Towards Bio-Crude Refinery Integration: Hydrodeoxygenation and Co-Hydroprocessing with Light Cycle Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope
2.2. Feeds
2.3. Catalysts
2.4. Analysis
2.5. Testing Infrastructure
2.6. Experimental Procedure
3. Results
3.1. Stabilization of HTL Biocrude
3.1.1. Oxygen Removal
3.1.2. Gas Product Characterization
3.1.3. Cracking and Saturation Reactions
3.2. Coprocessing
4. Discussion
5. Conclusions
- The HTL biocrude consists mainly of oleic acid (23.28 wt%), n-hexadecanoic acid or palmitic acid (C16:0, 13.19 wt%), 9,12-octadecanoic acid or linoleic acid (C18:2, 11.77 wt%), 7-octadecanoic acid (C18:1, 9.11 wt%) and hexadecenoic acid or palmitoleic acid (C16:1, 8.78 wt%).
- Hydroprocessing successfully stabilized the HTL biocrude by removing the oxygen content from the initial feedstocks and improving its properties (density, viscosity, heating value, oxygen content, water content and H/C ratio).
- Stabilized biocrude after mild hydrotreatment consists mainly of aliphatic hydrocarbons by >90 wt%. More specifically, it consists of 83.6–86.2 wt% alkanes, 1.7–4.8 wt% cycloalkanes and 2.0–2.7 wt% alkene depending on the operation conditions of hydrotreatment.
- The optimum hydrotreating condition was identified at 603 K temperature, 6.9 MPa pressure, 5000 scfb H2/biocrude ratio and 1 h−1 LHSV.
- Cofeeding stabilized biocrude with LCO in the hydrotreating process favors hydrogen consumption but leads to temporary HDS catalyst deactivation that can be overcome via temperature increase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CERTH | Centre for Research & Technology Hellas |
CPERI | Chemical Process & Energy Resources Institute |
DMDS | Dimethyl Disulfide |
DOS | Days On Stream |
DP | Drop Pressure |
GC | Gas Chromatograph |
GC-MS | Gas Chromatography–Mass Spectrometry |
HDO | Hydro-Deoxygenation reactions |
HTL | Hydrothermal Liquefaction |
HVV | High Heating Value |
I.D. | Inlet Diameter |
LHSV | Liquid Hourly Space Velocity |
MCR | Micro Carbon Residue |
NiMo | Nickel—Molybdenum catalyst |
SAF | Sustainable Aviation Fuels |
SimDis | Simulated Distillation |
TAN | Total Acid Number |
TCC | Thermochemical Conversion technologies |
TRL 3 | Technology Readiness Level 3 |
XRFS | X-ray fluorescence spectrometer |
References
- Franca, A.S.; Oliveira, L.S. Coffee processing solid wastes: Current uses and future perspectives. In Agricultural Wastes; Book Chapter 8; Ashworth, G.S., Azevedo, P., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; ISBN 978-1-60741-305-9. [Google Scholar]
- Forcina, A.; Petrillo, A.; Travaglioni, M.; Chiara, S.; Felice, F. A comparative life cycle assessment of different spent coffee ground reuse strategies and a sensitivity analysis for verifying the environmental convenience based on the location of sites. J. Clean. Prod. 2023, 385, 135727. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Shah, A.A.; Pedersen, T.H.; Rosendahl, L.A. Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction. Energies 2020, 13, 3114. [Google Scholar] [CrossRef]
- Saravanan, A.; Yaashikaa, P.R.; Kumar, P.S.; Thmarai, P.; Deivayanai, V.C.; Rangasamy, G. A comprehensive review on techno-economic analysis of biomass valorization and conversion technologies of lignocellulosic residues. Ind. Crops Prod. 2023, 200, 116822. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [Google Scholar] [CrossRef]
- Castello, D.; Haider, M.S.; Rosendahl, L.A. Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks. Renew. Energy 2019, 141, 420–430. [Google Scholar] [CrossRef]
- Anastasakis, K.; Biller, P.; Madsen, R.; Glasius, M.; Johannsen, I. Continuous hydrothermal liquefaction of biomass in a novel pilot plant with heat recovery and hydraulic oscillation. Energies 2018, 11, 2695. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal Liquefaction Biocrude Stabilization via Hydrotreatment. Energies 2024, 17, 1437. [Google Scholar] [CrossRef]
