Role of AI and IoT in Advancing Renewable Energy Use in Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Information Gathering
3. Results and Discussion
3.1. Resource Efficiency and Optimization
3.2. Environmental Sustainability and Emission Reductions
3.3. Open-Source Platforms and Scalability in Developing Regions
3.4. Commonalities and Discrepancies in Global Adoption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azam, A.T.S.; Abbas, A.; Haq, E.U. Climate Change: A Non-traditional Threat to Human Security. J. Glob. Peace Secur. Stud. JGPSS 2023, 4, 2023. Available online: https://www.pakistanreview.com/index.php/JGPSS/article/view/245 (accessed on 9 September 2024).
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Denwigwe, I.H.; Adedoja, O.S.; Babatunde, D.E.; Gbadamosi, S.L. Harnessing renewable energy for sustainable agricultural applications. Int. J. Energy Econ. Policy 2019, 9, 308–315. [Google Scholar] [CrossRef]
- Beltran-Peña, A.A.; Rosa, L.; D’odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- Sarkar, D.; Kar, S.K.; Chattopadhyay, A.; Rakshit, A.; Tripathi, V.K.; Dubey, P.K.; Abhilash, P.C. Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecol. Indic. 2020, 115, 106412. [Google Scholar] [CrossRef]
- Mahapatra, S.; Kumar, D.; Singh, B.; Sachan, P.K. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 2021, 4, 100036. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Mejuto, J.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef]
- Majeed, Y.; Khan, M.U.; Waseem, M.; Zahid, U.; Mahmood, F.; Majeed, F.; Sultan, M.; Raza, A. Renewable energy as an alternative source for energy management in agriculture. Energy Rep. 2023, 10, 344–359. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif. Intell. Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Tsiropoulos, Z.; Gravalos, I.; Skoubris, E.; Poulek, V.; Petrík, T.; Libra, M. A Comparative Analysis between Battery- and Solar-Powered Wireless Sensors for Soil Water Monitoring. Appl. Sci. 2022, 12, 1130. [Google Scholar] [CrossRef]
- Ghobadpour, A.; Boulon, L.; Mousazadeh, H.; Malvajerdi, A.S.; Rafiee, S. State of the art of autonomous agricultural off-road vehicles driven by renewable energy systems. Energy Procedia 2019, 162, 4–13. [Google Scholar] [CrossRef]
- Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. J. Clean. Prod. 2018, 177, 197–206. [Google Scholar] [CrossRef]
- Reardon, T.; Echeverria, R.; Berdegué, J.; Minten, B.; Liverpool-Tasie, S.; Tschirley, D.; Zilberman, D. Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agric. Syst. 2019, 172, 47–59. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Sebos, I. Enhancing Climate Neutrality and Resilience through Coordinated Climate Action: Review of the Synergies between Mitigation and Adaptation Actions. Climate 2023, 11, 105. [Google Scholar] [CrossRef]
- Chataut, G.; Bhatta, B.; Joshi, D.; Subedi, K.; Kafle, K. Greenhouse gases emission from agricultural soil: A review. J. Agric. Food Res. 2023, 11, 100533. [Google Scholar] [CrossRef]
- Streimikiene, D. Sustainability of Agriculture: Energy Use and Climate Change Mitigation Issues. In Structural Change, Productivity, and Climate Nexus in Agriculture: An Eastern European Perspective; Springer: Berlin/Heidelberg, Germany, 2021; pp. 11–63. [Google Scholar] [CrossRef]
- Morkunas, M.; Volkov, A. The Progress of the Development of a Climate-smart Agriculture in Europe: Is there Cohesion in the European Union? Environ. Manag. 2023, 71, 1111–1127. [Google Scholar] [CrossRef]
- Painuly, J.P.; Wohlgemuth, N. Renewable energy technologies: Barriers and policy implications. In Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies; Academic Press: Cambridge, MA, USA, 2021; pp. 539–562. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Sulser, T.B.; Wiebe, K. Global investment gap in agricultural research and innovation to meet Sustainable Development Goals for hunger and Paris Agreement climate change mitigation. Front. Sustain. Food Syst. 2022, 6, 965767. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.H.; Thakkar, R. Climate Changes through Data Science: Understanding and Mitigating Environmental Crisis. Mesopotamian J. Big Data 2023, 2023, 125–137. [Google Scholar] [CrossRef]
- Senoo, E.E.K.; Anggraini, L.; Kumi, J.A.; Karolina, L.B.; Akansah, E.; Sulyman, H.A.; Mendonça, I.; Aritsugi, M. IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities. Electronics 2024, 13, 1894. [Google Scholar] [CrossRef]
- Charania, I.; Li, X. Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet Things 2019, 9, 100142. [Google Scholar] [CrossRef]
- Sinwar, D.; Dhaka, V.S.; Sharma, M.K.; Rani, G. AI-Based Yield Prediction and Smart Irrigation. In Internet of Things and Analytics for Agriculture; Springer: Singapore, 2020; pp. 155–180. [Google Scholar] [CrossRef]
- Johnson, E.; Lande, O.B.S.; Adeleke, G.S.; Amajuoyi, C.P.; Simpson, B.D. Developing scalable data solutions for small and medium enterprises: Challenges and best practices. Int. J. Manag. Entrep. Res. 2024, 6, 1910–1935. [Google Scholar] [CrossRef]
- A., A.S.R.; Kunte, R.S.R. Challenges in Implementing AI Technology Smart Farming in Agricultural Sector—A Literature Review. Int. J. Manag. Technol. Soc. Sci. IJMTS 2024, 9, 283–301. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Eyime, E.E.; Obiwulu, A.U.; Ogbulezie, J.C.; Obiwulu, A.U. Trends in Renewable Energy Africa’s Path to Sustainability: Harnessing Technology, Policy, and Collaboration. Trends Renew. Energy 2024, 10, 98–131. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Alammari, R.A.; Gastli, A. Review of policies encouraging renewable energy integration & best practices. Renew. Sustain. Energy Rev. 2015, 45, 249–262. [Google Scholar] [CrossRef]
- Tödtling, F.; Trippl, M.; Frangenheim, A. Policy options for green regional development: Adopting a production and application perspective. Sci. Public Policy 2020, 47, 865–875. [Google Scholar] [CrossRef]
- Pandey, K.; Singh, K.; Singh, A. Multi-Sensors based smart nutrient reuse management system for closed soilless culture under protected cultivation. Comput. Electron. Agric. 2022, 204, 107495. [Google Scholar] [CrossRef]
- Golshani, T. The Role of AI in Managing Risk in Agricultural Engineering. SSRN Electron. J. 2024, 1–8. [Google Scholar] [CrossRef]
- Maurya, H. SMART-Agri-Hubs: A Sustainable Mathematical Model for Addressing Region-Specific Agricultural Challenges and Empowering Marginalized Farmers in India. Synerg. Int. J. Multidiscip. Stud. 2024, 1, 1–8. Available online: https://sijmds.com/index.php/pub/article/view/14 (accessed on 13 November 2024).
