Production of High Specific Surface Area Activated Carbon from Tangerine Peels and Utilization of Its By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Carbonization
2.3. Chemical Activation
2.4. Methylene Chloride (MC) Ads-Desorption Behaviors
3. Results
3.1. Hydrothermal Effect
3.1.1. Element Analysis of HTC Samples
3.1.2. Microstructural Properties of HTC Samples
3.2. Dry Carbonization Effect
3.2.1. Element Analysis of D-C Samples
3.2.2. Microstructural Properties of D-C Samples
3.3. Chemical Activation Effect
3.3.1. Textural Properties
3.3.2. Physicochemical Properties
3.4. MC Adsorption Property
3.5. Correlation of MC Adsorption Property and Surface Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. FAOSTAT Statistical Database. 2020. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4760a5b5-f3b2-41c7-8713-ccdb1a5f8c08/content (accessed on 20 March 2020).
- Kundu, D.; Das, M.; Mahle, R.; Biswas, P.; Karmakar, S.; Banerjee, R. Tangerine Fruits. In Valorization of Fruit Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–166. [Google Scholar]
- Huang, W.-S.; Kuo, H.-Y.; Tung, S.-Y.; Chen, H.-S. Assessing Consumer Preferences for Suboptimal Food: Application of a Choice Experiment in Tangerine Fruit Retail. Foods 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Tangerine Wastes into Value-Added Products: Economic and Environ-mentally Friendly Approaches. Nutrients 2017, 34, 29–46. [Google Scholar]
- Suri, S.; Singh, A.; Nema, P.K. Current Applications of Tangerine Fruit Processing Waste: A Scientific Outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Vama, L.A.P.S.I.A.; Cherekar, M.N. Production, Extraction and Uses of Eco-Enzyme Using Tangerine Fruit Waste: Wealth from Waste. Asian J. Microbiol. Biotechnol. Environ. Sci. 2020, 22, 346–351. [Google Scholar]
- Kang, J.; Bye, P.; Kim, M. Analysis of Tangerine Peel Attribute Preferences for Activating the Tangerine Peel Industry. Culin. Sci. Hosp. Res. 2023, 29, 140–149. [Google Scholar] [CrossRef]
- Jiang, X.-R.; Zhang, H.-J.; Wang, J.; Wu, S.-G.; Yue, H.-Y.; Lü, H.-Y.; Cui, H.; Bontempo, V.; Qi, G.-H. Effect of Dried Tangerine Peel Extract Supplementation on the Growth Performance and Antioxidant Status of Broiler Chicks. Ital. J. Anim. Sci. 2016, 15, 642–648. [Google Scholar] [CrossRef]
- El Barnossi, A.; Moussaid, F.Z.; Saghrouchni, H.; Zoubi, B.; Iraqi Housseini, A.I. Tangerine, Pomegranate, and Banana Peels: A Promising Environmentally Friendly Bioorganic Fertilizers for Seed Germination and Cultivation of Pisum sativum L. Waste Biomass Valorization 2022, 13, 3611–3627. [Google Scholar] [CrossRef]
- de Carvalho, R.V.; de Abreu, T.C.C.; Romanel, C. Biogas Generation Potential from Anaerobic Digestion of “Ponkan” and “Montenegrin” Tangerine Peel Waste. Rev. Eletrônica Gest. Educ. Tecnol. Ambient. 2020, 24, e24. [Google Scholar] [CrossRef]
- Lee, S.B.; Kim, H. The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels. Appl. Chem. Eng. 2014, 25, 619–623. [Google Scholar] [CrossRef]
- Magnago, R.F.; Costa, S.C.; de Assunção Ezirio, M.J.; de Godoy Saciloto, V.; Cremona Parma, G.O.; Gasparotto, E.S.; Gonçalves, A.C., Jr.; Tutida, A.Y.; Barcelos, R.L. Briquettes of Tangerine Peel and Rice Husk. J. Clean. Prod. 2020, 276, 123820. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Gill, R.K.; Gill, S.S.; Singh, M. Studies on the Utilization of Tangerine Peel for Pectinase Production Using Fungus Aspergillus niger. Int. J. Environ. Stud. 2004, 61, 199–210. [Google Scholar] [CrossRef]
- Tay, T.; Ucar, S.; Karagöz, S. Preparation and Characterization of Activated Carbon from Waste Biomass. J. Hazard. Mater. 2009, 165, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Butler, F.E.; Coppedge, E.A.; Suggs, J.C.; Knoll, J.E.; Midgett, M.R.; Sykes, A.L.; Hartman, M.W.; Steger, J.L. Development of a Method for Determination of Methylene Chloride Emissions at Stationary Sources. J. Air Pollut. Control Assoc. 1988, 38, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nie, L.; Li, J.; Wang, Y.; Wang, G.; Wang, J.; Hao, Z. Characterization and Assessment of Volatile Organic Compounds (VOCs) Emissions from Typical Industries. Chin. Sci. Bull. 2013, 58, 724–730. [Google Scholar] [CrossRef]
- Pui, W.K.; Yusoff, R.; Aroua, M.K. A Review on Activated Carbon Adsorption for Volatile Organic Compounds (VOCs). Rev. Chem. Eng. 2018, 35, 649–668. [Google Scholar] [CrossRef]
- Mohamed, F.; Kim, J.; Huang, R.; Nu, H.T.; Lorenzo, V. Efficient Control of Odors and VOC Emissions via Activated Carbon Technology. Water Environ. Res. 2014, 86, 594–605. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, G.B.; Jeong, C.J.; Kim, H.; Kim, C.G. Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization. Energies 2021, 14, 6551. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, G.B.; Kim, H.; Hong, B.U. High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions. Process 2022, 10, 1282. [Google Scholar] [CrossRef]
- ASTM Standard D5228-16; Standard Test Method for Determination of Butane Working Capacity of Activated Carbon. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 1992.
