Estimation and Control of WRRF Biogas Production
Abstract
:1. Introduction
- The availability and reliability of online measurements of sludge composition at both the inlet and outlet of the bioreactor.
- The absence of online measurements for bacterial activity within the bioreactor.
- The uncertainty in models that describe the nonlinear and time-varying dynamics of the anaerobic digestion (AD) process.
- The development of control algorithms capable of addressing noisy measurements and model uncertainties.
2. Materials and Methods
2.1. Veas Biogas Plant and Instrumentation
2.2. Software and Data Collection
2.3. Data Pre-Processing
- Inlet temperature () is measured after the intersection of pipelines for inlet sludge and heated recirculated sludge (sequential operation).
- Inlet sludge total suspended solids () is measured after the intersection of pipelines from two buffer tanks with varying content of suspended solids (sequential operation).
- Biogas flow rate () is measured before splitting the biogas flow into production (continuous operation) and recirculation (sequential operation).
2.4. Dynamic Modeling Methods
Modeling Error Index
2.5. Control Methods
2.5.1. Selection of Setpoint Trajectories
2.5.2. Control Result Indicators
3. Results
3.1. Data Description and Pre-Processing
3.1.1. Data Pre-Processing for Sequential Measurements
3.1.2. Data Pre-Processing for Inlet Temperature Tin
3.1.3. Data Pre-Processing for Biogas Production
3.1.4. Pre-Processed Data for Modeling and Control Experiments
3.2. Modeling Results
3.3. Control Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
ADM1 | anaerobic digestion model no. 1 |
AM2 | anaerobic digestion model 2 |
COD | chemical oxygen demand |
CSTR | continuous stirred tank reactor |
HRT | hydraulic retention time |
OLR | organic loading rate |
PID | proportional–integral–derivative controller controller |
RC | ratio controller |
TF | transfer function |
TH | total heat consumption |
TOL | total organic loading |
TBIO | total biogas production |
TSS | total suspended solids |
Veas | Vestfjorden Avløpsselskap AS |
VFA | volatile fatty acid |
VHW | total volume of hot water |
VS | volatile solid |
WRRF | Water Resource Recovery Facility |
References
- European Commission. Proposal for a Revised Urban Wastewater Treatment Directive. Available online: https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en (accessed on 10 March 2022).
- European Commission. EU Strategy on Energy System Integration. Available online: https://energy.ec.europa.eu/topics/energy-systems-integration_en (accessed on 10 March 2022).
- European Commission. Circular Economy Action Plan. Available online: https://ec.europa.eu/environment/strategy/circular-economy-action-plan_en (accessed on 10 March 2022).
- Lyng, K.A.; Brekke, A. Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels. Energies 2019, 12, 532. [Google Scholar] [CrossRef]
- Piadeh, F.; Offie, I.; Behzadian, K.; Rizzuto, J.P.; Bywater, A.; Córdoba-Pachón, J.R.; Walker, M. A critical review for the impact of anaerobic digestion on the sustainable development goals. J. Environ. Manag. 2024, 349, 119458. [Google Scholar] [CrossRef] [PubMed]
- Hiis, E.G.; Vick, S.H.; Molstad, L.; Røsdal, K.; Jonassen, K.R.; Winiwarter, W.; Bakken, L.R. Unlocking bacterial potential to reduce farmland N2O emissions. Nature 2024, 630, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Ampese, L.C.; Sganzerla, W.G.; Di Domenico Ziero, H.; Mudhoo, A.; Martins, G.; Forster-Carneiro, T. Research progress, trends, and updates on anaerobic digestion technology: A bibliometric analysis. J. Clean. Prod. 2022, 331, 130004. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Elbeshbishy, E.; Kakar, F.L.; Zema, D.A. A short bibliographic review concerning biomethane production from wastewater sludge. Waste Manag. Res. 2024, 734242X241252906. [Google Scholar] [CrossRef]
- García-Diéguez, C.; Molina, F.; Roca, E. Multi-objective cascade controller for an anaerobic digester. Process Biochem. 2011, 46, 900–909. [Google Scholar] [CrossRef]
- Jimenez, J.; Latrille, E.; Harmand, J.; Robles, A.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; et al. Instrumentation and control of anaerobic digestion processes: A review and some research challenges. Rev. Environ. Sci. Bio/Technol. 2015, 14, 615–648. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Lee, D.J. Biogas from anaerobic digestion processes: Research updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Cinar, S.; Cinar, S.O.; Wieczorek, N.; Sohoo, I.; Kuchta, K. Integration of Artificial Intelligence into Biogas Plant Operation. Processes 2021, 9, 85. [Google Scholar] [CrossRef]