- Chandra, A.; McNamara, K.E.; Dargusch, P. Climate-smart agriculture: Perspectives and framings. Clim. Policy 2017, 18, 526–541. [Google Scholar] [CrossRef]
- Morkunas, M.; Wang, Y.; Wei, J.; Galati, A. Systematic literature review on the nexus of food waste, food loss and cultural background. Int. Mark. Rev. 2024, 41, 683–716. [Google Scholar] [CrossRef]
- Morkūnas, M.; RUDIENĖ, E.; Aleksander, O. Can climate-smart agriculture help to assure food security through short supply chains? A systematic bibliometric and bibliographic literature review. Bus. Manag. Econ. Eng. 2022, 20, 207–223. [Google Scholar] [CrossRef]
- Doshi, M.; Varghese, A. Smart agriculture using renewable energy and AI-powered IoT. In AI, Edge and IoT-based Smart Agriculture; Academic Press: Cambridge, MA, USA, 2022; pp. 205–225. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Garcia, D.A. Ai-driven innovations in greenhouse agriculture: Reanalysis of sustainability and energy efficiency impacts. Energy Convers. Manag. X 2024, 24, 100701. [Google Scholar] [CrossRef]
- Nižetić, S.; Djilali, N.; Papadopoulos, A.; Rodrigues, J.J.P.C. Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. J. Clean. Prod. 2019, 231, 565–591. [Google Scholar] [CrossRef]
- Al Zayed, I.S.; Elagib, N.A. Implications of non-sustainable agricultural water policies for the water-food nexus in large-scale irrigation systems: A remote sensing approach. Adv. Water Resour. 2017, 110, 408–422. [Google Scholar] [CrossRef]
- Latif, M.; Haider, S.S.; Rashid, M.U. Adoption of High Efficiency Irrigation Systems to Overcome Scarcity of Irrigation Water in Pakistan. Proc. Pak. Acad. Sci. B Life Environ. Sci. 2016, 53, 243–252. Available online: https://ppaspk.org/index.php/PPAS-B/article/view/268 (accessed on 16 September 2024).
- Raza, F.; Tamoor, M.; Miran, S.; Arif, W.; Kiren, T.; Amjad, W.; Hussain, M.I.; Lee, G.-H. The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study. Energies 2022, 15, 1198. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Minhas, P.S.; Saha, J.K.; Dotaniya, M.L.; Sarkar, A.; Saha, M. Wastewater irrigation in India: Current status, impacts and response options. Sci. Total Environ. 2022, 808, 152001. [Google Scholar] [CrossRef] [PubMed]
- Togneri, R.; Prati, R.; Nagano, H.; Kamienski, C. Data-driven water need estimation for IoT-based smart irrigation: A survey. Expert Syst. Appl. 2023, 225, 120194. [Google Scholar] [CrossRef]
- Yasin, H.M.; Zeebaree, S.R.M.; Sadeeq, M.A.M.; Ameen, S.Y.; Ibrahim, I.M.; Zebari, R.R.; Ibrahim, R.K.; Sallow, A.B. IoT and ICT based Smart Water Management, Monitoring and Controlling System: A Review. Asian J. Res. Comput. Sci. 2021, 8, 42–56. [Google Scholar] [CrossRef]
- Gupta, E. The impact of solar water pumps on energy-water-food nexus: Evidence from Rajasthan, India. Energy Policy 2019, 129, 598–609. [Google Scholar] [CrossRef]
- Glória, A.; Cardoso, J.; Sebastião, P. Sustainable Irrigation System for Farming Supported by Machine Learning and Real-Time Sensor Data. Sensors 2021, 21, 3079. [Google Scholar] [CrossRef] [PubMed]
- Balkrishna, A.; Pathak, R.; Kumar, S.; Arya, V.; Singh, S.K. A comprehensive analysis of the advances in Indian Digital Agricultural architecture. Smart Agric. Technol. 2023, 5, 100318. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Poompavai, T.; Kowsalya, M. Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review. Renew. Sustain. Energy Rev. 2019, 107, 108–122. [Google Scholar] [CrossRef]
- Jones, L.E.; Olsson, G.; Jones, L.E.; Olssson, G. Solar Photovoltaic and Wind Energy Providing Water. Glob. Chall. 2017, 1, 1600022. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, I.; Field, D.L.; Techato, K.; Alameh, K. Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renew. Energy 2022, 188, 731–749. [Google Scholar] [CrossRef]
- Ukoba, K.; Olatunji, K.O.; Adeoye, E.; Jen, T.-C.; Madyira, D.M. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy Environ. 2024, 35, 7. [Google Scholar] [CrossRef]
- Talaat, F.M.; Kabeel, A.; Shaban, W.M. The role of utilizing artificial intelligence and renewable energy in reaching sustainable development goals. Renew. Energy 2024, 235, 121311. [Google Scholar] [CrossRef]
- Abisoye, B.O.; Sun, Y.; Zenghui, W. A survey of artificial intelligence methods for renewable energy forecasting: Methodologies and insights. Renew. Energy Focus 2023, 48, 100529. [Google Scholar] [CrossRef]
