Issues in Implementation of EU Regulations in Terms of Evaluation of Water Losses: Towards Energy Efficiency Optimization in Water Supply Systems
Abstract
:1. Introduction
2. Legal Conditions Regarding the Reduction of Water Losses in the European Union Member States
2.1. The Implementation of Drinking Water Directive 2020/2184
2.2. Strategies Aimed at the Reduction of Water Losses
3. Benchmarking Studies in the Water Supply Sector
4. Materials and Methods
5. Results and Discussion
5.1. The Characteristics of the Water Distribution Systems
5.2. Water Balance
5.3. Analysis of Water Loss Performance Indicators
5.4. Analysis of the Energy Consumption and CO2 Emissions
6. Summary and Conclusions
- The significant limitation of the reliable assessment of water losses and, thus, the efficiency of analyzed WDSs is the lack and uncertainty of data. Results show that the use of the ILI is still limited in many water supply companies.
- Imprecise determination of average operating pressure significantly affects calculated values of UARL and ILI. This leads to the overestimation of UARL and, thus, to the underestimation of ILI. The implementation of the directive will require the development of a unified methodology concerning the calculation of the average operating pressure.
- The overestimation of the service connection length results in the overestimation of UARL and underestimation of the ILI. It is crucial to be aware of whether a water supply company has reported the length of service connections from the mains to the meter or the length from the property line to the meter. Each of these cases requires a different formula for calculating UARL.
- The proper estimation of the service connection number and length in old and poorly inventoried networks can be difficult. For example, some mains can be incorrectly classified as service connections in the case of pipelines supplying water to buildings located far from the mains in the street.
- The estimation of the average pressure can be difficult in large WDSs. Such networks should be divided into smaller district metered areas (DMAs) or pressure management areas (PMAs), and the ILI should be estimated for these separate zones. Further water loss management should be conducted in DMAs in which the ILI exceeds the value of 1.5.
- The authors postulate that, for evaluation of WDSs, it may be necessary to consider the use of additional water loss performance indicators, e.g., the normalized real leakage balances expressed in m3 per km of mains per day (if connection density is lower than 20) or expressed in dm3 per connection per day (if connection density is greater than 20). These indicators can be determined on the basis of relatively easy to estimate parameters. The percentage water loss indicators are not recommended.
- Water losses in WDSs contribute to a significant increase in both energy consumption and greenhouse gas emissions. Total approximated electricity (related to current annual real losses) consumed in 2021 by 11 out of 12 analyzed utilities amounted to 3.276 GWh and total approximated GHG emissions amounted to 2807.84 MgCO2eq. In the case of four of the analyzed water supply companies, reduction of the ILI to the target value of 1.5 may reduce carbon emissions in these WDSs by values ranging from 31% to 54%.
- The correct estimation of water loss performance indicators may influence possible actions to reduce water losses. The activity aimed at reduction of water losses allows for reducing the energy consumption in water distribution systems and for improving their energy efficiency. This will be a good step towards reducing GHG emissions and achieving Sustainable Development Goals concerning saving of both water and energy.
- Further research should take into account analysis of water loss performance indicators for a longer period of time and the progress in implementing Directive (EU) 2020/2184.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water. Available online: https://www.unesco.org/reports/wwdr/2023/en/download (accessed on 25 September 2023).
- European Environment Agency (Ed.) Water Resources across Europe—Confronting Water Stress: An Updated Assessment; EEA Report No 12/2021; Publications Office of the European Union: Luxembourg, 2021; Available online: https://www.eea.europa.eu/publications/water-resources-across-europe-confronting (accessed on 29 September 2023). [CrossRef]
- Schulte, P.; Morrison, J. Driving Harmonization of Water-Related Terminology. Discussion Paper. The CEO Water Mandate. September 2014. Available online: https://ceowatermandate.org/wp-content/uploads/2019/11/terminology.pdf (accessed on 25 September 2023).
- Kummu, M.; Guillaume, J.H.A.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef]
- Wang, D.; Hubacek, K.; Shan, Y.; Gerbens-Leenes, W.; Liu, J. A Review of Water Stress and Water Footprint Accounting. Water 2021, 13, 201. [Google Scholar] [CrossRef]
- United Nations. The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water; UNESCO: Paris, France, 2023; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000384655 (accessed on 20 August 2023).
- United Nations. The Sustainable Development Goals Report 2023: Special Edition. 2023. Available online: https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf (accessed on 20 September 2023).
- Liu, J.; Wang, D.; Xiang, C.; Xia, L.; Zhang, K.; Shao, W.; Luan, Q. Assessment of the Energy Use for Water Supply in Beijing. Energy Procedia 2018, 152, 271–280. [Google Scholar] [CrossRef]
- IEA. WEO-2016 Special Report: Water-Energy Nexus. International Energy Agency. 2016. Available online: https://iea.blob.core.windows.net/assets/e4a7e1a5-b6ed-4f36-911f-b0111e49aab9/WorldEnergyOutlook2016ExcerptWaterEnergyNexus.pdf (accessed on 2 January 2024).
