Recycling of Silicon-Based Photovoltaic Modules: Mediterranean Region Insight
Abstract
:1. Introduction
- The aluminum frame provides structural rigidity to the module, facilitating its installation and resistance to extreme weather conditions [7];
- Glass acts as a protective cover on the front of the module, providing protection against impact and weather, while allowing sunlight to enter with high optical transmission [21];
- Encapsulant (EVA—ethylene vinyl acetate) protects the cells from moisture and mechanical shocks, ensuring the longevity of the module by maintaining the integrity of the photovoltaic cells [22];
- Silver collectors are conductive lines on solar cells that collect and carry the generated electricity. Thanks to silver’s high conductivity, they minimize electrical resistance and optimize current transfer, increasing the module’s efficiency [23];
- Photovoltaic cells are the active components of the module, where the conversion of light into electricity occurs. The cells are connected in series and parallel to achieve the desired voltage and current [24];
- The backsheet acts as a moisture barrier and provides electrical insulation, typically being made of polymers such as polyvinyl fluoride (PVF) [25].
1.1. Analysis of the Recycling Potential
1.2. Estimating the Useful Life of Facilities and Their Replacement Rate
1.3. Importance of Recycling
2. Materials and Methods
2.1. Search Strategy
2.2. Research Questions
2.3. Databases and Selection Criteria
2.4. Study Selection Process
2.5. Bibliometric Analysis
3. Results
3.1. Recycling Techniques
3.1.1. Physical Processes
3.1.2. Chemical Processes
3.1.3. Thermal Processes
3.1.4. Leading Organizations in Photovoltaic Recycling Initiatives
3.2. Technical Challenges in PV Recycling
3.2.1. Material Recovery
3.2.2. Hazardous Materials Handling
3.2.3. Inadequate Recycling Design
3.3. Economic Barriers: High Recycling Costs vs. Disposal
3.3.1. Low Market Demand for Recovered Materials
3.3.2. Transportation Costs
3.4. Regulatory Challenges
3.4.1. Inconsistent Regulatory Frameworks
3.4.2. Extended Producer Responsibility
3.5. Benefits and Opportunities for Improvement
3.5.1. Advancements in Recycling Technologies
3.5.2. Policy Recommendations
3.5.3. Circular Economy Initiatives
3.6. Future Perspectives in Mediterranean Countries
3.7. Future Trends and Forecasts About PV Recycling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Papamichael, I.; Voukkali, I.; Jeguirim, M.; Argirusis, N.; Jellali, S.; Sourkouni, G.; Argirusis, C.; Zorpas, A.A. End-of-Life Management and Recycling on PV Solar Energy Production. Energies 2022, 15, 6430. [Google Scholar] [CrossRef]
- Mulazzani, A.; Eleftheriadis, P.; Leva, S. Recycling C-Si PV Modules: A Review, a Proposed Energy Model and a Manufacturing Comparison. Energies 2022, 15, 8419. [Google Scholar] [CrossRef]
- Ardente, F.; Latunussa, C.E.L.; Blengini, G.A. Resource Efficient Recovery of Critical and Precious Metals from Waste Silicon PV Panel Recycling. Waste Manag. 2019, 91, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Piringer, G. Market Development and Consequences on End-of-Life Management of Photovoltaic Implementation in Europe. Energy Sustain. Soc. 2020, 10, 31. [Google Scholar] [CrossRef]
- Wang, G.; Liao, Q.; Xu, H. Anticipating Future Photovoltaic Waste Generation in China: Navigating Challenges and Exploring Prospective Recycling. Environ. Impact Assess. Rev. 2024, 106, 107516. [Google Scholar] [CrossRef]
- Deng, R.; Chang, N.L.; Ouyang, Z.; Chong, C.M. A Techno-Economic Review of Silicon Photovoltaic Module Recycling. Renew. Sustain. Energy Rev. 2019, 109, 532–550. [Google Scholar] [CrossRef]
- Jiang, T.; Yin, P.; Jin, Q. Performances of Typical Photovoltaic Module Production from the Perspective of Life Cycle Sustainability Assessment. Sustain. Energy Technol. Assess. 2024, 64, 103703. [Google Scholar] [CrossRef]
- Gautam, A.; Shankar, R.; Vrat, P. End-of-Life Solar Photovoltaic e-Waste Assessment in India: A towards a Circular Economy. Sustain. Prod. Consum. 2021, 26, 65–77. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar Cell Efficiency Tables (Version 63). Prog. Photovolt. Res. Appl. 2024, 32, 3–13. [Google Scholar] [CrossRef]
- Louwen, A.; Van Sark, W.; Schropp, R.; Faaij, A. A Cost Roadmap for Silicon Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 295–314. [Google Scholar] [CrossRef]
- Siddiqui, R.; Kumar, R.; Jha, G.K.; Bajpai, U. Performance Analysis of Polycrystalline Silicon PV Modules on the Basis of Indoor and Outdoor Conditions. Int. J. Curr. Eng. Technol. 2014, 4, 340–349. [Google Scholar]
- Bagnall, D.M.; Boreland, M. Photovoltaic Technologies. Energy Policy 2008, 36, 4390–4396. [Google Scholar] [CrossRef]
- Ushasree, P.M.; Bora, B. Silicon Solar Cells. In Solar Energy Capture Materials; The Royal Society of Chemistry: London, UK, 2019; pp. 1–55. [Google Scholar]
- Dhere, N.G. Present Status and Future Prospects of CIGSS Thin Film Solar Cells. Sol. Energy Mater. Sol. Cells 2006, 90, 2181–2190. [Google Scholar] [CrossRef]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si:H Based Thin Film Solar Cells: A Review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Fthenakis, V.; Athias, C.; Blumenthal, A.; Kulur, A.; Magliozzo, J.; Ng, D. Sustainability Evaluation of CdTe PV: An Update. Renew. Sustain. Energy Rev. 2020, 123, 109776. [Google Scholar] [CrossRef]
- King, R.R.; Law, D.C.; Edmondson, K.M.; Fetzer, C.M.; Kinsey, G.S.; Yoon, H.; Krut, D.D.; Ermer, J.H.; Sherif, R.A.; Karam, N.H. Advances in High-Efficiency III-V Multijunction Solar Cells. Adv. Optoelectron. 2007, 2007, 029523. [Google Scholar] [CrossRef]
- Solak, E.K.; Irmak, E. Advances in Organic Photovoltaic Cells: A Comprehensive Review of Materials, Technologies, and Performance. RSC Adv. 2023, 13, 12244–12269. [Google Scholar] [CrossRef] [PubMed]
- Paci, B.; Righi Riva, F.; Generosi, A.; Guaragno, M.; Mangiacapre, E.; Brutti, S.; Wagner, M.; Distler, A.; Egelhaaf, H.J. Semitransparent Organic Photovoltaic Devices: Interface/Bulk Properties and Stability Issues. Nanomaterials 2024, 14, 269. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Akram Cheema, H.; Ilyas, S.; Kang, H.; Kim, H. Comprehensive Review of the Global Trends and Future perspectives for Recycling of Decommissioned Photovoltaic Panels. Waste Manag. 2024, 174, 187–202. [Google Scholar] [CrossRef]
- Liao, Q.; Li, S.; Xi, F.; Tong, Z.; Chen, X.; Wan, X.; Ma, W.; Deng, R. High-Performance Silicon Carbon Anodes Based on Value-Added Recycling Strategy of End-of-Life Photovoltaic Modules. Energy 2023, 281, 128345. [Google Scholar] [CrossRef]
- Tao, Q.; Han, C.; Jing, Q.; Wang, G. Sustainable Recovery of Silver and Copper Photovoltaic Metals from Waste-Conductive Silver Pastes Using Thiosulfate Extraction and Ultraviolet Photolysis. Metals 2024, 14, 730. [Google Scholar] [CrossRef]
- Nkinyam, C.M.; Ujah, C.O.; Nnakwo, K.C.; Kallon, D.V.V. Insight into Organic Photovoltaic Cell: Prospect and Challenges. Unconv. Resour. 2025, 5, 100121. [Google Scholar] [CrossRef]
- Sanathi, R.; Banerjee, S.; Bhowmik, S. A Technical Review of Crystalline Silicon Photovoltaic Module Recycling. Sol. Energy 2024, 281, 112869. [Google Scholar] [CrossRef]
- Martin, B.; Yang, M.; Bramante, R.C.; Amerling, E.; Gupta, G.; van Hest, M.F.A.M.; Druffel, T. Fabrication of Flexible Perovskite Solar Cells via Rapid Thermal Annealing. Mater. Lett. 2020, 276, 128215. [Google Scholar] [CrossRef]
- Ansanelli, G.; Fiorentino, G.; Tammaro, M.; Zucaro, A. A Life Cycle Assessment of a Recovery Process from End-of-Life Photovoltaic Panels. Appl. Energy 2021, 290, 116727. [Google Scholar] [CrossRef]
- IEA. Advances in Photovoltaic Module Recycling Literature Review and Update to Empirical Life Cycle Inventory Data and Patent Review; Task 12 PV Sustainability Activities: Sydney, Australia, 2024; ISBN 9783907281567. [Google Scholar]
- Czajkowski, A.; Wajda, A.; Poranek, N.; Bhadoria, S.; Remiorz, L. Prediction of the Market of End-of-Life Photovoltaic Panels in the Context of Common EU Management System. Energies 2022, 16, 284. [Google Scholar] [CrossRef]
- IRENA. In Renewable Capacity Statistics 2024; IRENA: Abu Dhabi, United Arab Emirates, 2024; ISBN 978-92-9260-587-2.