- Mir, H.; Zaraatgar, R.i.; Sotoudeh, R. Improving the Food and Agriculture Sector Tehran Stock Exchange by using Artificial Intelligence. Agric. Mark. Commer. J. 2021, 90, 90. [Google Scholar]
- Singh, S.; Kumar, T.V. Trends, challenges and opportunities of artificial intelligence in agriculture. Int. J. Agric. Resour. Gov. Ecol. 2023, 19, 219–246. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, C.; Su, J.; Wang, J. Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system. Renew. Energy 2019, 134, 681–697. [Google Scholar] [CrossRef]
- Wicaksono, H.; Trat, M.; Bashyal, A.; Boroukhian, T.; Felder, M.; Ahrens, M.; Bender, J.; Groß, S.; Steiner, D.; July, C.; et al. Artificial-intelligence-enabled dynamic demand response system for maximizing the use of renewable electricity in production processes. Int. J. Adv. Manuf. Technol. 2024, 1–25. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Maraveas, C. Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art. Appl. Sci. 2022, 13, 14. [Google Scholar] [CrossRef]
- Mana, A.; Allouhi, A.; Hamrani, A.; Rehman, S.; el Jamaoui, I.; Jayachandran, K. Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agric. Technol. 2024, 7, 100416. [Google Scholar] [CrossRef]
- Siddaiah, R.; Saini, R. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renew. Sustain. Energy Rev. 2016, 58, 376–396. [Google Scholar] [CrossRef]
- Kanase-Patil, A.; Saini, R.; Sharma, M. Integrated renewable energy systems for off grid rural electrification of remote area. Renew. Energy 2010, 35, 1342–1349. [Google Scholar] [CrossRef]
- López-Castrillón, W.; Sepúlveda, H.H.; Mattar, C. Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions. Sustainability 2021, 13, 5856. [Google Scholar] [CrossRef]
- Olabode, O.; Ajewole, T.; Okakwu, I.; Alayande, A.; Akinyele, D. Hybrid power systems for off-grid locations: A comprehensive review of design technologies, applications and future trends. Sci. Afr. 2021, 13, e00884. [Google Scholar] [CrossRef]
- Yue, Q.; Xu, X.; Hillier, J.; Cheng, K.; Pan, G. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- Hillier, J.; Walter, C.; Malin, D.; Garcia-Suarez, T.; Mila-I-Canals, L.; Smith, P. A farm-focused calculator for emissions from crop and livestock production. Environ. Model. Softw. 2011, 26, 1070–1078. [Google Scholar] [CrossRef]
- Bell, M.; Cloy, J.; Rees, R. The true extent of agriculture’s contribution to national greenhouse gas emissions. Environ. Sci. Policy 2014, 39, 1–12. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Mérida García, A.; Fernández García, I.; Camacho Poyato, E.; Montesinos Barrios, P.; Rodríguez Díaz, J.A. Coupling irrigation scheduling with solar energy production in a smart irrigation management system. J. Clean. Prod. 2018, 175, 670–682. [Google Scholar] [CrossRef]
- Tsang, S.; Jim, C. Applying artificial intelligence modeling to optimize green roof irrigation. Energy Build. 2016, 127, 360–369. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Trommsdorff, M.; Sharon, H.; Demant, M.; Schindele, S. The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations. J. Clean. Prod. 2021, 292, 126030. [Google Scholar] [CrossRef]
- Dew, J.J.; Jack, M.W.; Stephenson, J.; Walton, S. Reducing electricity demand peaks on large-scale dairy farms. Sustain. Prod. Consum. 2021, 25, 248–258. [Google Scholar] [CrossRef]
- Bardi, U.; El Asmar, T.; Lavacchi, A. Turning electricity into food: The role of renewable energy in the future of agriculture. J. Clean. Prod. 2013, 53, 224–231. [Google Scholar] [CrossRef]
- Sanjeevi, P.; Prasanna, S.; Kumar, B.S.; Gunasekaran, G.; Alagiri, I.; Anand, R.V. Precision agriculture and farming using Internet of Things based on wireless sensor network. Trans. Emerg. Telecommun. Technol. 2020, 31, e3978. [Google Scholar] [CrossRef]
- Delgado, J.A.; Vandenberg, B.; Neer, D.; D’Adamo, R. Emerging nutrient management databases and networks of networks will have broad applicability in future machine learning and artificial intelligence applications in soil and water conservation. J. Soil Water Conserv. 2019, 74, 113A–118A. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Dhonde, M.; Sahu, K.; Murty, V.V.S. The application of solar-driven technologies for the sustainable development of agriculture farming: A comprehensive review. Rev. Environ. Sci. Bio/Technol. 2022, 21, 139–167. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Ismail, M.S.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [Google Scholar] [CrossRef]