- Sharif, M.N.; Haider, H.; Farahat, A.; Hewage, K.; Sadiq, R. Water–energy nexus for water distribution systems: A literature review. Environ. Rev. 2019, 27, 519–544. [Google Scholar] [CrossRef]
- Barry, J.A. Watergy: Energy and Water Efficiency in Municipal Water Supply and Wastewater Treatment—Cost-Effective Savings of Water and Energy. The Alliance to Save Energy. 2007. Available online: https://www.gwp.org/globalassets/global/toolbox/references/watergy.-water-efficiency-in-municipal-watersupply-and-wastewater-treatment-the-alliance-to-save-energy-2007.pdf (accessed on 23 September 2023).
- Andraka, D.; Kruszyński, W.; Tyniec, J.; Gwoździej-Mazur, J.; Kaźmierczak, B. Practical Aspects of the Energy Efficiency Evaluation of a Water Distribution Network Using Hydrodynamic Modeling—A Case Study. Energies 2023, 16, 3340. [Google Scholar] [CrossRef]
- Zimoch, I.; Bartkiewicz, E.; Machnik-Slomka, J.; Klosok-Bazan, I.; Rak, A.; Rusek, S. Sustainable Water Supply Systems Management for Energy Efficiency: A Case Study. Energies 2021, 14, 5101. [Google Scholar] [CrossRef]
- Wu, W.; Maier, H.R.; Dandy, G.C.; Arora, M.; Castelletti, A. Review of the changing water–energy nexus in urban water supply systems. J. Water Clim. Chang. 2020, 11, 1095–1122. [Google Scholar] [CrossRef]
- Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on Energy Efficiency and Amending Regulation (EU) 2023/955 (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023L1791 (accessed on 30 October 2023).
- Choi, S.H.; Shin, B.; Shin, E. Managing Apparent Loss and Real Loss from the Nexus Perspective Using System Dynamics. Water 2022, 14, 231. [Google Scholar] [CrossRef]
- Wilson, L.; Lichinga, K.N.; Kilindu, A.B.; Masse, A.A. Water utilities’ improvement: The need for water and energy management techniques and skills. Water Cycle 2021, 2, 32–37. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Horan, W.; Conheady, P.; Stockil, K.; Moore, S. A Methodology for Industrial Water Footprint Assessment Using Energy-Water-Carbon Nexus. Processes 2021, 9, 393. [Google Scholar] [CrossRef]
- IWA. Leakage Emissions Initiative: Establishing a Standard Carbon Balance for Drinking Water Utilities. Available online: https://iwa-network.org/wp-content/uploads/2023/06/Water-Loss-SG-White-Paper-on-Leakage-Emissions-Initiative.pdf (accessed on 16 October 2023).
- Ramos, H.M.; Mello, M.; De, P.K. Clean power in water supply systems as a sustainable solution: From planning to practical implementation. Water Sci. Technol. Water Supply 2010, 10, 39–49. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López-Jiménez, P.A. Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water 2017, 9, 97. [Google Scholar] [CrossRef]
- Ociepa-Kubicka, A.; Deska, I.; Ociepa, E. Organizations towards the Evaluation of Environmental Management Tools ISO 14001 and EMAS. Energies 2021, 14, 4870. [Google Scholar] [CrossRef]
- Moslehi, M.I.; Jalili-Ghazizadeh, M.; Yousefi-Khoshqalb, E. Developing a framework for leakage target setting in water distribution networks from an economic perspective. Struct. Infrastruct. Eng. 2021, 17, 821–837. [Google Scholar] [CrossRef]
- Haider, H.; Al-Salamah, I.S.; Ghazaw, Y.M.; Abdel-Maguid, R.H.; Shafiquzzaman, M.; Ghumman, A.R. Framework to establish economic level of leakage for intermittent water supplies in arid environments. J. Water Resour. Plan. Manag. 2018, 145, 05018018. [Google Scholar] [CrossRef]
- EurEau. Europe’s Water in Figures. An Overview of the European Drinking Water and Waste Water Sectors. 2021. Available online: https://www.eureau.org/resources/publications/eureau-publications/5824-europe-s-water-in-figures-2021/file (accessed on 25 August 2023).
