Analysis of the Energy and Emission Performance of an Automatic Biomass Boiler in the Context of Efficient Heat Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Tested Automatic Pellet Boiler
2.2. Description of Laboratory Testing Facility and Measuring Instruments Used
2.2.1. Sensonic IR-1 Analyser
2.2.2. Dust Meter
2.3. Method
- —instantaneous heat output [kW];
- —mass flow rate of the water ;
- —specific heat of the water in the temperature range (tz, tp) ;
- —instantaneous flow and return temperatures .
- —useful efficiency [%];
- —heat input in the fuel (burner heat input) [kW].
3. Results and Discussion
3.1. Analysis of Test Results
3.2. Evaluation of the Parameters of the Boiler Under Test
4. Conclusions and Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hainsch, K.; Brauers, H.; Burandt, T.; Göke, L.; von Hirschhausen, C.R.; Kemfert, C.; Kendziorski, M.; Löffler, K.; Oei, P.Y.; Präger, F.; et al. Make the European Green Deal Real: Combining Climate Neutrality and Economic Recovery; Politikberatung Kompakt, No. 153; DIW Berlin: Berlin, Germany, 2020. [Google Scholar]
- Hainsch, K.; Göke, L.; Kemfert, C.; Oei, P.Y.; von Hirschhausen, C.R. European green deal: Using ambitious climate targets and renewable energy to climb out of the economic crisis. DIW Wkly. Rep. 2020, 10, 303–310. [Google Scholar]
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More Than Climate Neutrality. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Gengnagel, V.; Zimmermann, K. The European Green Deal as a moonshot–Caring for a climate-neutral yet prospering continent? Hist. Soc. Res. 2022, 47, 267–302. [Google Scholar]
- Kaczmarek, J.; Kolegowicz, K.; Szymla, W. Restructuring of the coal mining industry and the challenges of energy transition in Poland (1990–2020). Energies 2022, 15, 3518. [Google Scholar] [CrossRef]
- Mazurek-Czarnecka, A.; Rosiek, K.; Salamaga, M.; Wąsowicz, K.; Żaba-Nieroda, R. Study on support mechanisms for renewable energy sources in Poland. Energies 2022, 15, 4196. [Google Scholar] [CrossRef]
- Adamik, P. Evaluation of the use of cogeneration bonus as a support mechanism for the transformation of the heating system in Poland in 2019–2020. Ekon. Sr. 2022, 1, 39–52. [Google Scholar] [CrossRef]
- Talarek, K.; Knitter-Piątkowska, A.; Garbowski, T. Challenges for district heating in Poland. Discov. Energy 2023, 3, 5. [Google Scholar] [CrossRef]
- Księżopolski, K.; Drygas, M.; Pronińska, K.; Nurzyńska, I. The economic effects of new patterns of energy efficiency and heat sources in rural single-family houses in Poland. Energies 2020, 13, 6358. [Google Scholar] [CrossRef]
- Pietrzak, P.; Tokarczyk, P.; Więcka, A.; Wiśniewski, G.; Zarzeczna, J. Renewable Energy Sources in Heating. Technologies That Will Change Reality; Forum Energii, Analizy i Dialog: Warsaw, Poland, 2020. (In Polish) [Google Scholar]
- Olsztyńska, I. Biomass in the fuel mix of the Polish energy and heating sector. Polityka Energetyczna 2019, 22, 99–118. [Google Scholar] [CrossRef]
- Bełdycka-Bórawska, A.; Bórawski, P.; Borychowski, M.; Wyszomierski, R.; Bórawski, M.B.; Rokicki, T.; Ochnio, L.; Jankowski, K.; Mickiewicz, B.; Dunn, J.W. Development of solid biomass production in Poland, especially pellet, in the context of the world’s and the European Union’s Climate and Energy Policies. Energies 2021, 14, 3587. [Google Scholar] [CrossRef]
- Malico, I.; Pereira, R.N.; Gonçalves, A.C.; Sousa, A.M. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 2019, 112, 960–977. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba-Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Pełka, G.; Wygoda, M.; Luboń, W.; Pachytel, P.; Jachimowski, A.; Paprocki, M.; Wyczesany, P.; Kotyza, J. Analysis of the efficiency of a batch boiler and emissions of harmful substances during combustion of various types of wood. Energies 2021, 14, 6783. [Google Scholar] [CrossRef]
- Igliński, B.; Piechota, G.; Buczkowski, R. Development of biomass in polish energy sector: An overview Clean Technol. Environ. Policy 2015, 17, 317–329. [Google Scholar]