- Cai, Q.; Yu, T.; Zhang, S. Enhanced aromatic hydrocarbon production from bio-oil hydrotreating-cracking by Mo-Ga modified HZSM-5. Fuel 2020, 269, 117386. [Google Scholar] [CrossRef]
- Haider, M.S.; Castello, D.; Rosendahl, L.A. Two-stage catalytic hydrotreatment of highly nitrogenous biocrude from continuous hydrothermal liquefaction: A rational design of the stabilization stage. Biomass Bioenergy 2020, 139, 105658. [Google Scholar] [CrossRef]
- Kohansal, K.; Sanchez, E.L.; Khare, S.; Bjorgen, K.O.P.; Haider, M.S.; Castello, D.; Lovas, T.; Rosendahl, L.A.; Pedersen, T.H. Automotive sustainable diesel blendstock production through biocrude obtained from hydrothermal liquefaction of municipal waste. Fuel 2023, 350, 128770. [Google Scholar] [CrossRef]
- Lindfors, C.; Ellito, D.C.; Prins, W.; Oasmaa, A.; Lehtonen, J. Co-processing of Biocrudes in Oil Refineries. Energy Fuels 2023, 37, 799–804. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Liakos, D.; Pfisterer, U.; Moustaka-Gouni, M.; Karonis, D.; Bezergianni, S. Impact of hydrogenation on miscibility of fast pyrolysis bio-oil with refinery fractions towards bio-oil refinery integration. Biomass Bioenergy 2021, 151, 106171. [Google Scholar] [CrossRef]
- Roy, P.; Jahromi, H.; Rahman, T.; Baltrusitis, J.; Hassa, E.B.; Torbert, A.; Adhikari, S. Hydrotreatment of pyrolysis bio-oil with non-edible carinata oil and poultry fat for producing transportation fuels. Fuel Process. Technol. 2023, 245, 107753. [Google Scholar] [CrossRef]
- Horacek, J.; Kubicka, D. Bio-oil hydrotreating over conventional CoMo & NiMo catalysts: The role of reaction conditions and additives. Fuel 2017, 198, 49–57. [Google Scholar] [CrossRef]
- Biller, P.; Sharma, B.K.; Kunwar, B.; Ross, A.B. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel 2015, 159, 197–205. [Google Scholar] [CrossRef]
- Yang, C.; Wang, S.; Jiang, Z.; Li, J.; He, C.; Xu, T. Catalytic hydrotreatment upgrading of biocrude oil derived from hydrothermal liquefaction of animal carcass. Fuel 2022, 317, 123528. [Google Scholar] [CrossRef]
- Subramaniam, S.; Santosa, D.M.; Brady, C.; Swita, M.; Ramasamy, K.K.; Thorson, M.R. Extended catalyst lifetime testing for HTL biocrude hydrotreating to produce fuel blendstocks from wet wastes. ACS Sustain. Chem. Eng. 2021, 9, 12825–12832. [Google Scholar] [CrossRef]
- ASTM-4052; Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. Designation: D4052-22; ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D-7169-23; Standard Test Method for Boiling Point Distribution of Samples with Residues such as Crude Oils and Atmospheric and Vacuum Residues by High Temperature Gas Chromatography. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D-5291; Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants. Designation: D5291-21; ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D-4294-21; Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D4629; Standard Test Method for Trace Nitrogen in Liquid Hydrocarbons by Syringe/Inlet Oxidative Combustion and Chemiluminescence Detection. Designation: D4629-17; ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D-6304-20; Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM E-203-16; Standard Test Method for Water Using Volumetric Karl Fischer Titration. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D-664; Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. Designation: D664-18; ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D-445-21; Standard Test Method for Kinematic Visvosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D-976-06; Standard Test Method for Calculated Cetane Index of Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D-97; Standard Test Method for Pour Point of Petroleum Products. Designation: D97-02; ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D4530; Standard Test Method for Determination of Carbon Residue (Micro Method). Designation: D4530-15 (Reapproved 2020); ASTM International: West Conshohocken, PA, USA, 2020.