- NIK. Gospodarowanie Zasobami Wodnymi Przez Przedsiębiorstwa Wodociągowe w Gminach Wiejskich (Management of Water Resources by Water Supply Companies in Rural Communes). Supreme Audit Office. Report no. 197/2021/P/21/102/LZG. Available online: https://www.nik.gov.pl/kontrole/P/21/102/ (accessed on 22 June 2023). (In Polish)
- AL-Washali, T.; Sharma, S.; Lupoja, R.; Al-Nozaily, F.; Haidera, M.; Kennedy, M. Assessment of water losses in distribution networks: Methods, applications, uncertainties, and implications in intermittent supply. Resour. Conserv. Recycl. 2020, 152, 104515. [Google Scholar] [CrossRef]
- Ahopelto, S.; Vahala, R. Cost–Benefit Analysis of Leakage Reduction Methods in Water Supply Networks. Water 2020, 12, 195. [Google Scholar] [CrossRef]
- Heryanto, T.; Sharma, S.K.; Daniel, D.; Kennedy, M. Estimating the Economic Level of Water Losses (ELWL) in the Water Distribution System of the City of Malang, Indonesia. Sustainability 2021, 13, 6604. [Google Scholar] [CrossRef]
- Banovec, P.; Domadenik, P. Defining Economic Level of Losses in Shadow: Identification of Parameters and Optimization Framework. Proceedings 2018, 2, 599. [Google Scholar] [CrossRef]
- Munoz-Trochez, C.; Smout, I.K.; Kayaga, S.M. Incorporating energy use into the economic level of Leakage Model. In Proceedings of the 10-th World Wide Workshop for Young Environmental Scientists, Arcueil, France, 31 May–4 June 2010; hal-00521456. Available online: https://hal.science/hal-00521456/document (accessed on 2 January 2024).
- Paraschiv, S.; Paraschiv, L.S.; Serban, A. An overview of energy intensity of drinking water production and wastewater treatment. Energy Rep. 2023, 9 (Suppl. S11), 118–123. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ateş, A.; Firat, M.; Özdemir, Ö.; Cinal, H. Determination of economic loss levels in water distribution systems with different network conditions by a district stochastic optimization algorithm. Water Supply 2023, 23, 1349–1361. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Gonelas, K. Estimating the economic leakage level in a water distribution system. In Proceedings of the 9th World Congress, EWRA 2015 “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, Turkey, 10–13 June 2015. [Google Scholar]
- Drinking Water Directive 2020/2184 (DWD). Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Document 32020L2184. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 12 July 2023).
- Ramm, K.; Bylka, J. Nowe wymagania w zakresie jakości usług wodociągowych dotyczące strat wody (New Requirements for the Quality of Water Supply Services to Curb Water Loss). Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie (Crac. Rev. Econ. Manag.) 2021, 4, 47–65. (In Polish) [Google Scholar] [CrossRef]
- Spiller, J. Straty Wody w Przedsiębiorstwach Wod-kan. KE Wprowadzi w TYM zakresie Wartości Progowe (Water Losses in Water and Sewage Companies. The EC will Introduce Treshold Values in This Respect). Teraz Środowisko. Available online: https://www.teraz-srodowisko.pl/aktualnosci/dyrektywa-wodna-straty-wody-igwp-11477.html (accessed on 26 September 2023). (In Polish).
- European Commission, Directorate-General for Environment, EU Reference Document Good Practices on Leakage Management WFD CIS WG PoM—Main Report. Publications Office. 2015. Available online: https://data.europa.eu/doi/10.2779/102151 (accessed on 12 September 2023). [CrossRef]
- Lambert, A.; Charalambous, B.; Fantozzi, M.; Kovac, J.; Rizzo, A.; St John, S.G. 14 years’ experience of using IWA best practice water balance and water loss performance indicators in Europe. In Proceedings of the Specialized Conference: Water Loss 2014, Vienna, Austria, 30 March–2 April 2014; Available online: https://www.semanticscholar.org/paper/14-Years-Experience-of-using-IWA-Best-Practice-and-Lambert-Charalambous/bed71a37d56e232a13847b52cf68a1d6affdb25c (accessed on 10 August 2023).
- Lambert, A.; Hirner, W. Losses from Water Supply Systems: Standard Terminology and Recommended Performance Measures; The Blue Pages; International Water Association: London, UK, 2000; Volume 10, pp. 320–338. Available online: https://waterfund.go.ke/watersource/Downloads/001.%20Losses%20from%20water%20supply%20systems.pdf (accessed on 20 August 2023).
- Liemberger, R.; Brothers, K.; Lambert, A.; McKenzie, R.; Rizzo, A.; Waldron, T. Water Loss Performance Indicators. 2007. Available online: https://www.miya-water.com/fotos/artigos/15_water_loss_performance_indicators_6560934665a32619c8808b.pdf (accessed on 14 July 2023).