- Jeong, J.S.; Lee, H.M.; Kim, B.J. Preparation of cellulose-based porous carbon fibers and their methylene chloride adsorption/desorption behaviors. Energy Rep. 2024, 12, 2321–2327. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Zielinska, B.; Felix, L. Hydrothermal Carbonization (HTC) of Selected Woody and Herbaceous Biomass Feedstocks. Biomass Convers. Biorefin. 2012, 3, 113–126. [Google Scholar] [CrossRef]
- Ruz, P.; Banerjee, S.; Pandey, M.; Sudarsan, V.; Sastry, P.U.; Kshirsagar, R.J. Structural Evolution of Turbostratic Carbon: Im-plications in H2 Storage. Solid State Sci. 2016, 62, 105–111. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Juárez-Galán, J.M.; Silvestre-Albero, A.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Synthesis of Activated Carbon with Highly Developed “Mesoporosity”. Microporous Mesoporous Mater. 2009, 117, 519–521. [Google Scholar] [CrossRef]
- Oginni, O.; Singh, K.; Oporto, G.; Dawson-Andoh, B.; McDonald, L.; Sabolsky, E. Effect of One-step and Two-step H3PO4 Ac-tivation on Activated Carbon Characteristics. Bioresour. Technol. 2019, 8, 100307. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Lippens, B. Studies on Pore Systems in Catalysts V. The t Method. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Kierlik, E.; Rosinberg, M.L. Free-energy Density Functional for the Inhomogeneous Hard-sphere Fluid: Application to Interfacial Adsorption. Phys. Rev. A 1990, 42, 3382. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Baek, J.; An, K.-H.; Park, S.-J.; Park, Y.-K.; Kim, B.-J. Effects of Pore Structure on n-Butane Adsorption Characteris-tics of Polymer-Based Activated Carbon. Ind. Eng. Chem. Res. 2018, 58, 736–741. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface Oxides on Carbon and Their Analysis: A Critical Assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Tsai, W.; Chang, C. Surface Characterization and Thermodynamics of Adsorption of Methylene Chloride on Activated Car-bons. J. Environ. Sci. Health A 1995, 30, 525–535. [Google Scholar]
- Lee, J.-Y.; Kim, J.-H. Removal of Residual Methylene Chloride from Homoharringtonine by Pre-Treatment with Ethanol. Process Biochem. 2013, 48, 1809–1813. [Google Scholar] [CrossRef]
- Jeong, J.-S.; Kim, B.-J. Preparation of Cellulose-Based Activated Carbon Fibers with Improved Yield and Their Methylene Chloride Adsorption Evaluation. Molecules 2023, 28, 6997. [Google Scholar] [CrossRef] [PubMed]
Samples | Proximate Analysis (wt.%) | Element Analysis (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HTC Temp. | Volatile | Fixed Carbon | Ash | Carbon | Hydrogen | Nitrogen | Oxygen | O/C | H/C | Yield (%) | |
Raw | - | 75.7 | 20.5 | 3.80 | 50.4 | 5.84 | 2.25 | 37.5 | 0.74 | 0.12 | - |
HTC | 140 °C | 79.1 | 18.0 | 2.90 | 51.5 | 5.95 | 2.76 | 36.8 | 0.71 | 0.12 | 4.25 |
160 °C | 76.8 | 19.2 | 3.20 | 52.6 | 5.98 | 2.24 | 35.9 | 0.68 | 0.11 | 6.35 | |