- Pietrzak, M.B.; Igliński, B.; Kujawski, W.; Iwański, P. Energy transition in Poland—Assessment of the renewable energy sector. Energies 2021, 14, 2046. [Google Scholar] [CrossRef]
- Departament Rynków Energii Elektrycznej i Ciepła URE. Energetyka Cieplna w Liczbach–2021; Urząd Regulacji Energetyki: Warszawa, Poland, 2022. (In Polish)
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Sameti, M.; Nasiri, F. Biomass-fuelled combined heat and power: Integration in district heating and thermal-energy storage. Clean. Energy 2021, 5, 44–56. [Google Scholar] [CrossRef]
- Jodeiri, A.M.; Goldsworthy, M.J.; Buffa, S.; Cozzini, M. Role of sustainable heat sources in transition towards fourth generation district heating—A review. Renew. Sustain. Energy Rev. 2022, 158, 112156. [Google Scholar] [CrossRef]
- Statistics Poland. Energy from Renewable Sources in 2022; Statistics Poland: Warszawa, Poland, 2023. (In Polish)
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy-and forestry sectors? Renew. Energy 2021, 165, 758–772. [Google Scholar] [CrossRef]
- Taylor, D.; Chong, K.; Röder, M. Designing biomass policy: The political economy of renewable energy for net zero. Wiley Interdiscip. Rev. Energy Environ. 2024, 13, e512. [Google Scholar] [CrossRef]
- Peszko, G.; Amann, M.; Awe, Y.; Kleiman, G. Air Pollution and Climate Change: From Co-Benefits to Coherent Policies; World Bank Publications: Washington, DC, USA, 2023. [Google Scholar]
- Wyszkowski, K.; Piwowarek, Z.; Nowakowska, M.; Pałejko, Z.; Gumulski, M. Jakość Powietrza w Polsce–Stan Obecny i Propozycje Działań Naprawczych; UN Global Compact Network Poland: Warszawa, Poland, 2022. [Google Scholar]
- Traczyk, P.; Gruszecka-Kosowska, A. The condition of air pollution in Kraków, Poland, in 2005–2020, with health risk assessment. Int. J. Environ. Res. Public Health 2020, 17, 6063. [Google Scholar] [CrossRef] [PubMed]
- Porwisiak, P.; Werner, M.; Kryza, M.; Vieno, M.; Holland, M.; ApSimon, H.; Drzeniecka-Osiadacz, A.; Skotak, K.; Gawuc, L.; Szymankiewicz, K. Modelling benzo (a) pyrene concentrations for different meteorological conditions–Analysis of lung cancer cases and associated economic costs. Environ. Int. 2023, 173, 107863. [Google Scholar] [CrossRef] [PubMed]
- Zgłobicki, W.; Baran-Zgłobicka, B. Air pollution in major Polish cities in the period 2005–2021: Intensity, effects and attempts to reduce it. Environ. Res. 2024, 240, 117497. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z.; Guo, T. Emission of PM2.5-bound polycyclic aromatic hydrocarbons from biomass and coal combustion in China. Atmosphere 2021, 12, 1129. [Google Scholar] [CrossRef]
- Siudek, P. Polycyclic aromatic hydrocarbons in coarse particles (PM10) over the coastal urban region in Poland: Distribution, source analysis and human health risk implications. Chemosphere 2023, 311, 137130. [Google Scholar] [CrossRef]
- Gabryelewicz, I.; Stryjski, R.; Wędrychowicz, M.; Dąbrowski, T. The State of the Air Quality in Poland. Rocz. Ochr. Sr. 2020, 22, 998–1013. [Google Scholar]
- GUS. Zużycie Energii w Gospodarstwach Domowych w 2021 r; Urząd Statystyczny w Rzeszowie: Rzeszów, Poland, 2023.
- Tomaszewski, K. The Polish road to the new European Green Deal–challenges and threats to the national energy policy. Polityka Energetyczna 2020, 23, 5–18. [Google Scholar] [CrossRef]
- Sulaiman, C.; Abdul-Rahim, A.S.; Ofozor, C.A. Does wood biomass energy use reduce CO2 emissions in European Union member countries? Evidence from 27 members. J. Clean. Prod. 2020, 253, 119996. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Dudziec, P.; Krzyżaniak, M.; Olba-Zięty, E. Solid biomass energy potential as a development opportunity for rural communities. Energies 2021, 14, 3398. [Google Scholar] [CrossRef]
- Biomasa w Polsce i Możliwości Jej Wykorzystania. Available online: https://magazynbiomasa.pl/biomasa-w-polsce-i-mozliwosci-jej-wykorzystania/ (accessed on 20 June 2024). (In Polish).