- Iwanek, M.; Suchorab, P.; Choma, A. Water Losses Analysis in Selected Group Water Supply Systems. Archit. Civ. Eng. Environ. 2018, 11, 133–140. [Google Scholar] [CrossRef]
- Gwoździej-Mazur, J.; Świętochowski, K.; Kaźmierczak, B. Analysis of water losses and failure frequency in an urban-rural water supply system. Ekonomia i Środowisko (Econ. Environ.) 2018, 2, 76–86. Available online: https://www.ekonomiaisrodowisko.pl/journal/article/view/158/152 (accessed on 20 August 2023).
- Musz-Pomorska, A.; Iwanek, M.; Parafian, K.; Wójcik, K. Analysis of water losses in two selected water distribution systems. E3S Web Conf. 2017, 17, 00062. [Google Scholar] [CrossRef]
- Winarni, W. ILI as Water Losses Indicator. Civ. Eng. Dimens. 2009, 11, 126–134. Available online: https://ced.petra.ac.id/index.php/civ/article/view/17230/17771 (accessed on 20 August 2023). [CrossRef]
- UARL and ILI. The Leakssuite Library. 2020. Available online: https://www.leakssuitelibrary.com/uarl-and-ili/ (accessed on 6 August 2023).
- Spedaletti, S.; Rossi, M.; Comodi, G.; Cioccolanti, L.; Salvi, D.; Lorenzetti, M. Improvement of the energy efficiency in water systems through water losses reduction using the district metered area (DMA) approach. Sustain. Cities Soc. 2022, 77, 103525. [Google Scholar] [CrossRef]
- Fallis, P.; Hübschen, K.; Oertlé, E.; Ziegler, D.; Klingel, P.; Knobloch, A.; Baader, J.; Oertlé, E.; Trujillo, R.; Laures, C. Guidelines for Water Loss Reduction. A Focus on Pressure Management; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; VAG Armaturen GmbH (VAG): Eschborn, Germany, March 2011; Available online: https://www.icafrica.org/fileadmin/documents/Knowledge/GIZ/Guidelines-water-loss-reduction.pdf (accessed on 16 October 2023).
- Thornton, J.; Lambert, A. Progress in Practical Prediction of Pressure: Leakage, Pressure: Burst Frequency and Pressure: Consumption Relationships. 2005. Available online: https://www.miya-water.com/fotos/artigos/10_progress_in_practical_prediction_of_pressure_leakage_pressure_burst_frequency_and_pressure_consumption_relationships_16541036425a328d4c63c6c.pdf (accessed on 25 May 2023).
- Tian, Y.; Gao, J.; Chen, J.; Xie, J.; Que, Q.; Munthali, R.M.; Zhang, T. Optimization of Pressure Maagement in Water Distribution Systems Based on Pressure-Reducing Valve Control: Evaluation and Case Study. Sustainability 2023, 15, 11086. [Google Scholar] [CrossRef]
- Savić, D.; Ferrari, G. Design and Performance of District Metering Areas in Water Distribution Systems. Procedia Eng. 2014, 89, 1136–1143. [Google Scholar] [CrossRef]
- Korkana, P.; Kanakoudis, V.; Patelis, M.; Gonelas, K. Forming District Metered Areas in a Water Distribution Network Using Genetic Algorithms. Procedia Eng. 2016, 162, 511–520. [Google Scholar] [CrossRef]
- Bonthuys, G.J.; van Dijk, M.; Cavazzini, G. Leveraging water infrastructure asset management for energy recovery and leakage reduction. Sustain. Cities Soc. 2019, 46, 101434. [Google Scholar] [CrossRef]
- Monsef, H.; Naghashzadegan, M.; Farmani, R.; Jamalia, A. Pressure Management in Water Distribution Systems in Order to Reduce Energy Consumption and Background Leakage. J. Water Supply Res. Technol. Aqua 2018, 67, 397–403. [Google Scholar] [CrossRef]
- Le Marre, M.; Mandin, P.; Lanoisellé, J.L.; Zilliox, E.; Rammal, F.; Kim, M.; Inguanta, R. Pumps as turbines regulation study through a decision-support algorithm. Renew. Energy 2022, 194, 561–570. [Google Scholar] [CrossRef]
- Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H.M. Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness. Water 2013, 5, 1211–1225. [Google Scholar] [CrossRef]
- Espinal, M.A.G.; Conejos, P.; López-Jiménez, P.A.; Pérez-Sánchez, M. Improvement of the Electrical Regulation of a Microhydropower System using a Water Management Tool. Water 2022, 14, 1535. [Google Scholar] [CrossRef]
- Bozkurt, C.; Fırat, M.; Ateş, A.; Yılmaz, S.; Özdemir, Ö. Strategic water loss management: Current status and new model for future perspectives. Sigma J. Eng. Nat. Sci. 2022, 40, 310–322. [Google Scholar] [CrossRef]
- Charalambous, B.; Foufeas, D.; Petroulias, N. Leak detection and water loss management. Water Util. J. 2014, 8, 25–30. Available online: https://www.ewra.net/wuj/pdf/WUJ_2014_08_03.pdf (accessed on 5 June 2023).