- Giakoumelos, L.; Malamatenios, G.; Hadjipaschalis, I.; Kourtis, G.; Poullikas, A. Energy Policy Development for the Promotion of Distributed Generation Technologies in the Mediterranean Region. In Proceedings of the International Conference on Deregulated Electricity Market Issues in South-Eastern Europe (DEMSEE2008), Nicosia, Cyprus, 22–23 September 2008. [Google Scholar]
- D’Adamo, I.; Miliacca, M.; Rosa, P. Economic Feasibility for Recycling of Waste Crystalline Silicon Photovoltaic Modules. Int. J. Photoenergy 2017, 2017, 4184676. [Google Scholar] [CrossRef]
- Huld, T.; Šúri, M.; Dunlop, E.D. Geographical Variation of the Conversion Efficiency of Crystalline Silicon Photovoltaic Modules in Europe. Prog. Photovolt. Res. Appl. 2008, 16, 595–607. [Google Scholar] [CrossRef]
- Skoczek, A.; Sample, T.; Dunlop, E.D. The Results of Performance Measurements of Field-Aged Crystalline Silicon Photovoltaic Modules. Prog. Photovolt. Res. Appl. 2009, 17, 227–240. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Rahim, N.A.A.; Rahim, N.A.; Selvaraj, J.A.L. Progress in Solar PV Technology: Research and Achievement. Renew. Sustain. Energy Rev. 2013, 20, 443–461. [Google Scholar] [CrossRef]
- Mints, P. EPIA: Market Installed 7.2 GW of PV in 2009. Renew. Energy Focus 2010, 11, 14–17. [Google Scholar] [CrossRef]
- Celik, A.N.; Muneer, T.; Clarke, P. A Review of Installed Solar Photovoltaic and Thermal Collector Capacities in Relation to Solar Potential for the EU-15. Renew Energy 2009, 34, 849–856. [Google Scholar] [CrossRef]
- Santos, J.D.; Alonso-García, M.C. Projection of the Photovoltaic Waste in Spain until 2050. J. Clean. Prod. 2018, 196, 1613–1628. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. End-of-Life Treatment of Crystalline Silicon Photovoltaic Panels. An Emergy-Based Case Study. J. Clean. Prod. 2017, 161, 1129–1142. [Google Scholar] [CrossRef]
- Hou, G.; Sun, H.; Jiang, Z.; Pan, Z.; Wang, Y.; Zhang, X.; Zhao, Y.; Yao, Q. Life Cycle Assessment of Grid-Connected Photovoltaic Power Generation from Crystalline Silicon Solar Modules in China. Appl. Energy 2016, 164, 882–890. [Google Scholar] [CrossRef]
- Fthenakis, V.; Leccisi, E. Updated Sustainability Status of Crystalline Silicon-Based Photovoltaic Systems: Life-Cycle Energy and Environmental Impact Reduction Trends. Prog. Photovolt. Res. Appl. 2021, 29, 1068–1077. [Google Scholar] [CrossRef]
- Diez-Suárez, A.-M. Evaluación y Análisis de Defectos en Módulos Solares Fotovoltaicos. Ph.D. Thesis, Universidad de León, León, Spain, 2024. [Google Scholar]
- Lillo-Sánchez, L.; López-Lara, G.; Vera-Medina, J.; Pérez-Aparicio, E.; Lillo-Bravo, I. Degradation Analysis of Photovoltaic Modules after Operating for 22 Years. A Case Study with Comparisons. Sol. Energy 2021, 222, 84–94. [Google Scholar] [CrossRef]
- Tan, V.; Dias, P.R.; Chang, N.; Deng, R. Estimating the Lifetime of Solar Photovoltaic Modules in Australia. Sustainability 2022, 14, 5336. [Google Scholar] [CrossRef]
- Golive, Y.R.; Kottantharayil, A.; Vasi, J.; Shiradkar, N.; Zachariah, S.; Dubey, R.; Chattopadhyay, S.; Bhaduri, S.; Singh, H.K.; Bora, B.; et al. Analysis of Field Degradation Rates Observed in All-India Survey of Photovoltaic Module Reliability 2018. IEEE J. Photovolt. 2020, 10, 560–567. [Google Scholar] [CrossRef]
- Lindig, S.; Ascencio-Vasquez, J.; Leloux, J.; Moser, D.; Reinders, A. Performance Analysis and Degradation of a Large Fleet of PV Systems. IEEE J. Photovolt. 2021, 11, 1312–1318. [Google Scholar] [CrossRef]
- Sica, D.; Malandrino, O.; Supino, S.; Testa, M.; Lucchetti, M.C. Management of End-of-Life Photovoltaic Panels as a Step towards a Circular Economy. Renew. Sustain. Energy Rev. 2018, 82, 2934–2945. [Google Scholar] [CrossRef]
- TamizhMani, G.; Shaw, S.; Libby, C.; Patankar, A.; Bicer, B. Assessing variability in toxicity testing of PV modules. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; ISBN 9781728104942. [Google Scholar]
- Tsanakas, J.A.; van der Heide, A.; Radavičius, T.; Denafas, J.; Lemaire, E.; Wang, K.; Poortmans, J.; Voroshazi, E. Towards a Circular Supply Chain for PV Modules: Review of Today’s Challenges in PV Recycling, Refurbishment and Re-Certification. Prog. Photovolt. Res. Appl. 2020, 28, 454–464. [Google Scholar] [CrossRef]
- PVPS Task, I.; SolarPower Europe; Komoto, K.; Lee, J.S.; Zhang, J.; Ravikumar, D.; Sinha, P.; Wade, A.; Heath, G.A. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies Operating Agent; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018; ISBN 978-3-906042-61-9.