- Marcinek, P.; Smol, M. Bioeconomy as one of the key areas of implementing a circular economy (CE) in Poland. Environ. Res. Eng. Manag. 2020, 76, 20–31. [Google Scholar] [CrossRef]
- Sobczyk, W.; Sobczyk, E.J. Varying the Energy Mix in the EU-28 and in Poland as a Step towards Sustainable Development. Energies 2021, 14, 1502. [Google Scholar] [CrossRef]
- Doberstein-Ganszer, K.; Dziubek, I.T. Production and use of biomass in Poland as a guarantee national security system. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2023; Volume 2976. [Google Scholar]
- Dybek, B.; Anders, D.; Hołaj-Krzak, J.T.; Hałasa, Ł.; Maj, G.; Kapłan, M.; Klimek, K.; Filipczak, G.; Wałowski, G. Assessment of the prospects of Polish non-food energy agriculture in the context of a renewable energy source. Energies 2023, 16, 3315. [Google Scholar] [CrossRef]
- Zeng, T.; Mlonka-Mędrala, A.; Lenz, V.; Nelles, M. Evaluation of bottom ash slagging risk during combustion of herbaceous and woody biomass fuels in a small-scale boiler by principal component analysis. Biomass Convers. Biorefin. 2021, 11, 1211–1229. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Marchewicz, A.; Krupa, A.; Czech, T. Particulate matter emission control from small residential boilers after biomass combustion. A review. Renew. Sustain. Energy Rev. 2021, 137, 110446. [Google Scholar] [CrossRef]
- Ozgen, S. Methods for particulate matter emission reduction from pellet boilers. Biomass Convers. Biorefin. 2024, 14, 8189–8213. [Google Scholar] [CrossRef]
- Kotły do Spalania Biomasy-Zestawienie Oferty Producentów. Available online: https://www.instalacjebudowlane.pl/6341-23-40-kotly-do-spalania-biomasy--zestawienie-oferty-producentow.html (accessed on 28 June 2024). (In Polish).
- Gołąbeska, E.; Harasimowicz, A. Wybrane Problemy Związane z Realizacją Systemów Wykorzystujących Zieloną Energię; Oficyna Wydawnicza Politechniki Białostockiej: Białystok, Poland, 2023. (In Polish) [Google Scholar]
- Wawrzyniak, K.; Walkowiak, S.; Cetnarski, R. Elastyczność w sieci OSD jako kluczowy komponent transformacji energetycznej. Energetyka Rozproszona 2021, 5–6, 75–90. (In Polish) [Google Scholar] [CrossRef]
- Francik, S.; Knapczyk, A.; Knapczyk, A.; Francik, R. Decision support system for the production of miscanthus and willow briquettes. Energies 2020, 13, 1364. [Google Scholar] [CrossRef]
- Roman, K.; Grzegorzewska, E. The Comparison of Physical and Chemical Properties of Pellets and Briquettes from Hemp (Cannabis sativa L.). Energies 2024, 17, 2210. [Google Scholar] [CrossRef]
- Ranta, T.; Laihanen, M.; Karhunen, A. Development of the bioenergy as a part of renewable energy in the Nordic Countries: A comparative analysis. J. Sustain. Bioenergy Syst. 2020, 10, 92–112. [Google Scholar] [CrossRef]
- Persson, T.; Rönnbäck, M.; Mattsson, J.E.; Danielsson, B.O.; Ryde, D. Chunkwood fuel feeding and combustion experiments in small-scale boilers to provide design suggestions for chunkwood friendly boiler construction. Sustain. Energy Technol. Assess. 2024, 71, 103986. [Google Scholar] [CrossRef]
- Behzadi, A.; Thorin, E.; Duwig, C.; Sadrizadeh, S. Supply-demand side management of a building energy system driven by solar and biomass in Stockholm: A smart integration with minimal cost and emission. Energy Conv. Manag. 2023, 292, 117420. [Google Scholar] [CrossRef]
- Di Fraia, S.; Shah, M.; Vanoli, L. Biomass Polygeneration Systems Integrated with Buildings: A Review. Sustainability 2024, 16, 1654. [Google Scholar] [CrossRef]
- EN 303-5:2021; Heating Boilers-Part 5: Heating Boilers for Solid Fuels, Manually and Automatically Stoked, Nominal Heat Output of up to 500 kW-Terminology, Requirements, Testing and Marking. iTeh Standards: Etobicoke, ON, Canada, 2021.