- Kwietniewski, M.; Świercz, P.; Chudzicki, J. Modern methods for monitoring water leakages in water networks. Stud. Geotech. Mech. 2022, 44, 53–65. [Google Scholar] [CrossRef]
- Berardi, L.; Laucelli, D.B.; Simone, A.; Mazzolani, G.; Giustolisi, O. Active Leakage Control with WDNetXL. Procedia Eng. 2016, 154, 62–70. [Google Scholar] [CrossRef]
- AWWA. The State of Water Loss Control in Drinking Water Utilities. A White Paper From the American Water Works Association. 2016. Available online: https://www.awwa.org/Portals/0/AWWA/ETS/Resources/WLCWhitePaper.pdf?ver=2017-09-11-153507-487 (accessed on 24 October 2023).
- Federal Energy Management Program. Water-Efficient Technology Opportunity: Distribution System Leak Detection. Available online: https://www.energy.gov/femp/water-efficient-technology-opportunity-distribution-system-leak-detection (accessed on 26 October 2023).
- Pietrucha-Urbanik, K.; Tchórzewska-Cieślak, B.; Eid, M. Water Network-Failure Data Assessment. Energies 2020, 13, 2990. [Google Scholar] [CrossRef]
- EurEau. How Benchmarking is Used in the Water Sector. 7 October 2015. Available online: https://www.eureau.org/resources/position-papers/135-benchmarking-october2015/file (accessed on 8 September 2023).
- Seago, C.J.; McKenzie, R.S.; Liemberger, R. International Benchmarking of Leakage from Water Reticulation Systems. In Proceedings of the IWA Leakage 2005 Conference, Halifax, NS, Canada, 12–14 September 2005; Available online: https://www.miya-water.com/fotos/artigos/06_international_benchmarking_of_leakage_from_water_reticulation_systems_1017893235a325e2b03b5c.pdf (accessed on 20 August 2023).
- Clarke, M.; Boden, P.; McDonald, A. DEBTOR: Debt evaluation, bench-marking and tracking—A water debt management tool to address UK water debt. Water Environ. J. 2012, 26, 292–300. [Google Scholar] [CrossRef]
- Lindtner, S.; Schaar, H.; Kroiss, H. Benchmarking of large municipal wastewater treatment plants treating over 100,000 PE in Austria. Water Sci. Technol. 2008, 57, 1487–1493. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, J.A.; Gil-Martinez, M.; Garcia-Sanz, M.; Irizar, I. Benchmarking of control strategies for ATAD technology: A first approach to the automatic control of sludge treatment systems. Water Sci. Technol. 2009, 60, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Piechurski, F. Działania zmierzające do ograniczania strat wody w systemach jej dystrybucji (Minimizing water losses actions in water distribution systems). Napędy i Sterowanie 2014, 1, 68–79. Available online: http://beta.nis.com.pl/userfiles/editor/nauka/12014_n/Piechurski_01-2014.pdf (accessed on 3 October 2023). (In Polish).
- Kwietniewski, M. Application of Water Loss Indicators as a Measure of its Distribution Effectiveness in Water Supply Systems. Environ. Prot. 2013, 35, 9–16. Available online: http://www.os.not.pl/docs/czasopismo/2013/4-2013/Kwietniewski_4-2013.pdf (accessed on 24 August 2023). (In Polish).
- Ociepa, E.; Mrowiec, M.; Deska, I. Analysis of Water Losses and Assessment of Initiatives Aimed at Their Reduction in Selected Water Supply Systems. Water 2019, 11, 1037. [Google Scholar] [CrossRef]
- Ociepa, E. Analysis and assessment of water losses reduction effectiveness using examples of selected water distribution systems. Des. Water 2021, 211, 196–209. [Google Scholar] [CrossRef]
- Random Uncertainty in Water Balance. Available online: https://www.leakssuitelibrary.com/random-uncertainty-in-water-balance/ (accessed on 20 December 2023).
- Mutikanga, H.E. Water Loss Management: Tools and Methods for Developing Countries. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 4 June 2012. Available online: http://resolver.tudelft.nl/uuid:d78a06e4-7535-4a74-bdc9-d8942cc7556c (accessed on 12 September 2023).
- Liemberger, R.; Wyatt, A. Quantifying the global non-revenue water problem. Water Supply 2019, 19, 831–837. [Google Scholar] [CrossRef]
- AL-Washali, T.; Sharma, S.; AL-Nozaily, F.; Haidera, M.; Kennedy, M. Monitoring Nonrevenue Water Performance in Intermittent Supply. Water 2019, 11, 1220. [Google Scholar] [CrossRef]
- AWWA (American Water Works Association). Key Performance Indicators for Non-Revenue Water. AWWA Water Loss Control Committee Report. November 2019. Available online: https://www.awwa.org/Portals/0/AWWA/ETS/Resources/WLCCKPIReport%202019.pdf?ver=2019-11-20-094638-933 (accessed on 25 October 2023).
