Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,225)

Search Parameters:
Keywords = water distribution system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4443 KB  
Article
Physiological and Transcriptional Responses of Sorghum Seedlings Under Alkali Stress
by Xinyu Liu, Bo Wang, Yiyu Zhao, Min Chu, Han Yu, Di Gao, Jiaheng Wang, Ziqi Li, Sibei Liu, Yuhan Li, Yulei Wei, Jinpeng Wei and Jingyu Xu
Plants 2025, 14(19), 3106; https://doi.org/10.3390/plants14193106 - 9 Oct 2025
Abstract
Saline-alkali stress seriously affects the growth and development of crops. Sorghum bicolor (L.), a C4 plant, is an important cereal crop in the world, and its growth and geographical distribution are limited by alkali conditions. In this study, sorghum genotypes with different alkaline [...] Read more.
Saline-alkali stress seriously affects the growth and development of crops. Sorghum bicolor (L.), a C4 plant, is an important cereal crop in the world, and its growth and geographical distribution are limited by alkali conditions. In this study, sorghum genotypes with different alkaline resistance (alkaline-sensitive Z1 and alkaline-tolerant Z14) were used as experimental materials to explore the effects of alkali on sorghum seedlings. RNA-seq technology was used to examine the differentially expressed genes (DEGs) in alkali-tolerant Z14 to reveal the molecular mechanism of sorghum response to alkali stress. The results showed that plant height, root length, and biomass of both cultivars decreased with time under 80 mM NaHCO3 treatment, but Z14 showed better water retention abilities. The photosynthetic fluorescence parameters and chlorophyll content also decreased, but the Fv/Fm, ETH, ΦPSII, and chlorophyll content of Z14 were significantly higher than those of Z1. The level of reactive oxygen species (ROS) increased in both sorghum varieties under alkali stress, while the enzyme activities of SOD, POD, CAT, and APX were also significantly increased, especially in Z14, resulting in lower ROS compared with Z1. Transcriptome analysis revealed around 6000 DEGs in Z14 sorghum seedlings under alkali stress, among which 267 DEGs were expressed in all comparison groups. KEGG pathways were enriched in the MAPK signaling pathway, plant hormone signal transduction, and RNA transport. bHLHs, ERFs, NACs, MYBs, and other transcription factor families are actively involved in the response to alkali stress. A large number of genes involved in photosynthesis and the antioxidant system were found to be significantly activated under alkali stress. In the stress signal transduction cascades, Ca2+ signal transduction pathway-related genes were activated, about 23 PP2Cs in ABA signaling were upregulated, and multiple MAPK and other kinase-related genes were triggered by alkali stress. These findings will help decipher the response mechanism of sorghum to alkali stress and improve its alkali tolerance. Full article
Show Figures

Figure 1

46 pages, 2458 KB  
Review
Global Insights into Micro- and Nanoplastic Pollution in Surface Water: A Review
by Aujeeta Shehrin Razzaque and Assefa M. Melesse
Hydrology 2025, 12(10), 265; https://doi.org/10.3390/hydrology12100265 - 9 Oct 2025
Abstract
Microplastics (<5 mm) and nanoplastics (~100 nm), which are invisible to the naked eye, originate primarily from fragmentation and breakdown larger plastic debris are increasingly pervasive in the environment. Once released, they can disperse widely in the environment, pollute them adversely and ultimately [...] Read more.
Microplastics (<5 mm) and nanoplastics (~100 nm), which are invisible to the naked eye, originate primarily from fragmentation and breakdown larger plastic debris are increasingly pervasive in the environment. Once released, they can disperse widely in the environment, pollute them adversely and ultimately be taken up by living organisms, including humans, through multiple exposure pathways. Their distribution in aquatic systems is influenced by their physiochemical properties including density, hydrophobicity, and chemical stability, along with environmental conditions and biological activities. To better understand the dynamics of micro- and nanoplastics in surface water, this study conducted a comprehensive review of 194 published articles and scientific reports covering marine, freshwater, and wastewater systems. We assessed the abundance, spatial distribution and the factors that govern their behavior in aquatic systems and analyzed the sampling techniques, pretreatment process, and detection and removal techniques to understand the ongoing scenario of these pollutants in surface water and to identify the ecological risks and potential toxicological effects on living biota via direct and indirect exposure pathways. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

12 pages, 829 KB  
Article
Comparative Analysis of Intestinal Morphometry in Mugil cephalus Reared in Biofloc and Water Exchange System
by Sara Garcés, Virginia Fonseca Pedrosa, Luis Alberto Romano, Pedro Anderson de Paiva dos Santos, Luana Bortolini Giesta and Gabriele Lara
Fishes 2025, 10(10), 507; https://doi.org/10.3390/fishes10100507 - 9 Oct 2025
Abstract
This research aimed to evaluate the effect of biofloc technology on the intestinal morphometry, productive performance, and survival of juvenile Mugil cephalus. An 87-day investigation was conducted with two treatments, each with three replicates. Treatment one involved rearing juvenile M. cephalus in a [...] Read more.
This research aimed to evaluate the effect of biofloc technology on the intestinal morphometry, productive performance, and survival of juvenile Mugil cephalus. An 87-day investigation was conducted with two treatments, each with three replicates. Treatment one involved rearing juvenile M. cephalus in a biofloc system with a C/N ratio of 15:1, and treatment two involved rearing juvenile M. cephalus with a water exchange and no carbon addition. Ninety (90) juveniles of Mugil cephalus with an average weight of 117.36 ± 6.48 g were randomly distributed into six (6) circular plastic tanks of 250 L (fifteen fish per tank). At the end of the experiment, 10% of each experimental unit’s population was sacrificed for intestinal morphometry analysis. The productive performance was evaluated every 30 days by randomly sampling fish from each tank for biometric measurements, including the specific growth rate (SGR), feed conversion ratio (FCR), condition factor (K), and survival. No structural changes were observed in the intestinal mucosa. The fish reared in biofloc exhibited a similar gut morphometry (villus length and villus thickness) compared to the fish in the water exchange system. The biofloc system does not compromise the gut health of mullet. No significant differences (p > 0.05) were observed in the final weight, weight gain (WG), daily weight gain (DWG), specific growth rate (SGR), condition factor (K), and survival between the treatments evaluated. M. cephalus can be reared using biofloc technology, demonstrating significant water savings compared to water exchange systems. Full article
Show Figures