- Bahramian, M.; Dereli, R.K.; Zhao, W.; Giberti, M.; Casey, E. Data to intelligence: The role of data-driven models in wastewater treatment. Expert Syst. Appl. 2023, 217, 119453. [Google Scholar] [CrossRef]
- Nair, A.M.; Gonzales-Silva, B.M.; Haugen, F.A.; Ratnaweera, H.; Østerhus, S.W. Real-time monitoring of enhanced biological phosphorus removal in a multistage EBPR-MBBR using a soft-sensor for phosphates. J. Water Process Eng. 2020, 37, 13. [Google Scholar] [CrossRef]
- Gupta, R.; Zhang, L.; Hou, J.; Zhang, Z.; Liu, H.; You, S.; Sik Ok, Y.; Li, W. Review of explainable machine learning for anaerobic digestion. Bioresour. Technol. 2023, 369, 128468. [Google Scholar] [CrossRef]
- Paepae, T.; Bokoro, P.N.; Kyamakya, K. Data Augmentation for a Virtual-Sensor-Based Nitrogen and Phosphorus Monitoring. Sensors 2023, 23, 1061. [Google Scholar] [CrossRef]
- Komulainen, T.M.; Baqeri, A.M.; Jansen, K.M.; Saltnes, T.; Bech, A.T.; Korostynska, O. Virtual sensors for the Hias process. Water Pract. Technol. 2024, 19, 3072–3091. [Google Scholar] [CrossRef]
- Rodríguez, J.; Ahmed, W. Process monitoring and control. In Anaerobic Treatment of Domestic Wastewater: Present Status and Potentialities; IWA Publishing: London, UK, 2024. [Google Scholar] [CrossRef]
- Cruz, I.A.; Andrade, L.R.; Bharagava, R.N.; Nadda, A.K.; Bilal, M.; Figueiredo, R.T.; Ferreira, L.F. An overview of process monitoring for anaerobic digestion. Biosyst. Eng. 2021, 207, 106–119. [Google Scholar] [CrossRef]
- Batstone, D.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, S.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Bernard, O.; Hadj-Sadok, Z.; Dochain, D.; Genovesi, A.; Steyer, J.P. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 2001, 75, 424–438. [Google Scholar] [CrossRef]
- Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle, F.J., III. Process Dynamics and Control, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bouchareb, H.; Semcheddine, S.; Harmas, M.N.; M’sirdi, K.N.; Naamane, A. Virtual Sensors to Drive Anaerobic Digestion under a Synergetic Controller. Energies 2019, 12, 430. [Google Scholar] [CrossRef]
- Asadi, M.; Guo, H.; McPhedran, K. Biogas production estimation using data-driven approaches for cold region municipal wastewater anaerobic digestion. J. Environ. Manag. 2020, 253, 109708. [Google Scholar] [CrossRef]
- Jeong, K.; Abbas, A.; Shin, J.; Son, M.; Kim, Y.M.; Cho, K.H. Prediction of biogas production in anaerobic co-digestion of organic wastes using deep learning models. Water Res. 2021, 205, 117697. [Google Scholar] [CrossRef] [PubMed]
- Ghofrani-Isfahani, P.; Valverde-Pérez, B.; Alvarado-Morales, M.; Shahrokhi, M.; Vossoughi, M.; Angelidaki, I. Supervisory control of an anaerobic digester subject to drastic substrate changes. Chem. Eng. J. 2020, 391, 123502. [Google Scholar] [CrossRef]
- Zhou, H.; Ying, Z.; Cao, Z.; Liu, Z.; Zhang, Z.; Liu, W. Feeding control of anaerobic co-digestion of waste activated sludge and corn silage performed by rule-based PID control with ADM1. Waste Manag. 2020, 103, 22–31. [Google Scholar] [CrossRef]
- Mauky, E.; Weinrich, S.; Nägele, H.J.; Jacobi, H.F.; Liebetrau, J.; Nelles, M. Model Predictive Control for Demand-Driven Biogas Production in Full Scale. Chem. Eng. Technol. 2016, 39, 652–664. [Google Scholar] [CrossRef]
- Yoshida, K.; Shimizu, N. Biogas production management systems with model predictive control of anaerobic digestion processes. Bioprocess Biosyst. Eng. 2020, 43, 2189–2200. [Google Scholar] [CrossRef]
- Lara-Cisneros, G.; Dochain, D.; Alvarez-Ramírez, J. Model based extremum-seeking controller via modelling-error compensation approach. J. Process Control. 2019, 80, 193–201. [Google Scholar] [CrossRef]
- Norsk, V. Nasjonal Bearekraftstrategi for Vannbransjen. Available online: https://norskvann.no/interessepolitikk/baerekraft-ma-prioriteres/ (accessed on 10 March 2022).
- Bergland, W.H.; Bakke, R. Modelling anaerobic digestion during temperature and load variations. Int. J. Energy Prod. Manag. 2016, 1, 393–402. [Google Scholar] [CrossRef]
- Attar, S.; Haugen, F.A. Dynamic model adaptation to an anaerobic digestion reactor of a water resource recovery facility. Model. Identif. Control 2019, 40, 143–160. [Google Scholar] [CrossRef]
- Mukhtar, B. Optimizing Biogas Production and Energy Efficiency in Anaerobic Digestion Process: Development and Evaluation of Control Strategies. Master’s Thesis, Oslo Metropolitan University, Oslo, Norway, 2023. Available online: https://hdl.handle.net/11250/3100885 (accessed on 10 March 2022).