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An Overview of Solar Photovoltaic Panels’ End-of-Life Material Recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- D’Adamo, I.; Ferella, F.; Gastaldi, M.; Ippolito, N.M.; Rosa, P. Circular Solar: Evaluating the Profitability of a Photovoltaic Panel Recycling Plant. Waste Manag. Res. 2023, 41, 1144–1154. [Google Scholar] [CrossRef]
- Sandelic, M.; Sangwongwanich, A.; Blaabjerg, F. Impact of Power Converters and Battery Lifetime on Economic Profitability of Residential Photovoltaic Systems. IEEE Open J. Ind. Appl. 2022, 3, 224–236. [Google Scholar] [CrossRef]
- Peters, I.M.; Sinha, P. Value of Stability in Photovoltaic Life Cycles. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 416–419. [Google Scholar] [CrossRef]
- Wang, X.; Tian, X.; Chen, X.; Ren, L.; Geng, C. A Review of End-of-Life Crystalline Silicon Solar Photovoltaic Panel Recycling Technology. Sol. Energy Mater. Sol. Cells 2022, 248, 111976. [Google Scholar] [CrossRef]
- Dias, P.; Schmidt, L.; Monteiro Lunardi, M.; Chang, N.L.; Spier, G.; Corkish, R.; Veit, H. Comprehensive Recycling of Silicon Photovoltaic Modules Incorporating Organic Solvent Delamination—Technical, Environmental and Economic Analyses. Resour. Conserv. Recycl. 2021, 165, 105241. [Google Scholar] [CrossRef]
- Preet, S.; Smith, S.T. A Comprehensive Review on the Recycling Technology of Silicon Photovoltaic Solar Panels: Challenges and Future Outlook. J. Clean. Prod. 2024, 448, 141661. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A Review of Recycling Processes for Photovoltaic Modules. Sol. Panels Photovolt. Mater. 2018, 30. [Google Scholar] [CrossRef]
- Isherwood, P.J.M. Reshaping the Module: The Path to Comprehensive Photovoltaic Recycling. Sustainability 2022, 14, 1676. [Google Scholar] [CrossRef]
- Dias, P.; Javimczik, S.; Benevit, M.; Veit, H. Recycling WEEE: Polymer Characterization and Pyrolysis Study for Waste of Crystalline Silicon Photovoltaic Modules. Waste Manag. 2017, 60, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Savvilotidou, V.; Antoniou, A.; Gidarakos, E. Toxicity Assessment and Feasible Recycling Process for Amorphous Silicon and CIS Waste Photovoltaic Panels. Waste Manag. 2017, 59, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Fthenakis, V. Economic Feasibility of Recycling Photovoltaic Modules. J. Ind. Ecol. 2010, 14, 947–964. [Google Scholar] [CrossRef]
- Walzberg, J.; Carpenter, A.; Heath, G.A. Role of the Social Factors in Success of Solar Photovoltaic Reuse and Recycle Programmes. Nat. Energy 2021, 6, 913–924. [Google Scholar] [CrossRef]
- Ogunmakinde, O.E.; Sher, W.; Egbelakin, T. Circular Economy Pillars: A Semi-Systematic Review. Clean Technol. Environ. Policy 2021, 23, 899–914. [Google Scholar] [CrossRef]
- Conde, M.; Rodríguez-Sedano, F.J. Is Learning Analytics Applicable and Applied to Education of Students with Intellectual/Developmental Disabilities? A Systematic Literature Review. Comput. Hum. Behav. 2024, 155, 108184. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. Integrating Blockchain Technology into the Energy Sector—From Theory of Blockchain to Research and Application of Energy Blockchain. Comput. Sci. Rev. 2020, 37, 100275. [Google Scholar] [CrossRef]
- Abdo, D.M.; El-Shazly, A.N.; Medici, F. Recovery of Valuable Materials from End-of-Life Photovoltaic Solar Panels. Materials 2023, 16, 2840. [Google Scholar] [CrossRef]
- Królicka, A.; Maj, A.; Łój, G.; Murzyn, P.; Mochalski, P. Atypical Methods for Characterization of Used Photovoltaic Panels during Their Pre- and Post-Thermal Treatment Assessment. Waste Manag. 2024, 175, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Pagnanelli, F.; Moscardini, E.; Havlik, T.; Toro, L. Recycling of Photovoltaic Panels by Physical Operations. Sol. Energy Mater. Sol. Cells 2014, 123, 239–248. [Google Scholar] [CrossRef]
- Akimoto, Y.; Iizuka, A.; Shibata, E. High-Voltage Pulse Crushing and Physical Separation of Polycrystalline Silicon Photovoltaic Panels. Min. Eng. 2018, 125, 1–9. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Rosa, P. End-of-Life of Used Photovoltaic Modules: A Financial Analysis. Renew. Sustain. Energy Rev. 2015, 47, 552–561. [Google Scholar] [CrossRef]
- Wang, X.; Xue, J.; Hou, X. Barriers Analysis to Chinese Waste Photovoltaic Module Recycling under the Background of “Double Carbon”. Renew. Energy 2023, 214, 39–54. [Google Scholar] [CrossRef]
- Blömeke, S.; Arafat, R.; Yang, J.; Mai, J.P.; Cerdas, F.; Herrmann, C. Environmental Assessment of Silicon Kerf Recycling and Its Benefits for Applications in Solar Cells and Li-Ion Batteries. Procedia CIRP 2023, 116, 179–184. [Google Scholar] [CrossRef]
- Camargo, P.S.S.; Domingues, A.d.S.; Palomero, J.P.G.; Cenci, M.P.; Kasper, A.C.; Dias, P.R.; Veit, H.M. C-Si PV Module Recycling: Analysis of the Use of a Mechanical Pre-Treatment to Reduce the Environmental Impact of Thermal Treatment and Enhance Materials Recovery. Waste Manag. Res. 2023, 41, 1661–1673. [Google Scholar] [CrossRef]
- Berger, W.; Simon, F.G.; Weimann, K.; Alsema, E.A. A Novel Approach for the Recycling of Thin Film Photovoltaic Modules. Resour. Conserv. Recycl. 2010, 54, 711–718. [Google Scholar] [CrossRef]
- Peeters, J.R.; Altamirano, D.; Dewulf, W.; Duflou, J.R. Forecasting the Composition of Emerging Waste Streams with Sensitivity Analysis: A Case Study for Photovoltaic (PV) Panels in Flanders. Resour. Conserv. Recycl. 2017, 120, 14–26. [Google Scholar] [CrossRef]
- Azeumo, M.F.; Conte, G.; Ippolito, N.M.; Medici, F.; Piga, L.; Santilli, S. Photovoltaic Module Recycling, a Physical and a Chemical Recovery Process. Sol. Energy Mater. Sol. Cells 2019, 193, 314–319. [Google Scholar] [CrossRef]
- Ding, Y.; He, J.; Zhang, S.; Jian, J.; Shi, Z.; Cao, A. Efficient and Comprehensive Recycling of Valuable Components from Scrapped Si-Based Photovoltaic Panels. Waste Manag. 2024, 175, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Yoo, S.; Lee, J.; Boo, B.; Ryu, H. Experimental Investigations for Recycling of Silicon and Glass from Waste Photovoltaic Modules. Renew. Energy 2012, 47, 152–159. [Google Scholar] [CrossRef]
- Kong, X.; Yu, S.; Xu, S.; Fang, W.; Liu, J.; Li, H. Effect of Fe0 Addition on Volatile Fatty Acids Evolution on Anaerobic Digestion at High Organic Loading Rates. Waste Manag. 2018, 71, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; You, J.; Diao, H.; Zhao, L.; Wang, W. Back EVA Recycling from C-Si Photovoltaic Module without Damaging Solar Cell via Laser Irradiation Followed by Mechanical Peeling. Waste Manag. 2022, 137, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Drelich, J.W.; Neelameggham, N.R.; Post, D.; Nawshad, G.; Jingxi, H.; Ziqi, Z.; Wang, S.T.; Howarter, J.A.; Tesfaye, F.; et al. Energy Technology 2017: Carbon Dioxide Management and Other Technologies; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ko, J.; Bae, S.; Park, S.J.; Park, H.; Seol, J.; Kang, Y.; Lee, H.S.; Kim, D. Effective Recycling Method for Silicon Photovoltaic Modules with Electrical Sacrificial Layer. IEEE J. Photovolt. 2022, 12, 999–1004. [Google Scholar] [CrossRef]
- Tammaro, M.; Rimauro, J.; Fiandra, V.; Salluzzo, A. Thermal Treatment of Waste Photovoltaic Module for Recovery and Recycling: Experimental Assessment of the Presence of Metals in the Gas Emissions and in the Ashes. Renew. Energy 2015, 81, 103–112. [Google Scholar] [CrossRef]
