% | 7.31% |
Maximum collection efficiency | 13.66 W/m2 | 19.24 W/m2 | 29.7 W/m2 | 35.40 W/m2 | 69.50 W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, J.; Costa, H.; Vistas, C.R.; Tibúrcio, B.D.; Matos, A.; Liang, D. Multirod Pumping Approach with Fresnel Lens and Ce:Nd:YAG Media for Enhancing the Solar Laser Efficiency. Energies 2024, 17, 5630. https://doi.org/10.3390/en17225630
Almeida J, Costa H, Vistas CR, Tibúrcio BD, Matos A, Liang D. Multirod Pumping Approach with Fresnel Lens and Ce:Nd:YAG Media for Enhancing the Solar Laser Efficiency. Energies. 2024; 17(22):5630. https://doi.org/10.3390/en17225630
Chicago/Turabian StyleAlmeida, Joana, Hugo Costa, Cláudia R. Vistas, Bruno D. Tibúrcio, Ana Matos, and Dawei Liang. 2024. "Multirod Pumping Approach with Fresnel Lens and Ce:Nd:YAG Media for Enhancing the Solar Laser Efficiency" Energies 17, no. 22: 5630. https://doi.org/10.3390/en17225630
APA StyleAlmeida, J., Costa, H., Vistas, C. R., Tibúrcio, B. D., Matos, A., & Liang, D. (2024). Multirod Pumping Approach with Fresnel Lens and Ce:Nd:YAG Media for Enhancing the Solar Laser Efficiency. Energies, 17(22), 5630. https://doi.org/10.3390/en17225630