- Komulainen, T.M.; Mukhtar, B.; Ødegaard, T.; Johansen, H.; Haualand, K.; Jonassen, K.R.; Antonsen, S. Modeling and control of WRRF biogas production. In Proceedings of the 64th International Conference of Scandinavian Simulation Society, Västerås, Sweden, 26–27 August 2023. [Google Scholar] [CrossRef]
- Ødegaard, T. Simulation and Control of Anaerobic Digestion Process for Biogas Energy Production: A Methodology Comparison. Master’s Thesis, Oslo Metropolitan University, Oslo, Norway, 2024. Available online: https://hdl.handle.net/11250/3147290 (accessed on 10 March 2022).
- Mukherjee, B. Prediction of Influent Composition in Wastewater and Sludge Based On Statistical and Machine Learning Models. Master’s Thesis, Oslo Metropolitan University, Oslo, Norway, 2023. Available online: https://hdl.handle.net/11250/3100881 (accessed on 10 March 2022).
- Ljung, L. System Identification—Theory for the User, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13, 291–309. [Google Scholar] [CrossRef]
Symbol | Description | Mean | St.dev. | Unit | Pre. |
---|---|---|---|---|---|
Biogas out | 127.2 | 33.9 | m3/h | movmin3 movmean12 | |
F | Flow rate sludge inlet | 12.9 | 3.05 | m3/h | - |
Total suspended solids sludge at inlet | 6.95 | 1.00 | g/m3 | movmean12 | |
T | Temperature bioreactor | 37.1 | 0.09 | °C | movmean12 |
Temperature sludge at inlet | 20.6 | 2.68 | °C | movmin12 | |
Flow rate sludge via heat exchanger | 76.5 | 0.09 | m3/h | movmean12 | |
Temperature sludge after HX | 38.4 | 0.83 | °C | movmean12 | |
Flow rate hot water in | 18.0 | 17.6 | m3/h | movmean12 | |
Temperature hot water in | 54.6 | 2.00 | °C | movmean12 |
Control | Total | Total | Hot | Hydraulic | |||
---|---|---|---|---|---|---|---|
Case | Organic | Biogas | Water | Retention | |||
Scenarios | Load | Production | Volume | Time | |||
m3 | +% | N m3 | +% | m3 | +% | d | |
Veas data | 4.583 | - | 5.378 | 9.063 | - | 19.36 | |
Base case | |||||||
Setpoint + 0% | 4.582 | - | 5.384 | - | 9.072 | - | 19.34 |
Setpoint + 1% | 4.600 | 0.4 | 5.396 | 0.2 | 9.150 | 0.9 | 19.27 |
Setpoint + 5% | 4.672 | 2.0 | 5.441 | 1.1 | 9.461 | 4.3 | 18.97 |
Setpoint + 10% | 4.762 | 3.9 | 5.498 | 2.1 | 9.851 | 8.6 | 18.60 |
Setpoint + 15% * | 4.852 | 5.9 | 5.555 | 3.2 | 10.24 | 12.9 | 18.25 |
Setpoint + 20% * | 4.942 | 7.9 | 5.613 | 4.3 | 10.63 | 17.2 | 17.92 |
Reference | Process Type | Experimental Simulation | Control Algorithm | Results |
---|---|---|---|---|
Zhou et al. [28] | batch co-digestion | Lab scale and ADM1 | cascade PID rule-based | N/A OLR 1.85–14.4 kgVS/(m3d) |
Ghofrani-Isfahani et al. [27] | continuous co-digestion | Lab scale | cascade PID rule-based | N/A OLR 1.56–3.13 kgVS/(m3d) HRT 6.4–15 d |
Yoshida et al. [30] | batch | Lab scale CSTR | MPC | N/A OLR 1.5 kgVS/(m3d) |
Mauky et al. [29] | continuous | Farm scale ADM1 | MPC | N/A OLR 2.8–4.0 kgVS/(m3d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komulainen, T.M.; Jonassen, K.R.; Antonsen, S.G. Estimation and Control of WRRF Biogas Production. Energies 2024, 17, 5922. https://doi.org/10.3390/en17235922
Komulainen TM, Jonassen KR, Antonsen SG. Estimation and Control of WRRF Biogas Production. Energies. 2024; 17(23):5922. https://doi.org/10.3390/en17235922
Chicago/Turabian StyleKomulainen, Tiina M., Kjell Rune Jonassen, and Simen Gjelseth Antonsen. 2024. "Estimation and Control of WRRF Biogas Production" Energies 17, no. 23: 5922. https://doi.org/10.3390/en17235922
APA StyleKomulainen, T. M., Jonassen, K. R., & Antonsen, S. G. (2024). Estimation and Control of WRRF Biogas Production. Energies, 17(23), 5922. https://doi.org/10.3390/en17235922