180 °C | 74.4 | 22.3 | 3.90 | 53.9 | 5.84 | 2.68 | 34.3 | 0.64 | 0.11 | 6.65 | |
200 °C | 72.7 | 24.1 | 3.27 | 54.8 | 5.68 | 2.59 | 33.6 | 0.61 | 0.10 | 5.09 | |
220 °C | 68.3 | 29.0 | 2.64 | 59.0 | 5.59 | 2.59 | 30.2 | 0.51 | 0.09 | 4.20 |
Samples | Proximate Analysis (wt.%) | Element Analysis (wt.%) | Yield (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Temp. | Volatile | Fixed Carbon | Ash | Carbon | Hydrogen | Nitrogen | Oxygen | O/C | H/C | ||
T-HTC-180 | - | 74.4 | 22.3 | 3.90 | 53.9 | 5.84 | 2.68 | 34.3 | 0.64 | 0.11 | - |
T-DC-400 | 400 °C | 30.2 | 63.0 | 6.72 | 66.2 | 4.05 | 2.88 | 20.1 | 0.30 | 0.06 | 38.6 |
T-DC-500 | 500 °C | 19.1 | 74.3 | 6.66 | 71.9 | 2.75 | 3.37 | 15.3 | 0.21 | 0.04 | 32.3 |
T-DC-600 | 600 °C | 17.1 | 76.2 | 6.70 | 73.5 | 1.80 | 3.22 | 14.8 | 0.20 | 0.02 | 31.3 |
Samples | SBET (m2/g) | VTotal (cm3/g) | VMeso (cm3/g) | VMicro (cm3/g) | FMicro (%) | Yield (%) |
---|---|---|---|---|---|---|
T-KOH-1.0 | 1530 | 0.73 | 0.11 | 0.62 | 84.9 | 64.2 |
T-KOH-2.0 | 2500 | 1.18 | 0.10 | 1.08 | 91.5 | 61.4 |
T-KOH-3.0 | 3158 | 1.65 | 0.17 | 1.48 | 89.7 | 52.6 |
T-KOH-4.0 | 3375 | 2.00 | 0.18 | 1.72 | 86.0 | 47.0 |
T-NaOH-3.0 | 1985 | 1.21 | 0.25 | 0.96 | 79.3 | 55.0 |
T-K2CO3-3.0 | 1258 | 0.57 | 0.08 | 0.43 | 84.3 | 63.2 |
Commercial AC | 2242 | 1.43 | 1.31 | 0.12 | 8.39 | - |
Element Analysis (wt.%) via E.A | Element Analysis (at.%) via XPS | |||||||
---|---|---|---|---|---|---|---|---|
Carbon | Hydrogen | Nitrogen | Oxygen | O/C | H/C | C1s | O1s | |
T-KOH-1.0 | 78.9 | 0.30 | 1.82 | 4.47 | 0.06 | 0.005 | 75.46 | 24.44 |
T-KOH-2.0 | 81.1 | 0.48 | 2.10 | 4.18 | 0.05 | 0.005 | 79.40 | 20.56 |
T-KOH-3.0 | 88.3 | 0.20 | 2.64 | 2.58 | 0.03 | 0.003 | 89.77 | 10.23 |
T-KOH-4.0 | 87.3 | 0.67 | 0.24 | 2.61 | 0.04 | 0.008 | 88.21 | 11.77 |
T-NaOH-3.0 | 83.8 | 0.33 | 1.03 | 3.31 | 0.04 | 0.004 | 80.26 | 19.46 |
T-K2CO3-3.0 | 84.1 | 2.58 | 0.37 | 3.44 | 0.04 | 0.031 | 86.16 | 13.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.-J.; Kim, K.-W.; Hong, B.-U.; Park, J.-E. Production of High Specific Surface Area Activated Carbon from Tangerine Peels and Utilization of Its By-Products. Energies 2024, 17, 6148. https://doi.org/10.3390/en17236148
Kang D-J, Kim K-W, Hong B-U, Park J-E. Production of High Specific Surface Area Activated Carbon from Tangerine Peels and Utilization of Its By-Products. Energies. 2024; 17(23):6148. https://doi.org/10.3390/en17236148
Chicago/Turabian StyleKang, Da-Jung, Kyung-Woo Kim, Bum-Ui Hong, and Jung-Eun Park. 2024. "Production of High Specific Surface Area Activated Carbon from Tangerine Peels and Utilization of Its By-Products" Energies 17, no. 23: 6148. https://doi.org/10.3390/en17236148
APA StyleKang, D. -J., Kim, K. -W., Hong, B. -U., & Park, J. -E. (2024). Production of High Specific Surface Area Activated Carbon from Tangerine Peels and Utilization of Its By-Products. Energies, 17(23), 6148. https://doi.org/10.3390/en17236148