- Dobra, T.; Vollprecht, D.; Pomberger, R. Thermal Delamination of End-of-Life Crystalline Silicon Photovoltaic Modules. Waste Manag. Res. 2022, 40, 96–103. [Google Scholar] [CrossRef]
- Wang, R.; Song, E.; Zhang, C.; Zhuang, X.; Ma, E.; Bai, J.; Yuan, W.; Wang, J. Pyrolysis-Based Separation Mechanism for Waste Crystalline Silicon Photovoltaic Modules by a Two-Stage Heating Treatment. RSC Adv. 2019, 9, 18115–18123. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; He, Y. The Research Progress on Recycling and Resource Utilization of Waste Crystalline Silicon Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2024, 270, 112804. [Google Scholar] [CrossRef]
- Dias, P.; Schmidt, L.; Gomes, L.B.; Bettanin, A.; Veit, H.; Bernardes, A.M. Recycling Waste Crystalline Silicon Photovoltaic Modules by Electrostatic Separation. J. Sustain. Metall. 2018, 4, 176–186. [Google Scholar] [CrossRef]
- Farrell, C.; Osman, A.I.; Harrison, J.; Vennard, A.; Murphy, A.; Doherty, R.; Russell, M.; Kumaravel, V.; Al-Muhtaseb, A.H.; Zhang, X.; et al. Pyrolysis Kinetic Modeling of a Poly(Ethylene-Co-Vinyl Acetate) Encapsulant Found in Waste Photovoltaic Modules. Ind. Eng. Chem. Res. 2021, 60, 13492–13504. [Google Scholar] [CrossRef]
- Bogacka, M.; Potempa, M.; Milewicz, B.; Lewandowski, D.; Pikoń, K.; Klejnowska, K.; Sobik, P.; Misztal, E. Pv Waste Thermal Treatment According to the Circular Economy Concept. Sustainability 2020, 12, 10562. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; He, Y. Advancements in Recycling Technologies for Waste CIGS Modules. Nano Energy 2024, 128, 109847. [Google Scholar] [CrossRef]
- Song, B.P.; Zhang, M.Y.; Fan, Y.; Jiang, L.; Kang, J.; Gou, T.T.; Zhang, C.L.; Yang, N.; Zhang, G.J.; Zhou, X. Recycling Experimental Investigation on End of Life Photovoltaic Panels by Application of High Voltage Fragmentation. Waste Manag. 2020, 101, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Nevala, S.M.; Hamuyuni, J.; Junnila, T.; Sirviö, T.; Eisert, S.; Wilson, B.P.; Serna-Guerrero, R.; Lundström, M. Electro-Hydraulic Fragmentation vs Conventional Crushing of Photovoltaic Panels—Impact on Recycling. Waste Manag. 2019, 87, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Fiandra, V.; Sannino, L.; Andreozzi, C.; Corcelli, F.; Graditi, G. Silicon Photovoltaic Modules at End-of-Life: Removal of Polymeric Layers and Separation of Materials. Waste Manag. 2019, 87, 97–107. [Google Scholar] [CrossRef]
- Yashas, S.R.; Ruck, E.B.; Demissie, H.; Manor-Korin, N.; Gendel, Y. Catalytic Recovery of Metals from End-of-Life Polycrystalline Silicon Photovoltaic Cells: Experimental Insights into Silver Recovery. Waste Manag. 2023, 171, 184–194. [Google Scholar] [CrossRef]
- Riech, I.; Castro-Montalvo, C.; Wittersheim, L.; Giácoman-Vallejos, G.; González-Sánchez, A.; Gamboa-Loira, C.; Acosta, M.; Méndez-Gamboa, J. Experimental Methodology for the Separation Materials in the Recycling Process of Silicon Photovoltaic Panels. Materials 2021, 14, 581. [Google Scholar] [CrossRef]
- Lovato, É.S.; Donato, L.M.; Lopes, P.P.; Tanabe, E.H.; Bertuol, D.A. Application of Supercritical CO2 for Delaminating Photovoltaic Panels to Recover Valuable Materials. J. CO2 Util. 2021, 46, 101477. [Google Scholar] [CrossRef]
- Tembo, P.M.; Heninger, M.; Subramanian, V. An Investigation of the Recovery of Silicon Photovoltaic Cells by Application of an Organic Solvent Method. ECS J. Solid State Sci. Technol. 2021, 10, 025001. [Google Scholar] [CrossRef]
- Pang, S.; Yan, Y.; Wang, Z.; Wang, D.; Li, S.; Ma, W.; Wei, K. Enhanced Separation of Different Layers in Photovoltaic Panel by Microwave Field. Sol. Energy Mater. Sol. Cells 2021, 230, 111213. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Z.; Wang, D.; Cao, J.; Ma, W.; Wei, K.; Yun, L. Recovery of Silicon via Using KOH-Ethanol Solution by Separating Different Layers of End-of-Life PV Modules. JOM 2020, 72, 2624–2632. [Google Scholar] [CrossRef]
- Min, R.; Li, K.; Wang, D.; Xiao, W.; Liu, C.; Wang, Z.; Bian, S. A Novel Method for Layer Separation of Photovoltaic Modules by Using Green Reagent EGDA. Sol. Energy 2023, 253, 117–126. [Google Scholar] [CrossRef]
- Chen, W.S.; Chen, Y.J.; Chen, Y.A. The Application of Organic Solvents and Thermal Process for Eliminating EVA Resin Layer from Waste Photovoltaic Modules. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Seoul, Republic of Korea, 26–29 January 2019; IOP Publishing: Bristol, UK, 2019; Volume 291, p. 012012. [Google Scholar]
- Degel, E.J.; Walther, G. Strategic Network Planning of Recycling of Photovoltaic Modules. In Operations Research Proceedings 2014, Proceedings of the Annual International Conference of the German Operations Research Society (GOR), RWTH, Aachen, Germany, 2–5 September 2014; Springer: Berlin/Heidelberg, Germany, 2016; pp. 115–120. [Google Scholar]
- Komoto, K.; Held, M.; Agraffeil, C.; Alonso-Garcia, C.; Danelli, A.; Lee, J.S.; Lyu, F.; Bilbao, J.; Deng, R.; Heath, G. Status of PV Module Recycling in Selected IEA PVPS Task12 Countries: IEA PVPS Task 12: PV Sustainability; IEA: Paris, France, 2022. [Google Scholar]
- Malandrino, O.; Sica, D.; Testa, M.; Supino, S. Policies and Measures for Sustainable Management of Solar Panel End-of-Life in Italy. Sustainability 2017, 9, 481. [Google Scholar] [CrossRef]
- Baldé, C.P.; Wagner, M.; Iattoni, G.; Kuehr, R. In-Depth Review of the WEEE Collection Rates and Targets; UNU: Paris, France, 2020. [Google Scholar]
- Martínez, M.; Barrueto, Y.; Jimenez, Y.P.; Vega-Garcia, D.; Jamett, I. Technological Advancement in Solar Photovoltaic Recycling: A Review. Minerals 2024, 14, 638. [Google Scholar] [CrossRef]
- Explore Los Productos Circulares de ROSI Para La Industria Fotovoltaica. Available online: https://www.rosi-solar.com/es/solutions (accessed on 24 October 2024).
- ROSI Is Selected by Soren to Recycle Photovoltaic Modules in France. Available online: https://www.rosi-solar.com/news/rosi-is-selected-by-soren-to-recycle-photovoltaic-modules-in-france (accessed on 24 October 2024).
- Home—Frelp by Sun Recupero Componenti Fotovoltaici. Available online: https://www.frelp.info/ (accessed on 24 October 2024).
- LIFE 3.0—LIFE12 ENV/IT/000904. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/LIFE12-ENV-IT-000904/full-recovery-end-of-life-photovoltaic (accessed on 24 October 2024).
- The Project PhotoLife Project. Available online: https://www.photolifeproject.eu/ (accessed on 24 October 2024).
- Photorama. Available online: https://www.photorama-project.eu/about-us/ (accessed on 24 October 2024).
- Proyecto PV4INK—FCC. Available online: https://www.fccambito.com/proyecto-idi/pv4ink (accessed on 24 October 2024).
- Goe, M.; Gaustad, G. Strengthening the Case for Recycling Photovoltaics: An Energy Payback Analysis. Appl. Energy 2014, 120, 41–48. [Google Scholar] [CrossRef]
- Shaw, S.L.; Rencheck, M.L.; Siegfried, G.A.; Libby, C. A Circular Economy Roadmap for Solar Photovoltaics. Sol. Energy 2024, 276, 112580. [Google Scholar] [CrossRef]
- Tao, J.; Yu, S. Review on Feasible Recycling Pathways and Technologies of Solar Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2015, 141, 108–124. [Google Scholar] [CrossRef]
- Single-Reagent Tech to Reuse Silicon from End-of-Life PV Panels Achieves Recovery Rate of 98.9%—Pv Magazine International. Available online: https://www.pv-magazine.com/2023/09/14/single-reagent-tech-to-reuse-silicon-from-end-of-life-pv-panels-achieves-recovery-rate-of-98-9/ (accessed on 22 October 2024).