- Shams, M.H.; Niaz, H.; Hashemi, B.; Liu, J.J.; Siano, P.; Anvari-Moghaddam, A. Artificial intelligence-based prediction and analysis of the oversupply of wind and solar energy in power systems. Energy Convers. Manag. 2021, 250, 114892. [Google Scholar] [CrossRef]
- Rao, C.K.; Sahoo, S.K.; Yanine, F.F. A literature review on an IoT-based intelligent smart energy management systems for PV power generation. Hybrid Adv. 2023, 5, 100136. [Google Scholar] [CrossRef]
- Gowri, N.V.; Krishna, T.M.; Babu, G.S.; Krishnaveni, K. Enhancing Sustainability: Exploring IoT Integration in Renewable Energy Infrastructure. Int. Res. J. Adv. Eng. Hub IRJAEH 2024, 2, 793–800. [Google Scholar] [CrossRef]
- Fajobi, M.O.; Lasode, O.A.; Adeleke, A.A.; Ikubanni, P.P.; Balogun, A.O. Effect of biomass co-digestion and application of artificial intelligence in biogas production: A review. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 5314–5339. [Google Scholar] [CrossRef]
- Cinar, S.; Cinar, S.O.; Wieczorek, N.; Sohoo, I.; Kuchta, K. Integration of Artificial Intelligence into Biogas Plant Operation. Processes 2021, 9, 85. [Google Scholar] [CrossRef]
- Rusilowati, U.; Ngemba, H.R.; Anugrah, R.W.; Fitriani, A.; Astuti, E.D. Leveraging AI for Superior Efficiency in Energy Use and Development of Renewable Resources such as Solar Energy, Wind, and Bioenergy. Int. Trans. Artif. Intell. ITALIC 2024, 2, 114–120. [Google Scholar] [CrossRef]
- Olabi, A.; Nassef, A.M.; Rodriguez, C.; Abdelkareem, M.A.; Rezk, H. Application of artificial intelligence to maximize methane production from waste paper. Int. J. Energy Res. 2020, 44, 9598–9608. [Google Scholar] [CrossRef]
- Cheah, C.G.; Chia, W.Y.; Lai, S.F.; Chew, K.W.; Chia, S.R.; Show, P.L. Innovation designs of industry 4.0 based solid waste management: Machinery and digital circular economy. Environ. Res. 2022, 213, 113619. [Google Scholar] [CrossRef] [PubMed]
- Melinda, V.; Williams, T.; Anderson, J.; Davies, J.G.; Davis, C. Enhancing Waste-to-Energy Conversion Efficiency and Sustainability Through Advanced Artificial Intelligence Integration. Int. Trans. Educ. Technol. ITEE 2024, 2, 183–192. [Google Scholar] [CrossRef]
- Konda, R.K.; Giri, V.; Mandla, V.R. Study and evaluation of carbon sequestration using remote sensing and gis: A review on various techniques. Int. J. Civil Eng. Technol. IJCIET 2017, 8, 8–12. [Google Scholar]
- Dossa, K.F.; Miassi, Y.E. Remote Sensing Methods and GIS Approaches for Carbon Sequestration Measurement: A General Review. Int. J. Environ. Clim. Chang. 2024, 14, 222–233. [Google Scholar] [CrossRef]
- Rayhana, R.; Xiao, G.; Liu, Z. Internet of Things Empowered Smart Greenhouse Farming. IEEE J. Radio Freq. Identif. 2020, 4, 195–211. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Kashif, M.; Fati, S.M.; Bahaj, S.A.; Chaudhry, H. A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture. Agronomy 2022, 12, 127. [Google Scholar] [CrossRef]
- Pe’Er, G.; Zinngrebe, Y.; Moreira, F.; Sirami, C.; Schindler, S.; Müller, R.; Bontzorlos, V.; Clough, D.; Bezák, P.; Bonn, A.; et al. A greener path for the EU Common Agricultural Policy. Science 2019, 365, 449–451. [Google Scholar] [CrossRef]
- Cuadros-Casanova, I.; Cristiano, A.; Biancolini, D.; Cimatti, M.; Sessa, A.A.; Angarita, V.Y.M.; Dragonetti, C.; Pacifici, M.; Rondinini, C.; Di Marco, M. Opportunities and challenges for Common Agricultural Policy reform to support the European Green Deal. Conserv. Biol. 2023, 37, e14052. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, A.K.; Mithöfer, D. Unpacking stakeholder perceptions on challenges for increasing adoption of solar-powered irrigation systems in India: A Q methodology study. Q. Open 2024, 4, qoae020. [Google Scholar] [CrossRef]
- Terang, B.; Baruah, D.C. Techno-economic and environmental assessment of solar photovoltaic, diesel, and electric water pumps for irrigation in Assam, India. Energy Policy 2023, 183, 113807. [Google Scholar] [CrossRef]
- Alam, M.Z. A Comprehensive Study of Historical Trends, Future Strategies, and Policy Recommendations for Energy Use in Bangladesh’s Agriculture. 2024. Available online: https://ssrn.com/abstract=4853965 (accessed on 9 September 2024).
