Array of Graphene Solar Cells on 100 mm Silicon Wafers for Power Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Removing Thermal Oxide
3.2. Adding Metal Contacts
3.3. Overlay Multilayer Graphene
3.4. Solar Cell Performance
3.5. Solar Cell Power System
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, S.; Seok, M.; Lin, Y.-S.; Foo, Z.; Kim, D.; Lee, Y.; Liu, N.; Sylvester, D.; Blaauw, D. A low-voltage processor for sensing applications with picowatt standby mode. IEEE J. Solid-State Circuits 2009, 44, 1145–1155. [Google Scholar] [CrossRef]
- Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, F.G. Energy harvesting by magnetostrictive material (MsM) for powering wireless sensors in SHM. Sens. Smart Struct. 2007, 6529, 1231–1241. [Google Scholar]
- Lopez-Suarez, M.; Rurali, R.; Gammaitoni, L.; Abadal, G. Nanostructured graphene for energy harvesting. Phys. Rev. B 2011, 84, 161401. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721. [Google Scholar] [CrossRef] [PubMed]
- El Mahboubi, F.; Bafleur, M.; Boitier, V.; Dilhac, J.-M. Energy-harvesting powered variable storage topology for battery-free wireless sensors. Technologies 2018, 6, 106. [Google Scholar] [CrossRef]
- Torres, E.O.; Rincón-Mora, G.A. Electrostatic energy harvester and Li-ion charger circuit for micro-scale applications. In Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems, San Juan, PR, USA, 6–9 August 2006; pp. 65–69. [Google Scholar]
- Thibado, P.M.; Neu, J.C.; Kumar, P.; Singh, S.; Bonilla, L.L. Charging capacitors from thermal fluctuations using diodes. Phys. Rev. E 2023, 108, 024130. [Google Scholar] [CrossRef] [PubMed]
- Gikunda, M.N.; Harerimana, F.; Mangum, J.M.; Rahman, S.; Thompson, J.P.; Harris, C.T.; Churchill, H.O.H.; Thibado, P.M. Array of Graphene Variable Capacitors on 100 mm Silicon Wafers for Vibration-Based Applications. Membranes 2022, 12, 533. [Google Scholar] [CrossRef]
- Le, T.K.; Mai, T.H.; Iqbal, M.A.; Vernardou, D.; Dao, V.; Ponnusamy, V.K.; Rout, C.S.; Pham, P.V. Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions. RSC Adv. 2023, 13, 31273–31291. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Novoselov, K.; Fal’ko, V.; Colombo, L.; Gellert, P.; Schwab, M.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- De Arco, L.G.; Zhang, Y.; Schlenker, C.W.; Ryu, K.; Thompson, M.E.; Zhou, C.W. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Nalwa, H.S. Graphene-Based Bulk-Heterojunction Solar Cells: A Review. J. Nanosci. Nanotechnol. 2015, 15, 6237–6278. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Zhang, L.; Liu, B.; Gao, H.; Zhang, Y.; Yan, H.; Song, X. Graphene/Si Schottky solar cells: A review of recent advances and prospects. RSC Adv. 2019, 9, 863–877. [Google Scholar] [CrossRef] [PubMed]
- Stoller, M.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Hong, B.J.; Ting, C.C.; Hofmann, M. Ultrathin graphene-based solar cells. RSC Adv. 2015, 5, 99627–99631. [Google Scholar] [CrossRef]
- Li, X.M.; Lv, Z.; Zhu, H.W. Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects. Adv. Mater. 2015, 27, 6549–6574. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.-B. Graphene and its derivatives for solar cells application. Nano Energy 2018, 47, 51. [Google Scholar] [CrossRef]
- Lancellotti, L.; Lisi, N.; Veneri, P.D.; Bobeico, E.; Matacena, I.; Guerriero, P. Graphene-on-Silicon solar cells with graphite contacts. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), Otranto, Italy, 2–4 July 2019; pp. 199–203. [Google Scholar]
- Matacena, I.; Lancellotti, L.; Lisi, N.; Delli Veneri, P.; Guerriero, P.; Daliento, S. Impedance Spectroscopy for the Characterization of the All-Carbon Graphene-Based Solar Cell. Energies 2020, 13, 1908. [Google Scholar] [CrossRef]