- WAREG Report. An analysis of water efficiency KPIs in WAREG member countries. The Report produced by WAREG Working Group on KPIs. 2017. Available online: https://www.wareg.org/documents/an-analysis-of-water-efficiency-kpis-in-wareg-member-countries/ (accessed on 22 October 2023).
- European ILIs. Available online: https://www.leakssuitelibrary.com/european-ilis/ (accessed on 9 January 2024).
- Leng, P.; Li, F.; Du, K.; Li, Z.; Gu, C.; Koschorreck, M. Flow velocity and nutrients affect CO2 emissions from agricultural drainage channels in the North China Plain. Environ. Sci. Eur. 2020, 32, 146. [Google Scholar] [CrossRef]
- Mishra, V.; Asoka, A.; Vatta, K.; Lall, U. Groundwater depletion and associated CO2 emissions in India. Earths Future 2018, 6, 1672–1681. [Google Scholar] [CrossRef]
- Projekt nr POIS.02.01.00-00-0001/2020. Program Inwestycyjny w Zakresie Poprawy Jakości i Ograniczenia Strat Wody Przeznaczonej do Spożycia Przez Ludzi (Investment Program in the Scope of Quality Improvement and Reduction of Losses of Water Intended for Human Consumption). (In Polish). Available online: https://www.gov.pl/web/infrastruktura/przyjeto-program-inwestycyjny-w-zakresie-poprawy-jakosci-i-ograniczenia-strat-wody-przeznaczonej-do-spozycia-przez-ludzi (accessed on 10 December 2023).
- The Electricity Maps. Available online: https://app.electricitymaps.com/zone/PL (accessed on 10 December 2023).
Company | Length of Mains, Lm (km) | Length of Service Connections, Lp (km) | Network Length, Lm + Lp (km) | Number of Service Connections, Nc | Density of Service Connections, D (con./km) | Average Pressure in the Network, p (m H2O) | Number of Serviced Inhabitants, IN | Serviced Inhabitants as a Percentage of Population of Silesian Voivodeship (%) |
---|---|---|---|---|---|---|---|---|
A | 1587.8 | 905.2 | 2493 | 55,287 | 34.8 | 40.8 | 311,400 | 7.07 |
B | 191.30 | 172.57 | 363.87 | 6321 | 33.0 | 50 | 40,362 | 0.92 |
C | 376.5 | 243.7 | 620.05 | 15,812 | 42.0 | 55 | 89,192 | 2.03 |
D | 411.6 | 153.3 | 564.30 | 14,163 | 34.4 | 30 | 75,049 | 1.70 |
E | 141.5 | 80.3 | 221.7 | 6118 | 43.2 | 33 (20–45) ** | 54,000 | 1.23 |
F | 268.4 | 96.0 | 364.4 | 7365 | 27.4 | 45 | 148,000 | 3.36 |
G | 193.1 | 184.7 | 377.8 | 6922 | 35.8 | 40.7 * | N.A. | N.A. |
H | 155.7 | 98.4 | 254.1 | 4920 | 31.6 | 32.5 * (20–45) ** | N.A. | N.A. |
I | 238.4 | N.A. | N.A. | 4429 | 18.6 | 40 | 18,629 | 0.42 |
J | 135.1 | N.A. | N.A. | 6476 | 47.9 | 30 | 30,912 | 0.70 |
K | 114.7 | N.A. | N.A. | 4958 | 43.2 | 42.5 * (40–45) ** | 23,278 | 0.53 |
L | 269.5 | 179.2 | 448.7 | 6690 | 24.8 | 37.5 * (35–40) ** | 33,360 | 0.76 |
Company | System Input Volume, SIV (103 m3/Year) | Billed Authorized Consumption, BAC (103 m3/Year) | Unbilled Authorized Consumption, UAC (103 m3/Year) | Water Loss, WL (103 m3/Year) | Apparent Loss, AL (103 m3/Year) | Real Loss, RL = CARL (103 m3/Year) |
---|---|---|---|---|---|---|
A | 16,563.400 ± 331.268 | 14,483.700 ± 289.674 | 178.800 ± 35.760 | 1900.900 ± 441.507 | 306.237 ± 58.029 | 1594.663 ± 445.304 |
B | 1539.273 ± 30.785 | 1327.552 ± 26.551 | 16.766 ± 3.353 | 194.955 ± 40.791 | 28.090 ± 5.319 | 166.865 ± 41.136 |