- Dayioğlu, M.A.; Turker, U. Digital Transformation for Sustainable Future—Agriculture 4.0: A review. J. Agric. Sci. 2021, 27, 373–399. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Adenle, A.A.; Wedig, K.; Azadi, H. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technol. Soc. 2019, 58, 101143. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Kansanga, M.; Luginaah, I. Examining the potential of open source remote sensing for building effective decision support systems for precision agriculture in resource-poor settings. GeoJournal 2019, 84, 1481–1497. [Google Scholar] [CrossRef]
- Usigbe, M.J.; Asem-Hiablie, S.; Uyeh, D.D.; Iyiola, O.; Park, T.; Mallipeddi, R. Enhancing resilience in agricultural production systems with AI-based technologies. Environ. Dev. Sustain. 2023, 26, 21955–21983. [Google Scholar] [CrossRef]
- Emeana, E.M.; Trenchard, L.; Dehnen-Schmutz, K. The Revolution of Mobile Phone-Enabled Services for Agricultural Development (m-Agri Services) in Africa: The Challenges for Sustainability. Sustainability 2020, 12, 485. [Google Scholar] [CrossRef]
- Kountios, G.; Konstantinidis, C.; Antoniadis, I. Can the Adoption of ICT and Advisory Services Be Considered as a Tool of Competitive Advantage in Agricultural Holdings? A Literature Review. Agronomy 2023, 13, 530. [Google Scholar] [CrossRef]
- de Oliveira, T.H.M.; Painho, M.; Santos, V.; Sian, O.; Barriguinha, A. Development of an Agricultural Management Information System based on Open-source Solutions. Procedia Technol. 2014, 16, 342–354. [Google Scholar] [CrossRef]
- Minet, J.; Curnel, Y.; Gobin, A.; Goffart, J.-P.; Mélard, F.; Tychon, B.; Wellens, J.; Defourny, P. Crowdsourcing for agricultural applications: A review of uses and opportunities for a farmsourcing approach. Comput. Electron. Agric. 2017, 142, 126–138. [Google Scholar] [CrossRef]
- Schöning, J.; Wachter, P.; Trautz, D. Crop rotation and management tools for every farmer?: The current status on crop rotation and management tools for enabling sustainable agriculture worldwide. Smart Agric. Technol. 2022, 3, 100086. [Google Scholar] [CrossRef]
- Reynolds, D.; Ball, J.; Bauer, A.; Davey, R.; Griffiths, S.; Zhou, J. CropSight: A scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management. Gigascience 2019, 8, giz009. [Google Scholar] [CrossRef] [PubMed]
- Simionesei, L.; Ramos, T.B.; Palma, J.; Oliveira, A.R.; Neves, R. IrrigaSys: A web-based irrigation decision support system based on open source data and technology. Comput. Electron. Agric. 2020, 178, 105822. [Google Scholar] [CrossRef]
- Feo, E.; Burssens, S.; Mareen, H.; Spanoghe, P. Shedding Light into the Need of Knowledge Sharing in H2020 Thematic Networks for the Agriculture and Forestry Innovation. Sustainability 2022, 14, 3951. [Google Scholar] [CrossRef]
- Mitter, H.; Techen, A.-K.; Sinabell, F.; Helming, K.; Kok, K.; Priess, J.A.; Schmid, E.; Bodirsky, B.L.; Holman, I.; Lehtonen, H.; et al. A protocol to develop Shared Socio-economic Pathways for European agriculture. J. Environ. Manag. 2019, 252, 109701. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, J.; Woltering, L.; Krupnik, T.J.; Baudron, F.; Boa, M.; Govaerts, B. Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agric. Syst. 2020, 180, 102792. [Google Scholar] [CrossRef] [PubMed]
- Kirina, T.; Groot, A.; Shilomboleni, H.; Ludwig, F.; Demissie, T. Scaling Climate Smart Agriculture in East Africa: Experiences and Lessons. Agronomy 2022, 12, 820. [Google Scholar] [CrossRef]
- Cannone, C.; Hoseinpoori, P.; Martindale, L.; Tennyson, E.M.; Gardumi, F.; Croxatto, L.S.; Pye, S.; Mulugetta, Y.; Vrochidis, I.; Krishnamurthy, S.; et al. Addressing Challenges in Long-Term Strategic Energy Planning in LMICs: Learning Pathways in an Energy Planning Ecosystem. Energies 2023, 16, 7267. [Google Scholar] [CrossRef]
- Mentis, D.; Howells, M.; Rogner, H.; Korkovelos, A.; Arderne, C.; Zepeda, E.; Siyal, S.; Taliotis, C.; Bazilian, M.; de Roo, A.; et al. Lighting the World: The first application of an open source, spatial electrification tool (OnSSET) on Sub-Saharan Africa. Environ. Res. Lett. 2017, 12, 085003. [Google Scholar] [CrossRef]
- Yaacoub, E.; Alouini, M.-S. A Key 6G Challenge and Opportunity-Connecting the Base of the Pyramid: A Survey on Rural Connectivity. Proc. IEEE 2020, 108, 533–582. [Google Scholar] [CrossRef]
- Prijadi, R.; Wulandari, P.; Desiana, P.M.; Pinagara, F.A.; Novita, M. Financing needs of micro-enterprises along their evolution. Int. J. Ethics Syst. 2020, 36, 263–284. [Google Scholar] [CrossRef]
- Tao, W.; Zhao, L.; Wang, G.; Liang, R. Review of the internet of things communication technologies in smart agriculture and challenges. Comput. Electron. Agric. 2021, 189, 106352. [Google Scholar] [CrossRef]
- Alabdali, S.A.; Pileggi, S.F.; Cetindamar, D. Influential Factors, Enablers, and Barriers to Adopting Smart Technology in Rural Regions: A Literature Review. Sustainability 2023, 15, 7908. [Google Scholar] [CrossRef]
- Minja, G.; Kaijage, S.; Ndibwile, J. IoT-Based Control and Monitoring System of a Solar-Powered Brushless DC Motor for Agro-Machines. In International Conference on Technological Advancement in Embedded and Mobile Systems; Springer Nature Switzerland: Cham, Switzerland, 2022; pp. 407–416. [Google Scholar] [CrossRef]
- Mokhtar, W.N.H.W.; Izhar, T.A.T.; Zaini, M.K.; Hussin, N. The Importance of Digital Literacy Skills among Farmers for Sustainable Food Security. Int. J. Acad. Res. Progress. Educ. Dev. 2022, 11, 235–246. Available online: https://ijarped.com/index.php/journal/article/view/1901 (accessed on 13 November 2024).