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Meletidis, G.; Pfisterer, U.; Auersvald, M.; Kubicka, D.; Bezergianni, S. Integration of stabilized bio-oil in light cycle oil hydrotreatment unit targeting hybrid fuels. Fuel Process. Technol. 2022, 230, 107220. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Grunwaldt, J.D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 2011, 407, 1–19. [Google Scholar] [CrossRef]
- Kadarwati, S.; Hu, X.; Gunawan, R.; Westerhof, R.; Gholizadeh, M.; Hasan, M.D.M.; Li, C.Z. Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts. Fuel Process. Technol. 2017, 155, 261–268. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Gunawan, R.; Hu, X.; Kadarwati, S.; Westerhof, R.; Chaiwat, W.; Hasan, M.; Li, C.-Z. Importance of hydrogen and bio-oil inlet temperature during the hydrotreatment of bio-oil. Fuel Process. Technol. 2016, 150, 132–140. [Google Scholar] [CrossRef]
- Han, Y.; Gholizadeh, M.; Tran, C.C.; Kaliaguine, S.; Li, C.Z.; Olarte, M.; Garcia-Pere, M. Hydrotreatment of Pyrolysis Bio-Oil: A Review. Fuel Process. Technol. 2019, 195, 106140. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Gunawan, R.; Hu, X.; Hasan, M.M.; Kersten, S.; Westerhof, R.; Chaitwat, W.; Li, C.Z. Different reaction behaviours of the light and heavy components of bio-oil during the hydrotreatment in a continuous pack-bed reactor. Fuel Process Technol. 2016, 146, 76–84. [Google Scholar] [CrossRef]
- Zacher, A.; Olarte, M.; Santosa, D.; Elliot, D.C.; Jones, B. A review and perspective of recent bio-oil hydrotreating research. Green Chem. 2014, 16, 491–515. [Google Scholar] [CrossRef]
- Si, Z.; Zhang, X.; Wang, C.; Ma, L.; Dong, R. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts 2017, 7, 169. [Google Scholar] [CrossRef]
- Cordero-Lanzac, T.; Palos, R.; Hita, I.; Arandes, L.M.; Rodriguez-Mirasol, J.; Cordero, T.; Bilbao, J.; Castano, P. Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil. Appl. Catal. B Environ. 2018, 239, 513–524. [Google Scholar] [CrossRef]
- Botella, L.; Stankovikj, F.; Sanchez, J.L.; Gonzalo, A.; Arauzo, J.; Garcia-Perez, M. Bio-oil hydrotreatment for enhancing solubility in biodiesel and the oxidation stability of resulting blends. Front. Chem. 2018, 6, 83. [Google Scholar] [CrossRef]
- Cordero-Lanzac, T.; Palos, R.; Arandes, J.M.; Castano, P.; Rodriguez-Mirasol, J.; Cordero, T.; Bilbao, J. Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation. Appl. Catal. B Environ. 2017, 203, 389–399. [Google Scholar] [CrossRef]
- Manara, P.; Bezergianni, S.; Pfisterer, U. Study on phase behavior and properties of binary blends of bio-oil/fossil-based refinery intermediates: A step toward bio-oil refinery integration. Energy Convers. Manag. 2018, 165, 304–315. [Google Scholar] [CrossRef]