- Granata, G.; Paltinieri, N.; Mingotti, N. Dust Hazards and Safety Measures Related to Photovoltaic Panel Recycling (2016). Available online: https://typeset.io/papers/dust-hazards-and-safety-measures-related-to-photovoltaic-5drc3gvu9h (accessed on 23 October 2024).
- Iakovou, E.; Pistikopoulos, E.N.; Walzberg, J.; Iseri, F.; Iseri, H.; Chrisandina, N.J.; Vedant, S.; Nkoutche, C. Next-Generation Reverse Logistics Networks of Photovoltaic Recycling: Perspectives and Challenges. Sol. Energy 2024, 271, 112329. [Google Scholar] [CrossRef]
- Schoden, F.K.; Schwenzfeier-Hellkamp, E.; Kumar, M.; Schnatmann, A.K.; Schoden, F.; Schwenzfeier-Hellkamp, E. Sustainable PV Module Design—Review of State-of-the-Art Encapsulation Methods. Sustainability 2022, 14, 9971. [Google Scholar] [CrossRef]
- Farrell, C.C.; Osman, A.I.; Doherty, R.; Saad, M.; Zhang, X.; Murphy, A.; Harrison, J.; Vennard, A.S.M.; Kumaravel, V.; Al-Muhtaseb, A.H.; et al. Technical Challenges and Opportunities in Realising a Circular Economy for Waste Photovoltaic Modules. Renew. Sustain. Energy Rev. 2020, 128, 109911. [Google Scholar] [CrossRef]
- Lu, Q.; Wu, Y.; Yuan, H.; Zhang, W.; Niekurzak, M.; Lewicki, W.; Coban, H.H.; Brelik, A. Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production. Sustainability 2023, 15, 2822. [Google Scholar] [CrossRef]
- Heath, G.A.; Silverman, T.J.; Kempe, M.; Deceglie, M.; Ravikumar, D.; Remo, T.; Cui, H.; Sinha, P.; Libby, C.; Shaw, S.; et al. Research and Development Priorities for Silicon Photovoltaic Module Recycling to Support a Circular Economy. Nat. Energy 2020, 5, 502–510. [Google Scholar] [CrossRef]
- Calì, M.; Hajji, B.; Nitto, G.; Acri, A. The Design Value for Recycling End-of-Life Photovoltaic Panels. Appl. Sci. 2022, 12, 9092. [Google Scholar] [CrossRef]
- Mariotti, N.; Bonomo, M.; Barolo, C.; Mariotti, N.; Bonomo, M.; Barolo, C. Emerging Photovoltaic Technologies and Eco-Design—Criticisms and Potential Improvements. Reliab. Ecol. Asp. Photovolt. Modul. 2020. [Google Scholar] [CrossRef]
- Peplow, M. Solar Panels Face Recycling Challenge. ACS Cent. Sci. 2022, 8, 299–302. [Google Scholar] [CrossRef]
- McDonald, N.C.; Pearce, J.M. Producer Responsibility and Recycling Solar Photovoltaic Modules. Energy Policy 2010, 38, 7041–7047. [Google Scholar] [CrossRef]
- Monier, V.; Hestin, M. Study on Photovoltaic Panels Supplementing the Impact Assessment for a Recast of the WEEE Directive; Final Report; Publications Office of the European Union: Luxembourg, 2013; pp. 1–86. [Google Scholar]
- Choi, J.K.; Fthenakis, V. Crystalline Silicon Photovoltaic Recycling Planning: Macro and Micro Perspectives. J. Clean. Prod. 2014, 66, 443–449. [Google Scholar] [CrossRef]
- Wade, A. Beyond Waste—The Fate of End-Of-Life Photovoltaic Panels from Large Scale Pv Installations in The Eu. The Socio-Economic Benefits of High Value Recycling Compared to Re-Use. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017. [Google Scholar]
- Cucchiella, F.; D’Adamo, I.; Lenny Koh, S.C.; Rosa, P. Recycling of WEEEs: An Economic Assessment of Present and Future e-Waste Streams. Renew. Sustain. Energy Rev. 2015, 51, 263–272. [Google Scholar] [CrossRef]
- Anctil, A.; Fthenakis, V. Critical Metals in Strategic Photovoltaic Technologies: Abundance versus Recyclability. Prog. Photovolt. Res. Appl. 2013, 21, 1253–1259. [Google Scholar] [CrossRef]
- Fthenakis, V. PV Life Cycle Management and Recycling—Overview & Prospects. In Proceedings of the 29th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, 22–26 September 2014. [Google Scholar]
- Liu, C.; Zhang, Q.; Wang, H. Cost-Benefit Analysis of Waste Photovoltaic Module Recycling in China. Waste Manag. 2020, 118, 491–500. [Google Scholar] [CrossRef]
- Rubino, A.; Granata, G.; Moscardini, E.; Baldassari, L.; Altimari, P.; Toro, L.; Pagnanelli, F. Development and Techno-Economic Analysis of an Advanced Recycling Process for Photovoltaic Panels Enabling Polymer Separation and Recovery of Ag and Si. Energies 2020, 13, 6690. [Google Scholar] [CrossRef]
- Marwede, M.; Reller, A. Estimation of Life Cycle Material Costs of Cadmium Telluride–and Copper Indium Gallium Diselenide–Photovoltaic Absorber Materials Based on Life Cycle Material Flows. J. Ind. Ecol. 2014, 18, 254–267. [Google Scholar] [CrossRef]
- Domínguez, A.; Geyer, R. Photovoltaic waste assessment in Mexico. Resour. Conserv. Recycl. 2017, 127, 29–41. [Google Scholar] [CrossRef]
- Ravikumar, D.; Seager, T.; Sinha, P.; Fraser, M.P.; Reed, S.; Harmon, E.; Power, A. Environmentally Improved CdTe Photovoltaic Recycling through Novel Technologies and Facility Location Strategies. Prog. Photovolt. Res. Appl. 2020, 28, 887–898. [Google Scholar] [CrossRef]
- Deng, R.; Zhuo, Y.; Shen, Y. Recent Progress in Silicon Photovoltaic Module Recycling. Resour. Conserv. Recycl. 2022, 187, 106612. [Google Scholar] [CrossRef]
- The National Renewable Energy Laboratory. What It Takes to Realize a Circular Economy for Solar Photovoltaic System Materials. NREL. Available online: https://www.nrel.gov/news/program/2021/what-it-takes-to-realize-a-circular-economy-for-solar-photovoltaic-system-materials.html (accessed on 23 October 2024).