Parameter | Unit | Value |
---|---|---|
Designation of the boiler type and size | — | Economic-Bio 25 |
Rated thermal output | kW | 25 |
Combustion’s thermal efficiency | % | 83.3 |
Inlet and outlet water parameters | °C | 80/70 |
Permissible water temperature in the boiler | <95 | |
Required flue draught | Pa | 20 |
Water capacity | dm3 | 100 |
Flue gas temperature: | °C | |
rated output | 250 | |
minimum output | 185 | |
Flue gas mass flow: | Kg/s | |
rated output | 0.02 | |
minimum output | 0.006 | |
Dimensions of the flue outlet spigot | mm | 150 |
Dimensions of inlet and outlet pipe spigots | 40 | |
Temperature setting range | °C | 30–80 |
Fan speed setting range | % | 10–100 |
Minimum return water temperature (at boiler inlet) | °C | 40 |
Fuel type, moisture content and grain size | <25 | |
Fuel tank capacity | dm3 | 350 |
Electrical power supply | V | 230 |
Hz | 50 | |
Electric power consumption—max | kW | 0.23 |
Permissible water pressure in the boiler | bar | <1.9 |
Boiler’s weight without water | kg | 400 |
Boiler’s overall dimensions (insulated water casing alone) | mm | |
length | 830 | |
width | 1700 | |
height | 1200 |
Parameter | Unit | Value |
---|---|---|
Certificate | ENPlus A1 | |
Diameter | mm | 6 |
Bulk density | kg/m3 | 660 |
Calorific value [MJ/kg] | MJ/kg | 17.98 |
Calorific value [kWh/kg] | kWh/kg | 4.99 |
Ash content | % | 0.3 |
Moisture content | 5.71 |
Parameter | Value |
---|---|
Average heat output [kW] | 26.86 |
Energy efficiency ratio [%] | 129.56 |
Boiler efficiency with both filters fitted [%] | 95.58 |
Boiler efficiency with one filter fitted [%] | 87.53 |
Boiler efficiency without filters [%] | 83.65 |
Power consumption at rated heat output [kW] | 0.11 |
Power consumption in standby mode [kW] | 0.006 |
Parameter | Value |
---|---|
CO2 emissions [mg/m3] 10% O2 | 22.7 |
NOx emissions [mg/m3] 10% O2 | 187.6 |
Dust emissions [mg/m3] 10% O2 for two turbulators | 21.08 |
Dust emissions [mg/m3] 10% O2 for one turbulator | 21.98 |
Dust emissions [mg/m3] 10% O2 without turbulators | 29.72 |
Emission Requirements for Solid Fuel Boilers | Parameter | Unit | Requirements | Values Determined |
---|---|---|---|---|
Class 5 acc. to PN-EN 303-5:2021 | Boiler efficiency | % | ≥88.4 | 89.7 |
Pollutant emissions | ||||
Carbon monoxide | [mg/m3] | ≤500 | 22.7 | |
Dust | [mg/m3] | ≤40 | 21.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocoń, A.; Jachimowski, A.; Koniuch, W.; Pełka, G.; Luboń, W.; Kubarek, P.; Jach-Nocoń, M.; Dawiec, D. Analysis of the Energy and Emission Performance of an Automatic Biomass Boiler in the Context of Efficient Heat Management. Energies 2024, 17, 5885. https://doi.org/10.3390/en17235885
Nocoń A, Jachimowski A, Koniuch W, Pełka G, Luboń W, Kubarek P, Jach-Nocoń M, Dawiec D. Analysis of the Energy and Emission Performance of an Automatic Biomass Boiler in the Context of Efficient Heat Management. Energies. 2024; 17(23):5885. https://doi.org/10.3390/en17235885
Chicago/Turabian StyleNocoń, Adam, Artur Jachimowski, Wacław Koniuch, Grzegorz Pełka, Wojciech Luboń, Paweł Kubarek, Marta Jach-Nocoń, and Dominika Dawiec. 2024. "Analysis of the Energy and Emission Performance of an Automatic Biomass Boiler in the Context of Efficient Heat Management" Energies 17, no. 23: 5885. https://doi.org/10.3390/en17235885
APA StyleNocoń, A., Jachimowski, A., Koniuch, W., Pełka, G., Luboń, W., Kubarek, P., Jach-Nocoń, M., & Dawiec, D. (2024). Analysis of the Energy and Emission Performance of an Automatic Biomass Boiler in the Context of Efficient Heat Management. Energies, 17(23), 5885. https://doi.org/10.3390/en17235885