- Conrad, S.; Apfelbacher, A.; Schulzke, T. Fractionated condensation of pyrolysis vapours from ablative flash pyrolysis. In Proceedings of the 22rd European Biomass Conference & Exhibition, Hamburg, Germany, 23–26 June 2014; pp. 1127–1133. [Google Scholar] [CrossRef]
- Magalhaes, B.C.; Checa, R.; Lorentz, C.; Afanasiev, P.; Laurenti, D.; Geantet, C. Catalytic hydroconversion of HTL micro-algal bio-oil into biofuel over NiWS/Al2O3. Algal Res. 2023, 71, 103012. [Google Scholar] [CrossRef]
- Jarvis, J.M.; Albrecht, K.O.; Billing, J.M.; Schmidt, A.J.; Hallen, R.T.; Schaub, T.M. Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks. Energy Fuels 2018, 32, 8483–8493. [Google Scholar] [CrossRef]
- Gollakota, A.; Shu, C.M.; Sarangi, P.K.; Shadangi, K.P.; Rakshit, S.; Kennedy, J.F.; Gupta, V.K.; Sharma, M. Catalytic hydrodeoxygenation of bio-oil and model compounds-Choice of catalysts, and mechanisms. Renew. Sustain. Energy Rev. 2023, 187, 113700. [Google Scholar] [CrossRef]
Properties | Units | HTL Biocrude | LCO | Blend of LCO + Stabilized Biocrude (90/10 v/v) | Blend of LCO + Stabilized Biocrude (80/20 v/v) |
---|---|---|---|---|---|
Density at 288 K | g/mL | 0.959 | 0.956 | 0.943 | 0.929 |
S dry basis | wppm | 0.13 | 0.26 | 0.23 | 0.21 |
H dry basis | wt% | 10.48 | 9.81 | 10.18 | 10.55 |
C dry basis | wt% | 70.44 | 90.15 | 89.34 | 89.12 |
O dry basis | wt% | 15.70 | 0.00 | 0.13 | 0.00 |
N dry basis | wppm | 0.54 | 784 | 1142 | 1275 |
H2O dissolved | wt% | 3.3 | 0.019 | 0.014 | 0.028 |
MCR | wt% | 9.84 | - | - | - |
TAN | mgKOH/g | 106.5 | - | - | - |
Pour point | K | 23 | - | - | - |
Kinematic viscosity at 313 K | cSt | 27.75 | - | - | - |
Heating value | MJ/kg | 35.3 | 43.1 | 43.2 | 43.5 |
Parameters | Units | Condition 1 | Condition 2 | Condition 3 |
---|---|---|---|---|
Temperature | K | 603 | 633 | 603 |
Pressure | MPa | 6.9 | 6.9 | 6.9 |
H2/biocrude ratio | scfb | 5000 | 5000 | 3000 |
LHSV | h−1 | 1 | 1 | 1 |
Duration | DOS | 3 | 3 | 2 |
Properties | Units | Cond. 1 | Cond. 2 | Cond. 3 |
---|---|---|---|---|
Density at 288 K | g/ml | 0.8261 | 0.8165 | 0.8352 |
S dry basis | wppm | 160 | 230 | 207 |
H dry basis | wt% | 13.94 | 14.11 | 13.68 |
C dry basis | wt% | 85.17 | 85.38 | 84.72 |
O dry basis | wt% | 0.39 | 0.21 | 0.95 |
N dry basis | wt% | 0.43 | 0.27 | 0.60 |
H2O dissolved | wt% | 0.041 | 0.013 | 0.035 |
TAN | mgKOH/g | 0.00 | 0.13 | 0.37 |
Viscosity at 313 K | cSts | 5.21 | 4.04 | 6.22 |
MCRT | wt% | 0.60 | 0.49 | 1.75 |
Pour point | K | 285 | 285 | 285 |
HHV | MJ/kg | 46.1 | 46.4 | 45.6 |
H2 consumption | sL/L feed | 335 | 413 | 293 |
Aqueous phase | v/v% | 12.4 | 14.0 | 14.8 |
Gases | Units | Stabilized Biocrude | ||