C | 5864.756 ± 117.295 | 4546.802 ± 90.936 | 109.134 ± 21.827 | 1208.820 ± 150.013 | 96.801 ± 18.225 | 1112.019 ± 151.116 |
D | 3566.000 ± 71.320 | 2803,000 ± 56.060 | 53.000 ± 10.600 | 710.000 ± 91.333 | 59.626 ± 11.235 | 650.374 ± 92.021 |
E | 2415.251 ± 48.305 | 2074.639 ± 41.493 | 64.858 ± 12.972 | 275.754 ± 64.987 | 43.908 ± 8.313 | 231.846 ± 65.516 |
F | 6988.451 ± 139.769 | 6536.113 ± 130.722 | 78.612 ± 15.722 | 373.726 ± 192.018 | 137.711 ± 26.182 | 236.015 ± 193.795 |
G | 1517.350 ± 30.347 | 1332.129 ± 26.643 | 8.014 ± 1.603 | 177.207 ± 40.415 | 28.160 ± 5.337 | 149.047 ± 40.765 |
H | 1462.700 ± 29.254 | 1085.800 ± 21.716 | 15.500 ± 1.100 | 361.400 ± 36.565 | 23.179 ± 4.353 | 338.221 ± 36.823 |
I | 800.268 ± 16.005 | 582.250 ± 11.645 | 23.584 ± 4.717 | 194.434 ± 20.348 | 12.445 ± 2.334 | 181.989 ± 20.481 |
J | 1169.010 ± 23.380 | 981.488 ± 19.630 | 38.926 ± 7.785 | 148.596 ± 31.505 | 20.799 ± 3.933 | 127.797 ± 31.745 |
K | 1275.000 ± 25.500 | 1201.452 ± 24.029 | N.A. | N.A. | 25.304 ± 4.813 | N.A. |
L | 1684.364 ± 33.687 | 1374.868 ± 27.497 | 28.612 ± 5.722 | 280.884 ± 43.860 | 29.182 ± 5.510 | 251.702 ± 44.205 |
Company | WL % | NRW % | RLB1, m3/(km·Day) | RLB2, dm3/ (conn.·Day) | Qlos, dm3/ (inhab.·Day) | UARL (103 m3/Year) | ILI (-) |
---|---|---|---|---|---|---|---|
A | 11.5 ± 2.67 | 12.6 ± 2.67 | 2.75 ± 0.77 ** | 79.02 ± 22.06 | 14.03 ± 3.92 | 1340.272 | 1.19 ± 0.33 |
B | 12.7 ± 2.66 | 13.8 ± 2.65 | 2.39 ± 0.59 ** | 72.32 ± 17.83 | 11.33 ± 2.79 | 222.529 | 0.75 ± 0.18 |
C | 20.6 ± 2.56 | 22.5 ± 2.53 | 8.09 ± 1.10 ** | 192.68 ± 26.18 | 34.16 ± 4.64 | 481.055 | 2.31 ± 0.31 |
D | 19.9 ± 2.56 | 21.4 ± 2.54 | 4.33 ± 0.61 ** | 125.81 ± 17.80 | 23.74 ± 3.36 | 231.887 | 2.80 ± 0.40 |
E | 11.4 ± 2.69 | 14.1 ± 2.64 | 4.49 ± 1.27 ** | 103.82 ± 29.34 | 11.76 ± 3.32 | 106.557 | 2.18 ± 0.62 |
F | 5.3 ± 2.72 | 6.5 ± 2.75 | 2.41 ± 1.98 ** | 87.80 ± 72.09 | 4.37 ± 3.58 | 203.639 | 1.16 ± 0.95 |
G | 11.7 ± 2.67 | 12.2 ± 2.66 | 2.11 ± 0.58 ** | 58.99 ± 16.13 | N.A. | 192.389 * | 0.77 ± 0.21 * |
H | 24.7 ± 2.50 | 25.8 ± 2.49 | 5.95 ± 0.64 ** | 188.34 ± 20.51 | N.A. | 103.378 * | 3.27 ± 0.36 * |
I | 24.3 ± 2.54 | 27.2 ± 2.47 | 2.09 ± 0.24 | 112.58 ± 12.67 ** | 26.76 ± 3.01 | N.A | N.A. |
J | 12.7 ± 2.69 | 16.0 ± 2.60 | 2.59 ± 0.64 ** | 54.07 ± 13.43 | 11.33 ± 2.81 | N.A | N.A. |
K | N.A. | 5.8 ± 2.76 | N.A. | N.A. | N.A. | N.A | N.A. |
L | 16.7 ± 2.61 | 18.4 ± 2.59 | 2.56 ± 0.44 ** | 103.08 ± 18.10 | 20.67 ± 3.63 | 191.976 | 1.31 ± 0.23 * |
LPC | Description of LPC | ILI Range | Company/ILI Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | |||
1.19 | 0.75 | 2.31 | 2.80 | 2.18 | 1.16 | 0.77 | 3.27 | N.A. | N.A. | N.A. | 1.31 | |||
A1 * | Very low LPC | ILI ≤ 1.5 | + | + | + | + | + | |||||||
A2 | Low LPC | 1.5 ÷ 2.0 | ||||||||||||
B | Moderate LPC | 2.0 ÷ 4.0 | + | + | + | + | ||||||||
C | High LPC | 4.0 ÷ 8.0 | ||||||||||||
D | Very high LPC | ILI ≥ 8.0 |
Company | The Total Length of Service Connections (from the Mains to the Meter), Lt (km) | Number of Service Connections, Nc | The Average Length of Service Connections (from the Mains to the Meter, Ltav (m) |