- Magesa, M.; Jonathan, J.; Urassa, J. Digital Literacy of Smallholder Farmers in Tanzania. Sustainability 2023, 15, 13149. [Google Scholar] [CrossRef]
- Singh, R.; Slotznick, W.; Stein, D. Digital tools for rural agriculture extension: Impacts of mobile-based advisories on agricultural practices in Southern India. J. Agric. Appl. Econ. Assoc. 2023, 2, 4–19. [Google Scholar] [CrossRef]
- Kadiyala, S.; Morgan, E.H.; Cyriac, S.; Margolies, A.; Roopnaraine, T. Adapting Agriculture Platforms for Nutrition: A Case Study of a Participatory, Video-Based Agricultural Extension Platform in India. PLoS ONE 2016, 11, e0164002. [Google Scholar] [CrossRef] [PubMed]
- Baumber, A.; Metternicht, G.; Ampt, P.; Cross, R.; Berry, E. Opportunities for adaptive online collaboration to enhance rural land management. J. Environ. Manag. 2018, 219, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.M. Applications of Open Source 3-D Printing on Small Farms. Org. Farming 2015, 1, 19–35. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef]
- Mehrabi, Z.; McDowell, M.J.; Ricciardi, V.; Levers, C.; Martinez, J.D.; Mehrabi, N.; Wittman, H.; Ramankutty, N.; Jarvis, A. The global divide in data-driven farming. Nat. Sustain. 2020, 4, 154–160. [Google Scholar] [CrossRef]
- Carroquino, J.; Dufo-López, R.; Bernal-Agustín, J.L. Sizing of off-grid renewable energy systems for drip irrigation in Mediterranean crops. Renew. Energy 2015, 76, 566–574. [Google Scholar] [CrossRef]
- García, A.M.; Gallagher, J.; McNabola, A.; Poyato, E.C.; Barrios, P.M.; Díaz, J.A.R. Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renew Energy 2019, 140, 895–904. [Google Scholar] [CrossRef]
- Mohammed, Y.; Mustafa, M.; Bashir, N. Hybrid renewable energy systems for off-grid electric power: Review of substantial issues. Renew. Sustain. Energy Rev. 2014, 35, 527–539. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, N.; Dai, Y.; Hamza, A. Does Solar-Powered Irrigation System Usage Increase the Technical Efficiency of Crop Production? New Insights from Rural Areas. Energies 2023, 16, 6641. [Google Scholar] [CrossRef]
- Ramli, R.M.; Jabbar, W.A. Design and implementation of solar-powered with IoT-Enabled portable irrigation system. Internet Things Cyber-Phys. Syst. 2022, 2, 212–225. [Google Scholar] [CrossRef]
- Wazed, S.M.; Hughes, B.R.; O’connor, D.; Calautit, J.K. A review of sustainable solar irrigation systems for Sub-Saharan Africa. Renew. Sustain. Energy Rev. 2018, 81, 1206–1225. [Google Scholar] [CrossRef]
- Kumar, M.; Reddy, K.; Adake, R.; Rao, C. Solar powered micro-irrigation system for small holders of dryland agriculture in India. Agric. Water Manag. 2015, 158, 112–119. [Google Scholar] [CrossRef]
- Selmani, A.; Oubehar, H.; Outanoute, M.; Ed-Dahhak, A.; Guerbaoui, M.; Lachhab, A.; Bouchikhi, B. Agricultural cyber-physical system enabled for remote management of solar-powered precision irrigation. Biosyst. Eng. 2019, 177, 18–30. [Google Scholar] [CrossRef]
- Tsioumani, E.; Muzurakis, M.; Ieropoulos, Y.; Tsioumanis, A. Following the Open-Source Trail Outside the Digital World: The Case of Open-Source Seeds. J. Glob. Sustain. Inf. Soc. 2016, 14, 145–162. [Google Scholar] [CrossRef]
- Bhatt, P.; Ahmad, A.J.; Roomi, M.A. Social innovation with open source software: User engagement and development challenges in India. Technovation 2016, 52–53, 28–39. [Google Scholar] [CrossRef]
- Trilles, S.; González-Pérez, A.; Huerta, J. A Comprehensive IoT Node Proposal Using Open Hardware. A Smart Farming Use Case to Monitor Vineyards. Electronics 2018, 7, 419. [Google Scholar] [CrossRef]
- Chen, D.; Shams, S.; Carmona-Moreno, C.; Leone, A. Assessment of open source GIS software for water resources management in developing countries. J. Hydro-Environ. Res. 2010, 4, 253–264. [Google Scholar] [CrossRef]
- Teece, D.J. Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Res. Policy 2018, 47, 1367–1387. [Google Scholar] [CrossRef]
- Pearce, J.M. Economic savings for scientific free and open source technology: A review. HardwareX 2020, 8, e00139. [Google Scholar] [CrossRef] [PubMed]
- Simelton, E.; McCampbell, M. Do digital climate services for farmers encourage resilient farming practices? Pinpointing gaps through the responsible research and innovation framework. Agriculture 2021, 11, 953. [Google Scholar] [CrossRef]
- Abate, G.T.; Abay, K.A.; Chamberlin, J.; Kassim, Y.; Spielman, D.J.; Tabe-Ojong, M.P.J. Digital tools and agricultural market transformation in Africa: Why are they not at scale yet, and what will it take to get there? Food Policy 2023, 116, 102439. [Google Scholar] [CrossRef]
- Hundal, G.S.; Laux, C.M.; Buckmaster, D.; Sutton, M.J.; Langemeier, M. Exploring Barriers to the Adoption of Internet of Things-Based Precision Agriculture Practices. Agriculture 2023, 13, 163. [Google Scholar] [CrossRef]