- Rehman, M.A.; Roy, S.B.; Akhtar, I.; Bhopal, M.F.; Choi, W.; Nazir, G.; Khan, M.F.; Kumar, S.; Eom, J.; Chun, S.H.; et al. Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon 2019, 148, 187–195. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J.; Seo, J.; Jung, S.; Kim, U.; Park, H. The effect of the graphene integration process on the performance of graphene-based Schottky junction solar cells. J. Mater. Chem. A 2017, 5, 18716–18724. [Google Scholar] [CrossRef]
- Ju, S.H.; Liang, B.X.; Wang, J.Z.; Shi, Y.; Li, S.L. Graphene/silicon Schottky solar cells: Technical strategies for performance optimization. Opt. Commun. 2018, 428, 258–268. [Google Scholar] [CrossRef]
- Gnisci, A.; Faggio, G.; Lancellotti, L.; Messina, G.; Carotenuto, R.; Bobeico, E.; Delli Veneri, P.; Capasso, A.; Dikonimos, T.; Lisi, N. The Role of Graphene-Based Derivative as Interfacial Layer in Graphene/n-Si Schottky Barrier Solar Cells. Phys. Status Solidi A Appl. Mater. Sci. 2019, 216, 1900351. [Google Scholar] [CrossRef]
- Jehad, A.K.; Yurddaskal, M.; Gunes, F.; Zafer, C.; Kocabas, K. Investigation of graphene-based Schottky junction solar cell with heavy-doped silicon. J. Mater. Sci. Mater. Electron. 2021, 32, 28856–28869. [Google Scholar] [CrossRef]
- Cui, T.; Lv, R.; Huang, Z.-H.; Chen, S.; Zhang, Z.; Gan, X.; Jia, Y.; Li, X.; Wang, K.; Wua, D.; et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J. Mater. Chem. A 2013, 1, 5736. [Google Scholar] [CrossRef]
- Matacena, I.; Guerriero, P.; Lancellotti, L.; Bobeico, E.; Lisi, N.; Chierchia, R.; Veneri, P.; Daliento, S. Capacitance–Voltage Investigation of Encapsulated Graphene/Silicon Solar Cells. IEEE Trans. Electron Devices 2023, 70, 4243. [Google Scholar] [CrossRef]
- Fallahazad, P.; Naderi, N.; Eshraghi, M.J. Improved photovoltaic performance of graphene-based solar cells on textured silicon substrate. J. Alloys Compd. 2020, 834, 152514. [Google Scholar] [CrossRef]
- Arefinia, Z.; Asgari, A. A new modeling approach for graphene-based silicon nanowire Schottky junction solar cells. J. Renew. Sustain. Energy 2014, 6, 043102. [Google Scholar] [CrossRef]
- Li, X.M.; Zhu, H.W.; Wang, K.L.; Cao, A.Y.; Wei, J.Q.; Li, C.Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D.H. Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 2010, 22, 2743–2748. [Google Scholar] [CrossRef]
- Ye, Y.; Dai, L. Graphene-based Schottky junction solar cells. J. Mater. Chem. 2012, 22, 24224–24229. [Google Scholar] [CrossRef]
- Li, Y.F.; Yang, W.; Tu, Z.Q.; Liu, Z.C.; Yang, F.; Zhang, L.Q.; Hatakeyama, R. Schottky junction solar cells based on graphene with different numbers of layers. Appl. Phys. Lett. 2014, 104, 113902. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Mackin, C.; Zhang, X.; Fang, W.; Palacios, T.; Zhu, H.; Kong, J. Role of Interfacial Oxide in High-Efficiency Graphene-Silicon Schottky Barrier Solar Cells. Nano Lett. 2015, 15, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.; Colombo, L.; Ruoff, R. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sudhagar, P.; Kang, Y.S.; Choi, W. Graphene synthesis and application for solar cells. J. Mater. Res. 2014, 29, 299–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.M.; Kabir, M.R.; Amin, T.B.; Mangum, J.M.; Ashaduzzaman; Thibado, P.M. Array of Graphene Solar Cells on 100 mm Silicon Wafers for Power Systems. Energies 2024, 17, 5895. https://doi.org/10.3390/en17235895
Rahman SM, Kabir MR, Amin TB, Mangum JM, Ashaduzzaman, Thibado PM. Array of Graphene Solar Cells on 100 mm Silicon Wafers for Power Systems. Energies. 2024; 17(23):5895. https://doi.org/10.3390/en17235895
Chicago/Turabian StyleRahman, Syed M., Md R. Kabir, Tamzeed B. Amin, James M. Mangum, Ashaduzzaman, and Paul M. Thibado. 2024. "Array of Graphene Solar Cells on 100 mm Silicon Wafers for Power Systems" Energies 17, no. 23: 5895. https://doi.org/10.3390/en17235895
APA StyleRahman, S. M., Kabir, M. R., Amin, T. B., Mangum, J. M., Ashaduzzaman, & Thibado, P. M. (2024). Array of Graphene Solar Cells on 100 mm Silicon Wafers for Power Systems. Energies, 17(23), 5895. https://doi.org/10.3390/en17235895