- Guo, Q.; Guo, H. A Framework for End-of-Life Photovoltaics Distribution Routing Optimization. Sustain. Environ. Res. 2019, 1, 3. [Google Scholar] [CrossRef]
- Celik, I.; Lunardi, M.; Frederickson, A.; Corkish, R. Sustainable End of Life Management of Crystalline Silicon and Thin Film Solar Photovoltaic Waste: The Impact of Transportation. Appl. Sci. 2020, 10, 5465. [Google Scholar] [CrossRef]
- Molano, J.C.; Xing, K.; Majewski, P.; Huang, B. A Holistic Reverse Logistics Planning Framework for End-of-Life PV Panel Collection System Design. J. Environ. Manag. 2022, 317, 115331. [Google Scholar] [CrossRef]
- Yu, H.; Tong, X. Producer vs. Local Government: The Locational Strategy for End-of-Life Photovoltaic Modules Recycling in Zhejiang Province. Resour. Conserv. Recycl. 2021, 169, 105484. [Google Scholar] [CrossRef]
- Li, J.; Shao, J.; Yao, X.; Li, J. Life Cycle Analysis of the Economic Costs and Environmental Benefits of Photovoltaic Module Waste Recycling in China. Resour. Conserv. Recycl. 2023, 196, 107027. [Google Scholar] [CrossRef]
- Sharma, A.; Pandey, S.; Kolhe, M. Global Review of Policies & Guidelines for Recycling of Solar Pv Modules. Int. J. Smart Grid Clean Energy 2019, 8, 597–610. [Google Scholar] [CrossRef]
- Gerold, E.; Antrekowitsch, H. Advancements and Challenges in Photovoltaic Cell Recycling: A Comprehensive Review. Sustainability 2024, 16, 2542. [Google Scholar] [CrossRef]
- Babaei, A.; Esfahani, A.N. A Review of Photovoltaic Waste Management from a Sustainable Perspective. Electricity 2024, 5, 734–750. [Google Scholar] [CrossRef]
- Aleksandra, A.V.; Bartulovic, J.; Zanki, V.; Presečki, I. Recycling of Photovoltaic Cells—A Review. Detritus 2024, 27, 47–65. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Huda, N.; Behnia, M. Multi-Levels of Photovoltaic Waste Management: A Holistic Framework. J. Clean. Prod. 2021, 294, 126252. [Google Scholar] [CrossRef]
- Majewski, P.; Dias, P.R. Product Stewardship Scheme for Solar Photovoltaic Panels. Curr. Opin. Green Sustain. Chem. 2023, 44, 100859. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; He, Y. Insights for China from EU Management of Recycling End-of-Life Photovoltaic Modules. Sol. Energy 2024, 273, 112532. [Google Scholar] [CrossRef]
- Yi, Y.K.; Kim, H.S.; Tran, T.; Hong, S.K.; Kim, M.J. Recovering Valuable Metals from Recycled Photovoltaic Modules. J. Air Waste Manag. Assoc. 2014, 64, 797–807. [Google Scholar] [CrossRef]
- Akhtar, M.; Hannan, M.A.; Begum, R.A.; Basri, H.; Scavino, E. Backtracking Search Algorithm in CVRP Models for Efficient Solid Waste Collection and Route Optimization. Waste Manag. 2017, 61, 117–128. [Google Scholar] [CrossRef]
- Shrestha, N.; Zaman, A. Decommissioning and Recycling of End-of-Life Photovoltaic Solar Panels in Western Australia. Sustainability 2024, 16, 526. [Google Scholar] [CrossRef]
- Marchetti, B.; Corvaro, F.; Giacchetta, G.; Polonara, F.; Cocci Grifoni, R.; Leporini, M. Double Green Process: A Low Environmental Impact Method for Recycling of CdTe, a-Si and CIS/CIGS Thin-Film Photovoltaic Modules. Int. J. Sustain. Eng. 2018, 11, 173–185. [Google Scholar] [CrossRef]
- Fontana, D.; Forte, F.; Pietrantonio, M.; Pucciarmati, S. Recent Developments on Recycling End-of-Life Flat Panel Displays: A Comprehensive Review Focused on Indium. Crit. Rev. Environ. Sci. Technol. 2021, 51, 429–456. [Google Scholar] [CrossRef]
- Ponnamma, D.; Parangusan, H.; Deshmukh, K.; Kar, P.; Muzaffar, A.; Pasha, S.K.K.; Ahamed, M.B.; Al-Maadeed, M.A.A. Green Synthesized Materials for Sensor, Actuator, Energy Storage and Energy Generation: A Review. Polym.-Plast. Technol. Mater. 2020, 59, 1–62. [Google Scholar] [CrossRef]
- Cimadomo, S.; Osberg, G. Advancing a Circular Economy for Solar Photovoltaics Exported for Reuse Analysing the Institutional Feasibility of International Extended Producer Responsibility for EU-West Africa Transboundary Movements. Master’s Thesis, Lund University, Lund, Sweden, 2024. [Google Scholar]
- Ali, A.; Islam, M.T.; Rehman, S.; Qadir, S.A.; Shahid, M.; Khan, M.W.; Zahir, M.H.; Islam, A.; Khalid, M. Solar Photovoltaic Module End-of-Life Waste Management Regulations: International Practices and Implications for the Kingdom of Saudi Arabia. Sustainability 2024, 16, 7215. [Google Scholar] [CrossRef]
- Su, P.; He, Y.; Feng, Y.; Wan, Q.; Li, T. Advancements in End-of-Life Crystalline Silicon Photovoltaic Recycling: Current State and Future Prospects. Sol. Energy Mater. Sol. Cells 2024, 277, 113109. [Google Scholar] [CrossRef]
- Valadez-Villalobos, K.; Davies, M.L. Remanufacturing of Perovskite Solar Cells. RSC Sustain. 2024, 2, 2057–2068. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Cho, S.; Seo, K.; Park, B.U.; Lee, H.S.; Park, J. Development of Eco-Friendly Pretreatment Processes for High-Purity Silicon Recovery from End-of-Life Photovoltaic Modules. RSC Adv. 2024, 14, 31451–31460. [Google Scholar] [CrossRef] [PubMed]
- Keerthivasan, T.; Madhesh, R.; Srinivasan, M.; Ramasamy, P. Photovoltaic Recycling: Enhancing Silicon Wafer Recovery Process from Damaged Solar Panels. J. Mater. Sci. Mater. Electron. 2024, 35, 880. [Google Scholar] [CrossRef]
- Goh, K.C.; Kurniawan, T.A.; Goh, H.H.; Zhang, D.; Jiang, M.; Dai, W.; Khan, M.I.; Othman, M.H.D.; Aziz, F.; Anouzla, A.; et al. Harvesting Valuable Elements from Solar Panels as Alternative Construction Materials: A New Approach of Waste Valorization and Recycling in Circular Economy for Building Climate Resilience. Sustain. Mater. Technol. 2024, 41, e01030. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Ramasubramanian, B. Circular Practices in E-Waste Management and Transportation. Handb. Mater. Circ. Econ. 2024, 1, 131–165. [Google Scholar] [CrossRef]
- Gautam, A.; Shankar, R.; Vrat, P. Circular Economy-Based Operational Strategies in the Management of Solar Photovoltaics e-Waste: A Multi-Stakeholder Perspective. Bus. Strategy Environ. 2024. [Google Scholar] [CrossRef]
- Nain, P.; Anctil, A. End-of-Life Solar Photovoltaic Waste Management: A Comparison as per European Union and United States Regulatory Approaches. Resour. Conserv. Recycl. Adv. 2024, 21, 200212. [Google Scholar] [CrossRef]
- IRENA. End-of-Life-Management, Solar Photovoltaic Panels; IRENA: Abu Dhabi, United Arab Emirates, 2016; IRENA_IEAPVPS_End-of-Life_Solar_PV_Panels_2016. [Google Scholar]
- Bošnjaković, M.; Galović, M.; Kuprešak, J.; Bošnjaković, T. The End of Life of PV Systems: Is Europe Ready for It? Sustainability 2023, 15, 16466. [Google Scholar] [CrossRef]
Technology | Cell Type |
---|---|
Silicon based | Monocrystalline Poly- or multicrystalline Ribbon a-Si (amorph/micromorph) |
Thin-film based | Copper indium gallium (di)selenide (CIGS) Cadmium telluride (CdTe) |
Other | Concentrating solar PV (CPV) Organic PV/dye-sensitised cells (OPV) Crystalline silicon (advanced c-Si) CIGS alternatives, heavy metals (e.g., perovskite), advanced III–V |
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|---|---|---|---|
Albania | 1 | 1 | 1 | 1 | 1 | 14 | 21 | 23 | 23 | 163 |