- Levintal, E.; Ganot, Y.; Taylor, G.; Freer-Smith, P.; Suvocarev, K.; Dahlke, H.E. An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture. SOIL 2022, 8, 85–97. [Google Scholar] [CrossRef]
- dos Santos, R.P.; Fachada, N.; Beko, M.; Leithardt, V.R.Q. A Rapid Review on the Use of Free and Open Source Technologies and Software Applied to Precision Agriculture Practices. J. Sens. Actuator Netw. 2023, 12, 28. [Google Scholar] [CrossRef]
- Coggins, S.; McCampbell, M.; Sharma, A.; Sharma, R.; Haefele, S.M.; Karki, E.; Hetherington, J.; Smith, J.; Brown, B. How have smallholder farmers used digital extension tools? Developer and user voices from Sub-Saharan Africa, South Asia and Southeast Asia. Glob. Food Secur. 2022, 32, 100577. [Google Scholar] [CrossRef] [PubMed]
- Wijerathna-Yapa, A.; Pathirana, R. Sustainable Agro-Food Systems for Addressing Climate Change and Food Security. Agriculture 2022, 12, 1554. [Google Scholar] [CrossRef]
- Koteish, K.; Harb, H.; Dbouk, M.; Zaki, C.; Jaoude, C.A. AGRO: A smart sensing and decision-making mechanism for real-time agriculture monitoring. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7059–7069. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.; Rajput, V.D.; Yadav, A.K.S. Role of artificial intelligence, sensor technology, big data in agriculture: Next-generation farming. In Bioinformatics in Agriculture: Next Generation Sequencing Era; Academic Press: Cambridge, MA, USA, 2022; pp. 625–639. [Google Scholar] [CrossRef]
- Sheline, C.; Ingersoll, S.; Amrose, S.; Irmak, S.; Winter, V.A.G. Sensitivity study of the Predictive Optimal Water and Energy Irrigation (POWEIr) controller’s schedules for sustainable agriculture systems in resource-constrained contexts. Comput. Electron. Agric. 2024, 226, 109230. [Google Scholar] [CrossRef]
- Naujokien, V.; Kriauciuniene, Z.; Mohammed, M.; Hamdoun, H.; Sagheer, A. Toward Sustainable Farming: Implementing Artificial Intelligence to Predict Optimum Water and Energy Requirements for Sensor-Based Micro Irrigation Systems Powered by Solar PV. Agronomy 2023, 13, 1081. [Google Scholar] [CrossRef]
- Lopez-Guerrero, A.; Cabello-Leblic, A.; Fereres, E.; Vallee, D.; Steduto, P.; Jomaa, I.; Owaneh, O.; Alaya, I.; Bsharat, M.; Ibrahim, A.; et al. Developing a Regional Network for the Assessment of Evapotranspiration. Agronomy 2023, 13, 2756. [Google Scholar] [CrossRef]
- Sahu, S.; Mallick, N.; Patnaik, S. Mitigating Climate Change. In Practice, Progress, and Proficiency in Sustainability; IGI Global: Hershey, PA, USA, 2024; pp. 161–200. [Google Scholar] [CrossRef]
- Kebede, E.A.; Ali, H.A.; Clavelle, T.; Froehlich, H.E.; Gephart, J.A.; Hartman, S.; Herrero, M.; Kerner, H.; Mehta, P.; Nakalembe, C.; et al. Assessing and addressing the global state of food production data scarcity. Nat. Rev. Earth Environ. 2024, 5, 295–311. [Google Scholar] [CrossRef]
- Ibrahim, M.; Nabeel, M.; Raza, M.Q.; Hameed, N.; Rafiq, R.; Zaheer, M.; Ain, N.U.; Iftikhar, Z.; Ammar, A.; Khalid, M.N.; et al. The role of technology and innovation in enhancing food security. J. Phys. Biomed. Biol. Sci. 2023, 2, 14. [Google Scholar]
- Goel, R.K.; Yadav, C.S.; Vishnoi, S.; Rastogi, R. Smart agriculture—Urgent need of the day in developing countries. Sustain. Comput. Inform. Syst. 2021, 30, 100512. [Google Scholar] [CrossRef]
- Parra-López, C.; Abdallah, S.B.; Garcia-Garcia, G.; Hassoun, A.; Sánchez-Zamora, P.; Trollman, H.; Jagtap, S.; Carmona-Torres, C. Integrating digital technologies in agriculture for climate change adaptation and mitigation: State of the art and future perspectives. Comput. Electron. Agric. 2024, 226, 109412. [Google Scholar] [CrossRef]
- Maja, M.M.; Ayano, S.F. The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Yadav, S.; Kaushik, A.; Sharma, M.; Sharma, S. Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis. Agriengineering 2022, 4, 424–460. [Google Scholar] [CrossRef]
- Abioye, E.A.; Hensel, O.; Esau, T.J.; Elijah, O.; Abidin, M.S.Z.; Ayobami, A.S.; Yerima, O.; Nasirahmadi, A. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. Agriengineering 2022, 4, 70–103. [Google Scholar] [CrossRef]
- Ghalazman, A.E.; Das, G.P.; Gould, I.; Zarafshan, P.; Vishnu Rajendran, S.; Heselden, J.; Badiee, A.; Wright, I.; Pearson, S. Applications of robotic and solar energy in precision agriculture and smart farming. In Solar Energy Advancements in Agriculture and Food Production Systems; Academic Press: Cambridge, MA, USA, 2022; pp. 351–390. [Google Scholar] [CrossRef]
- Trivedi, G.; Barot, P.; Sharma, P.; Shah, M. Renewable energy financing: Opportunities and challenges for investors. Libr. Prog. Int. 2024, 44, 4308–4317. Available online: https://bpasjournals.com/library-science/index.php/journal/article/view/1182 (accessed on 13 October 2024).