---|---|---|---|---|
Cond. 1 | Cond. 2 | Cond. 3 | ||
Hydrogen | v/v% | 88.390 | 86.842 | 76.599 |
Methane | v/v% | 2.619 | 3.624 | 4.407 |
Ethane | v/v% | 0.313 | 0.569 | 0.726 |
Propane | v/v% | 3.462 | 4.013 | 7.032 |
Isobutane | v/v% | 0.039 | 0.063 | 0.062 |
N-Butane | v/v% | 0.079 | 0.187 | 0.150 |
Isopentane | v/v% | 0.033 | 0.055 | 0.055 |
N-Pentane | v/v% | 0.033 | 0.067 | 0.059 |
C6+ | v/v% | 0.057 | 0.075 | 0.068 |
Carbon dioxide | v/v% | 1.900 | 1.634 | 5.275 |
Carbon monoxide | v/v% | 0.205 | 0.032 | 0.026 |
Nitrogen | v/v% | 0.063 | 0.084 | 0.099 |
H2S | v/v% | 0.220 | 0.253 | 0.432 |
Stabilized Biocrude Content in LCO Feed % v/v | Inhibition Effect in HDS Efficiency in K | |
---|---|---|
Temporary | Permanent | |
10% blend | 20 | 10 |
20% blend | 30 | 15 |
Properties | Units | Blended Stabilized Biocrude | Product 100/0 | Product 90/10 | Product 100/0 | Product 80/20 | Product 100/0 |
---|---|---|---|---|---|---|---|
DOS | - | - | 8 | 22 | 34 | 42 | 49 |
Density at 288 K | g/mL | 0.822 | 0.898 | 0.898 | 0.908 | 0.891 | 0.908 |
S dry basis | wppm | 362.1 | 85.3 | 121.2 | 141.1 | 112.6 | 125.7 |
H dry basis | wt% | 14.08 | 12.30 | 12.02 | 11.90 | 12.36 | 12.03 |
C dry basis | wt% | 85.86 | 87.63 | 87.93 | 88.00 | 87.64 | 87.89 |
O dry basis | wt% | 0.00 | 0.06 | 0.00 | 0.07 | 0.00 | 0.07 |
N dry basis | wt% | 0.37 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 |
H2O dissolved | wt% | - | 0.002 | 0.004 | 0.008 | 0.005 | 0.001 |
Cetane index | - | - | 34.6 | 35.3 | 32.7 | 38.1 | 32.5 |
TAN | mgKOH/g | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Viscosity at 313 K | cSts | - | 3.293 | 3.458 | 3.436 | 3.502 | 3.421 |
HHV | MJ/kg | 46.6 | 45.1 | 44.9 | 44.7 | 45.2 | 44.9 |
H2 consumption | sL/L feed | - | 272.6 | 218.6 | 269.7 | 197.5 | 242.5 |
Aqueous phase | v/v% | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadis, A.; Bezergianni, S. Towards Bio-Crude Refinery Integration: Hydrodeoxygenation and Co-Hydroprocessing with Light Cycle Oil. Energies 2024, 17, 6032. https://doi.org/10.3390/en17236032
Dimitriadis A, Bezergianni S. Towards Bio-Crude Refinery Integration: Hydrodeoxygenation and Co-Hydroprocessing with Light Cycle Oil. Energies. 2024; 17(23):6032. https://doi.org/10.3390/en17236032
Chicago/Turabian StyleDimitriadis, Athanasios, and Stella Bezergianni. 2024. "Towards Bio-Crude Refinery Integration: Hydrodeoxygenation and Co-Hydroprocessing with Light Cycle Oil" Energies 17, no. 23: 6032. https://doi.org/10.3390/en17236032
APA StyleDimitriadis, A., & Bezergianni, S. (2024). Towards Bio-Crude Refinery Integration: Hydrodeoxygenation and Co-Hydroprocessing with Light Cycle Oil. Energies, 17(23), 6032. https://doi.org/10.3390/en17236032