Andorra | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 4 |
Austria | 785 | 937 | 1096 | 1269 | 1455 | 1702 | 2043 | 2783 | 3792 | 6832 |
Belarus | 4 | 6 | 47 | 80 | 154 | 154 | 160 | 163 | 273 | 273 |
Belgium | 3015 | 3132 | 3329 | 3621 | 4000 | 4637 | 5573 | 6012 | 6756 | 8549 |
Bosnia–Herzegovina | 7 | 8 | 14 | 16 | 18 | 22 | 35 | 57 | 102 | 132 |
Bulgaria | 1029 | 1028 | 1030 | 1031 | 1033 | 1044 | 1100 | 1275 | 1737 | 2937 |
Croatia | 33 | 48 | 56 | 60 | 68 | 85 | 109 | 138 | 222 | 461 |
Cyprus | 64 | 76 | 84 | 110 | 118 | 151 | 229 | 315 | 424 | 606 |
Czechia | 2067 | 2075 | 2068 | 2075 | 2081 | 2111 | 2172 | 2246 | 2420 | 2499 |
Denmark | 607 | 782 | 851 | 906 | 998 | 1080 | 1304 | 1704 | 3070 | 3529 |
Estonia | 3 | 7 | 10 | 15 | 32 | 121 | 208 | 395 | 520 | 690 |
Faroe Islands | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Finland | 11 | 17 | 39 | 82 | 140 | 222 | 318 | 425 | 664 | 900 |
France | 6034 | 7138 | 7702 | 8610 | 9629 | 10,729 | 11,917 | 14,603 | 17,341 | 20,542 |
Germany | 37,898 | 39,222 | 40,677 | 42,291 | 45,156 | 48,912 | 53,669 | 60,036 | 67,477 | 81,737 |
Greece | 2596 | 2604 | 2604 | 2606 | 2651 | 2834 | 3288 | 4277 | 5430 | 7030 |
Hungary | 89 | 172 | 235 | 344 | 728 | 1400 | 2131 | 2968 | 4235 | 5835 |
Iceland | 1 | 3 | 4 | 4 | 5 | 7 | 7 | 7 | 7 | 7 |
Ireland | 3 | 5 | 11 | 29 | 53 | 96 | 152 | 228 | 289 | 738 |
Italy | 18,594 | 18,901 | 19,283 | 19,682 | 20,108 | 20,865 | 21,650 | 22,594 | 24,555 | 29,789 |
Kosovo | 0 | 0 | 2 | 7 | 7 | 10 | 10 | 14 | 14 | 20 |
Latvia | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 7 | 113 | 353 |
Lithuania | 69 | 69 | 70 | 74 | 82 | 103 | 164 | 255 | 572 | 1165 |
Luxembourg | 110 | 116 | 122 | 128 | 131 | 160 | 187 | 277 | 317 | 432 |
Malta | 55 | 75 | 94 | 112 | 132 | 155 | 188 | 205 | 222 | 231 |
Moldova Rep. | 1 | 1 | 2 | 2 | 3 | 5 | 4 | 14 | 60 | 87 |
Montenegro | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 22 | 42 |
Netherlands | 1007 | 1526 | 2135 | 2911 | 4608 | 7228 | 11,110 | 14,823 | 19,600 | 23,904 |
North Macedonia | 15 | 17 | 17 | 17 | 17 | 17 | 85 | 91 | 190 | 535 |
Norway | 13 | 15 | 27 | 45 | 68 | 120 | 160 | 205 | 358 | 616 |
Poland | 27 | 108 | 187 | 287 | 562 | 1539 | 3955 | 7416 | 12,170 | 15,809 |
Portugal | 415 | 447 | 513 | 579 | 667 | 901 | 1100 | 1646 | 2646 | 3876 |
Romania | 1293 | 1326 | 1372 | 1374 | 1386 | 1398 | 1383 | 1394 | 1809 | 1917 |
Serbia | 13 | 16 | 17 | 18 | 21 | 23 | 31 | 52 | 137 | 137 |
Slovakia | 533 | 533 | 533 | 528 | 471 | 590 | 535 | 537 | 549 | 631 |
Slovenia | 224 | 239 | 232 | 247 | 247 | 278 | 370 | 461 | 626 | 1034 |
Spain | 4697 | 4704 | 4713 | 4723 | 4764 | 8807 | 10,136 | 13,715 | 23,311 | 28,712 |
Sweden | 60 | 104 | 153 | 244 | 428 | 714 | 1107 | 1606 | 2388 | 3488 |
Switzerland | 1061 | 1394 | 1664 | 1906 | 2173 | 2498 | 2973 | 3655 | 4340 | 5840 |
UK | 5528 | 9601 | 11,914 | 12,760 | 13,060 | 13,345 | 13,551 | 13,915 | 14,651 | 15,657 |
Ukraine | 819 | 841 | 955 | 1200 | 2003 | 5936 | 7331 | 8062 | 8062 | 8062 |
Albania | 1 | 1 | 1 | 1 | 1 | 14 | 21 | 23 | 23 | 163 |
Andorra | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 4 |
Austria | 785 | 937 | 1096 | 1269 | 1455 | 1702 | 2043 | 2783 | 3792 | 6832 |
Belarus | 4 | 6 | 47 | 80 | 154 | 154 | 160 | 163 | 273 | 273 |
Belgium | 3015 | 3132 | 3329 | 3621 | 4000 | 4637 | 5573 | 6012 | 6756 | 8549 |
PV Panel’s Type | Method Adopted | Recycled Products | Treatment Technology | Brief Description | References |
---|---|---|---|---|---|
Thin-film | Wet mechanical processing | Te, In | Mechanical | Vacuum blasting, attrition, and floating processes to recover Te and In. | [75] |
c-Si | Mechanical crushing + triple crushing | Glass (85%), silver, silicon | Mechanical | Segregation of materials through two-blade rotor and hammer crushing, reducing mass of fractions undergoing thermal and hydrometallurgical treatment. | [25] |
Thin-film | High-voltage pulse crushing (HVC) | Glass (80%), metals | Mechanical | Separation using high-voltage pulses; avoids fine dust generation and minimizes material wastage. | [25] |
c-Si | Laser irradiation | Glass, solar, cells, backsheet | Physical | Non–destructive method with laser irradiation (1064 nm, 20 W). | [81] |
c-Si | Milled and electrostatic separation | Metals (95%) | Physical | Metal enrichment and separation via milling and electrostatic processes. | [88] |
c-Si | High voltage pulse discharge | Copper (95%), silver (96%) | Physical | Energy-efficient separation using high-voltage pulse discharge (160 kV, 300 pulses). | [92] |
c-Si | Shredding on knife mill + magnetic separator + heavy– medium separator | Crushed solar cells, glass and metals | Physical | Separation of solar panel materials using shredding, followed by magnetic and density separation methods. | [77] |
c-Si | Milling and crushing with electronic separator. | Silicon solar cells and other metals | Physical | Materials are separated using an electrostatic separator after mechanical milling. | [88] |
c-Si | High voltage pulse method | Silver, tin, copper, silicon, and aluminium | Physical | PV panel samples are cut into a small pieces, placed in a water-filled reactor, and subjected to 600 J shockwave impulses at a rate of one per second. | [93] |
c-Si | High voltage pulse method in two different stages | Glass and solar cells | Physical | [57] | |
c-Si | High voltage fragmentation method | Copper, silver, aluminium, lead, silicon | Physical | [92] | |
c-Si | Laser irradiation method | Glass and solar cells | Physical | The EVA layer is recycled by using laser irradiation followed by mechanical peeling. | [81] |
Polycrystalline silicon solar modules | Pyrolysis in Lenton tubular furnace | Silicon, glass | Thermal | A Lenton tubular furnace with a quartz tube with an inner diameter of 117 mm and a length of 900 mm was used. | [94] |
c-Si | Pyrolysis | EVA | Thermal | Deacetylation and long-chain scission, requiring high energy. | [25] |
c-SI | Pyrolysis | EVA, Cu, glass | Thermal | Thermal treatment of c-Si modules at 450 °C decomposes EVA, producing acetic acid and olefins. Copper strips, glass, and cells are separated through sieving post-treatment. | [95] |
Polycrystallline silicon solar modules | 1st stage: quartz halogen lamp; 2nd stage: 600 °C for 30 min. | Silicon, glass | Thermal | A two-stage thermal process uses a quartz halogen lamp and heat treatment to recover silicon and glass. | [96] |
c-Si | Thermal decomposition | Glass, PV cells | Thermal | EVA is completely decomposed at 500 °C in air. | [94] |
c-Si | Dielectric loss method | Glass and solar cells | Thermal | Low-temperature heating use alternating magnetic fields to separate glass from EVA. | [26] |
c-Si | Organic solvent method | Silicon wafers | Chemical | Organic solvents are used to dissolve EVA. | [77] |
c-Si | Supercritical CO2 technology + organic solvent method | Glass, silicon wafers, metal solder tape, and backsheet | Chemical | Utilization of solvents at atmospheric pressure and supercritical CO2 for delamination of a PV module. | [97] |