- Pe’Er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Balezentis, T.; Ribasauskiene, E.; Morkunas, M.; Volkov, A.; Streimikiene, D.; Toma, P. Young farmers’ support under the Common Agricultural Policy and sustainability of rural regions: Evidence from Lithuania. Land Use Policy 2020, 94, 104542. [Google Scholar] [CrossRef]
- Morkunas, M.; Labukas, P. The Evaluation of Negative Factors of Direct Payments under Common Agricultural Policy from a Viewpoint of Sustainability of Rural Regions of the New EU Member States: Evidence from Lithuania. Agriculture 2020, 10, 228. [Google Scholar] [CrossRef]
- Long, H.; Fu, X.; Kong, W.; Chen, H.; Zhou, Y.; Yang, F. Key technologies and applications of rural energy internet in China. Inf. Process. Agric. 2024, 11, 277–298. [Google Scholar] [CrossRef]
- Mahto, R.; Sharma, D.; John, R.; Putcha, C. Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers. Land 2021, 10, 1277. [Google Scholar] [CrossRef]
- Chaudhary, S.; Suri, P.K. Agri-tech: Experiential learning from the Agri-tech growth leaders. Technol. Anal. Strat. Manag. 2022, 36, 1524–1537. [Google Scholar] [CrossRef]
- Enescu, F.M.; Bizon, N.; Onu, A.; Răboacă, M.S.; Thounthong, P.; Mazare, A.G.; Șerban, G. Implementing Blockchain Technology in Irrigation Systems That Integrate Photovoltaic Energy Generation Systems. Sustainability 2020, 12, 1540. [Google Scholar] [CrossRef]
- Soma, T.; Nuckchady, B. Communicating the Benefits and Risks of Digital Agriculture Technologies: Perspectives on the Future of Digital Agricultural Education and Training. Front. Commun. 2021, 6, 762201. [Google Scholar] [CrossRef]
- MacPherson, J.; Voglhuber-Slavinsky, A.; Olbrisch, M.; Schöbel, P.; Dönitz, E.; Mouratiadou, I.; Helming, K. Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agron. Sustain. Dev. 2022, 42, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends. IEEE Access 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Amare, M.; Parvathi, P.; Nguyen, T.T. Micro insights on the pathways to agricultural transformation: Comparative evidence from Southeast Asia and Sub-Saharan Africa. Can. J. Agric. Econ. Can. D’agroecon. 2023, 71, 69–87. [Google Scholar] [CrossRef]
- Jayne, T.S.; Sanchez, P.A. Agricultural productivity must improve in sub-Saharan Africa. Science 2021, 372, 1045–1047. [Google Scholar] [CrossRef] [PubMed]
- Ramey, E.A. Farm Subsidies and Technical Change: State-Mediated Accumulation in U.S. Agriculture. Rethink. Marx. 2014, 26, 472–489. [Google Scholar] [CrossRef]
- Kendall, H.; Clark, B.; Li, W.; Jin, S.; Jones, G.D.; Chen, J.; Taylor, J.; Li, Z.; Frewer, L.J. Precision agriculture technology adoption: A qualitative study of small-scale commercial “family farms” located in the North China Plain. Precis. Agric. 2022, 23, 319–351. [Google Scholar] [CrossRef]
- Kookana, R.S.; Drechsel, P.; Jamwal, P.; Vanderzalm, J. Urbanisation and emerging economies: Issues and potential solutions for water and food security. Sci. Total Environ. 2020, 732, 139057. [Google Scholar] [CrossRef] [PubMed]
- Gul, F.; Yar, M.; Yasouri, M. Rural Development Challenges in Addition to Effective Solutions to Overcome Obstacles. Zhongguo Kuangye Daxue Xuebao 2024, 29, 79–90. [Google Scholar]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Padmaja, M.; Shitharth, S.; Prasuna, K.; Chaturvedi, A.; Kshirsagar, P.R.; Vani, A. Grow of Artificial Intelligence to Challenge Security in IoT Application. Wirel. Pers. Commun. 2022, 127, 1829–1845. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Guerrero, J.M.; Vasquez, J.C. Digitalization and decentralization driving transactive energy Internet: Key technologies and infrastructures. Int. J. Electr. Power Energy Syst. 2021, 126, 106593. [Google Scholar] [CrossRef]
- Hackfort, S. Patterns of Inequalities in Digital Agriculture: A Systematic Literature Review. Sustainability 2021, 13, 12345. [Google Scholar] [CrossRef]
- James, J. Confronting the scarcity of digital skills among the poor in developing countries. Dev. Policy Rev. 2021, 39, 324–339. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Durga, N.; Gaurav, S. Economic, equity, and political trade-offs in energy transition in irrigation in Bihar, India. Energy Strat. Rev. 2024, 54, 101481. [Google Scholar] [CrossRef]
- DNicklaus, D.; Gershenson, J. Innovating Solar Charging Kiosks For Shambatek’s Agricultural Business In Kenya. In Proceedings of the 2021 11th IEEE Global Humanitarian Technology Conference, GHTC, Seattle, WA, USA, 19–23 October 2021; pp. 219–224. [Google Scholar] [CrossRef]
- Heinemann, G. Innovating in the off-grid sector: Sustainable supply chains and business models for solar home system provision in Bangladesh and Kenya. Energy Res. Soc. Sci. 2022, 94, 102853. [Google Scholar] [CrossRef]
- Fairley, P. Off-Grid Solar’s Killer App: Solar pumps, batteries, and microcredit are triggering an African agricultural renaissance. IEEE Spectr. 2021, 58, 44–49. [Google Scholar] [CrossRef]
- Litvinenko, V.S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, 29, 1521–1541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morkūnas, M.; Wang, Y.; Wei, J. Role of AI and IoT in Advancing Renewable Energy Use in Agriculture. Energies 2024, 17, 5984. https://doi.org/10.3390/en17235984
Morkūnas M, Wang Y, Wei J. Role of AI and IoT in Advancing Renewable Energy Use in Agriculture. Energies. 2024; 17(23):5984. https://doi.org/10.3390/en17235984
Chicago/Turabian StyleMorkūnas, Mangirdas, Yufei Wang, and Jinzhao Wei. 2024. "Role of AI and IoT in Advancing Renewable Energy Use in Agriculture" Energies 17, no. 23: 5984. https://doi.org/10.3390/en17235984
APA StyleMorkūnas, M., Wang, Y., & Wei, J. (2024). Role of AI and IoT in Advancing Renewable Energy Use in Agriculture. Energies, 17(23), 5984. https://doi.org/10.3390/en17235984