---|---|---|---|
A | 905.2 | 55,287 | 16.37 |
B | 172.57 | 6321 | 27.30 |
C | 243.72 | 15,812 | 15.41 |
D | 153.30 | 14,163 | 10.82 |
E | 80.31 | 6118 | 13.13 |
F | 96.02 | 7365 | 13.04 |
G | 184.70 * | 6922 | 26.68 * |
H | 98.40 * | 4920 | 20.00 * |
I | N.A. | 4429 | N.A. |
J | N.A. | 6476 | N.A. |
K | N.A. | 4958 | N.A. |
L | 179.2 | 6690 | 26.79 |
Company | Current Annual Real Loss, CARL | Target Annual Real Losses Corresponding to ILI = 1.5, ARLILI=1.5 | Potential Minimum Target Reduction of Real Losses According to Directive (EU) 2020/2184, CARL−ARLILI=1.5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Water Losses, 103 m3/Year | Electricity Consumption, MWh | GHG Emission, MgCO2eq/Year | Water Losses, 103 m3/Year | Electricity Consumption, MWh | GHG Emission, MgCO2eq/Year | Water Losses Reduction, 103 m3/Year | Possible Reduction of Electricity Consumption, MWh | Possible Reduction of GHG Emission | ||
MgCO2eq/Year | % | |||||||||
A | 1594.663 | 1036.53 | 888.31 | 2010.407 | 1306.765 | 1119.90 | −415.74 * | ** | ** | ** |
B | 166.865 | 108.46 | 92.95 | 333.794 | 216.966 | 185.94 | −166.93 * | ** | ** | ** |
C | 1112.019 | 722.81 | 619.45 | 721.583 | 469.029 | 401.96 | 390.44 | 253.78 | 217.49 | 35.11 |
D | 650.374 | 422.74 | 362.29 | 347.831 | 226.090 | 193.76 | 302.54 | 196.65 | 168.53 | 46.52 |
E | 231.846 | 150.70 | 129.15 | 159.836 | 103.893 | 89.04 | 72.01 | 46.81 | 40.11 | 31.06 |
F | 236.015 | 153.41 | 131.47 | 305.458 | 198.548 | 170.16 | −69.44 * | ** | ** | ** |
G | 149.047 | 96.88 | 83.03 | 288.584 | 187.580 | 160.76 | −139.54 * | ** | ** | ** |
H | 338.221 | 219.84 | 188,41 | 155.067 | 100.794 | 86.38 | 183.15 | 119.05 | 102.03 | 54.15 |
I | 181.989 | 118.29 | 101.38 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
J | 127.797 | 83.07 | 71.19 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
K | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
L | 251.702 | 163.61 | 140.21 | 287.963 | 187.176 | 160.41 | −36.26 * | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ociepa-Kubicka, A.; Deska, I.; Ociepa, E. Issues in Implementation of EU Regulations in Terms of Evaluation of Water Losses: Towards Energy Efficiency Optimization in Water Supply Systems. Energies 2024, 17, 633. https://doi.org/10.3390/en17030633
Ociepa-Kubicka A, Deska I, Ociepa E. Issues in Implementation of EU Regulations in Terms of Evaluation of Water Losses: Towards Energy Efficiency Optimization in Water Supply Systems. Energies. 2024; 17(3):633. https://doi.org/10.3390/en17030633
Chicago/Turabian StyleOciepa-Kubicka, Agnieszka, Iwona Deska, and Ewa Ociepa. 2024. "Issues in Implementation of EU Regulations in Terms of Evaluation of Water Losses: Towards Energy Efficiency Optimization in Water Supply Systems" Energies 17, no. 3: 633. https://doi.org/10.3390/en17030633
APA StyleOciepa-Kubicka, A., Deska, I., & Ociepa, E. (2024). Issues in Implementation of EU Regulations in Terms of Evaluation of Water Losses: Towards Energy Efficiency Optimization in Water Supply Systems. Energies, 17(3), 633. https://doi.org/10.3390/en17030633