c-Si | Organic solvent method | Silicon solar wafers | Chemical | [98] | |
c-Si | Microwave-enhanced organic solvent method | Silicon solar wafers | Chemical | A microwave-assisted organic solvent process to enhance separation of different layers of PV modules. | [99] |
c-Si | Inorganic solvent method; KOH–ethanol, 200 °C in muffle furnace for 3 h | Silicon solar wafers | Chemical | [100] | |
CIGS photovoltaic modules | Hydrometallurgical | Cu2+, In3+, and Ga3+ | Chemical | Different reactions in the presence of a leaching agent lead to the dissolution or precipitation of metals. | [91] |
CIGS photovoltaic modules | Electrodeposition | Copper and Indium | Chemical | Electrochemical process of reducing metal ions in an electrolyte, followed by the deposition of metal. | [91] |
c-Si | Trichloroethylene + microwave | PV cells | Chemical | Complete separation within 2 h using trichloroethylene and a microwave field at 70 °C. | [99] |
c-Si | EDGA + ultrasonic power | PV cells | Chemical | Non-toxic reagent, reducing separation time by 3/4 through ultrasonic power. | [101] |
c-Si | Organic solvents (toluene, D-limonene) | PV cells, EVA | Chemical | Immersion with toluene, tetrahydrofuran, or D-limonene, at 90 °C, 1 h. | [102] |
c-Si | Batch leaching | Ag, Cu, Pb | Chemical | The method uses various lixiviants (HNO3, MSA, H2SO4-H2O2) with a solid–liquid ratio of 1:50. | [95] |
c-Si | Metal separation (catalyzed by Pt/AC) | Metals from leachates | Chemical | Pt/AC catalyst used to recover metals from leachates. | [95] |
Organization | Pyrolysis | Mechanical Treatment | Chemical Treatment |
---|---|---|---|
Eco Recycling (Italy), High-Tech Recycling Centre (Italy), Eco Power, Green Engineering | X | X | X |
Sasil, S.p.A. (Italy), Stazione Sperimentale del Vetro (Italy), PV CYCLE (Belgium) | X | X | X |
La Mia Energia (Italy), University of Florence, Department of Industrial Engineering (Italy), Leitat Technological Centre (Spain), PV CYCLE (Belgium) | X |
Recycler | Country | Technology | Comment |
---|---|---|---|
Reiling | Harsewilken, Germany | Mechanical | Commercial, new recycling center under construction. |
Flaxres | Dresden, Germany | Light pulse | Pilot, subsequent steps not yet implemented. |
LuxChemtech | Freiberg, Germany | Water jet, light pulse, chemical | Pilot, not all subsequent steps implemented yet. |
First Solar Inc. | Frankfurt, Germany, Ohio, United States, Ho Chi Minh, Vietnam and Kulim, Malaysia | Mechanical, chemical | Recently upgraded recycling in progress in Germany, V4 under development; contact via First Solar Inc., USA. |
ROSI SAS | Seyssins, France | Pyrolysis, mechanical, chemical | Pilot, under construction. |
Tialpi | Mottalciata, Italy | Thermal, mechanical, chemical | Pilot plant in Italy handling 1000 tons per year. |
NPC | Tokio, Japan | Mechanical, hot knife | Equipment manufacturer. |
ROSI | Envie and ROSI | Tialpi | |
---|---|---|---|
Capacity (tons/year) | 3000 | 3000 | 3000 |
Module | c-Si | c-Si | c-Si |
% Recovery | 90.6 | 91.3 | 100 |
% Cables | 0.85 | 0.89 | 1 |
% Frame | 7.79 | 7.79 | 15 |
% Junction boxes | 4.3 | 4.3 | 1 |
% Ferrous metals | 0 | 0 | 0 |
% Non-ferrous metals | 0.87 | 4.27 | 0 |
% Polymers/sheets | 0 | 0 | 14 |
% Glass waste | 71.4 | 72.1 | 65 |
% Ground glass mix, sheets, and metals | 3.4 | 0 | 3 |
% Dust | 0 | 0 | 0 |
% Other | 2 | 2 | 1 |
Recover Silicon | Yes | - | Yes |
Recover Silver | Yes | Yes | Yes |
Patent Name | Country | Date | User |
---|---|---|---|
Method for fabricating a composite structure to be separated by exfoliation | France | 18 July 2012 | Figuet Christophe, Gourdel Christophe, Soitec Silicon on Insulator |
A method and machine to assist recycling of photovoltaic panels | Italy | 11 October 2012 | Compton S.R.L and Pasin Andrea |
Process for treating spent photovoltaic panels | Italy | 9 May 2014 | Eco Recycling S.R.L. |
Method and apparatus for detaching glass from a mono- or polycrystalline silicon photovoltaic panel | Italy | 16 September 2015 | Sasil S.p.A. |
Method and plant for recycling photovoltaic panels | Italy | 31 October 2018 | University of Padua |
Project | Objectives | Timeline | Technical Details | Expected Results | Progress Metrics |
---|---|---|---|---|---|
PHOTORAMA | Develop technologies to recover valuable materials (silver, silicon, indium, gallium) | 2021–2025 | Multi-stage collaborative process with several EU countries, led by France | Increase the recycling rate of crystalline silicon and inorganic modules | 50% progress in the development of advanced technologies, multinational collaboration |
Spanish Initiative (PV4INK) | Address the challenges of photovoltaic waste management with a projected increase in waste volume | Ongoing | Focused on compliance with EU circular economy strategies and improving recycling infrastructure | Optimize waste management and comply with European environmental policies | Implementation of collection systems, assessment of recycling infrastructure |
Recycling Technology | Cost per Module (€) | Key Cost Factors | Efficiency | References |
---|---|---|---|---|
Physical Processes (e.g., Crushing, Laser Cutting) | 10–30 | Energy for machinery, maintenance of advanced equipment like laser cutters. | Moderate; lower-purity recovery. | [60] Dias et al., 2017 |
Chemical Processes (e.g., Nitric and Hydrofluoric Acids) | 25–50 | Cost of reagents, waste treatment for hazardous byproducts. | High for valuable materials (e.g., silver), but costly. | [61] Savvilotidou et al., 2017 |
Thermal Processes (e.g., Pyrolysis) | 35–60 | High energy consumption, emission controls for hazardous gases. | Effective for removing encapsulants; high material purity. | [139] Ravikumar et al., 2020 |
Combined Methods (Physical, Thermal, and Chemical) | 45–75 | Complexity of stages, specialized equipment for multi-step recovery. | Highest; optimal recovery of high-value materials. | [62,63] Choi & Fthenakis, 2010; [62,63] Walzberg et al., 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diez-Suarez, A.-M.; Martínez-Benavides, M.; Manteca Donado, C.; Blanes-Peiró, J.-J.; Martínez Torres, E.J. Recycling of Silicon-Based Photovoltaic Modules: Mediterranean Region Insight. Energies 2024, 17, 6015. https://doi.org/10.3390/en17236015
Diez-Suarez A-M, Martínez-Benavides M, Manteca Donado C, Blanes-Peiró J-J, Martínez Torres EJ. Recycling of Silicon-Based Photovoltaic Modules: Mediterranean Region Insight. Energies. 2024; 17(23):6015. https://doi.org/10.3390/en17236015
Chicago/Turabian StyleDiez-Suarez, Ana-María, Marta Martínez-Benavides, Cristina Manteca Donado, Jorge-Juan Blanes-Peiró, and Elia Judith Martínez Torres. 2024. "Recycling of Silicon-Based Photovoltaic Modules: Mediterranean Region Insight" Energies 17, no. 23: 6015. https://doi.org/10.3390/en17236015
APA StyleDiez-Suarez, A. -M., Martínez-Benavides, M., Manteca Donado, C., Blanes-Peiró, J. -J., & Martínez Torres, E. J. (2024). Recycling of Silicon-Based Photovoltaic Modules: Mediterranean Region Insight. Energies, 17(23), 6015. https://doi.org/10.3390/en17236015