Figure 1

28 pages, 7808 KB  
Article
Evaluation of Development Performance and Adjustment Strategies for High Water-Cut Reservoirs Based on Flow Diagnostics: Application in the QHD Oilfield
by Yifan He, Yishan Guo, Li Wu, Liangliang Jiang, Shouliang Wang, Shangshu Ning and Zhihong Kang
Energies 2025, 18(19), 5310; https://doi.org/10.3390/en18195310 - 8 Oct 2025
Abstract
Offshore reservoirs in the high water-cut stage present significant development challenges, including declining production, complex remaining oil distribution, and the inadequacy of conventional evaluation methods to capture intricate flow dynamics. To overcome these limitations, this study introduces a novel approach based on flow [...] Read more.
Offshore reservoirs in the high water-cut stage present significant development challenges, including declining production, complex remaining oil distribution, and the inadequacy of conventional evaluation methods to capture intricate flow dynamics. To overcome these limitations, this study introduces a novel approach based on flow diagnostics for performance evaluation and potential adjustment. The method integrates key metrics such as time-of-flight (TOF) and the dynamic Lorenz coefficient, supported by reservoir engineering principles and numerical simulation, to construct a multi-parameter evaluation system. This system, which also incorporates injection–production communication volume and inter-well fluid allocation factors, precisely quantifies and visualizes waterflood displacement processes and sweep efficiency. Applied to the QHD32 oilfield, this framework was used to establish specific thresholds for operational adjustments. These include criteria for infill drilling (waterflooded ratio < 45%, remaining oil thickness > 6 m, TOF > 200 days), conformance control (TOF < 50 days, dynamic Lorenz coefficient > 0.5), and artificial lift optimization (remaining oil thickness ratio > 2/3, TOF > 200 days). Field validation confirmed the efficacy of this approach: an additional cumulative oil production of 165,600 m3 was achieved from infill drilling in the C29 well group, while displacement adjustments in the B03 well group increased oil production by 2.2–3.8 tons/day, demonstrating a significant enhancement in waterflooding performance. This research provides a theoretical foundation and a technical pathway for the refined development of offshore heavy oil reservoirs at the ultra-high water-cut stage, offering a robust framework for the sustainable management of analogous reservoirs worldwide. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

17 pages, 11456 KB  
Article
Analysis of Sprinkler Irrigation Uniformity via Multispectral Data from RPAs
by Lucas Santos Santana, Lucas Gabryel Maciel dos Santos, Josiane Maria da Silva, Luiz Alves Caldeira, Marcos David dos Santos Lopes, Hermes Soares da Rocha, Paulo Sérgio Cardoso Batista and Gabriel Araujo e Silva Ferraz
Eng 2025, 6(10), 268; https://doi.org/10.3390/eng6100268 - 6 Oct 2025
Viewed by 184
Abstract
Efficient irrigation management is crucial for optimizing crop development while minimizing resource use. This study aimed to assess the spatial variability of water distribution under conventional sprinkler irrigation, alongside soil moisture and infiltration dynamics, using multispectral sensors onboard Remotely Piloted Aircraft (RPAs). The [...] Read more.
Efficient irrigation management is crucial for optimizing crop development while minimizing resource use. This study aimed to assess the spatial variability of water distribution under conventional sprinkler irrigation, alongside soil moisture and infiltration dynamics, using multispectral sensors onboard Remotely Piloted Aircraft (RPAs). The experiment was conducted over a 466.2 m2 area equipped with 65 georeferenced collectors spaced at 3 m intervals. Soil data were collected through volumetric rings (0–5 cm), auger sampling (30–40 cm), and 65 measurements of penetration resistance down to 60 cm. Four RPA flights were performed at 20 min intervals post-irrigation to generate NDVI and NDWI indices. NDWI values decreased from 0.03 to −0.02, indicating surface moisture reduction due to infiltration and evaporation, corroborated by gravimetric moisture decline from 0.194 g/g to 0.191 g/g. Penetration resistance exceeded 2400 kPa at 30 cm depth, while bulk density ranged from 1.30 to 1.50 g/cm3. Geostatistical methods, including Inverse Distance Weighting and Ordinary Kriging, revealed non-uniform water distribution and subsurface compaction zones. The integration of spectral indices within situ measurements proved effective in characterizing irrigation system performance, offering a robust approach for calibration and precision water management. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

24 pages, 6042 KB  
Article
IncentiveChain: Adequate Power and Water Usage in Smart Farming Through Diffusion of Blockchain Crypto-Ether
by Sukrutha L. T. Vangipuram, Saraju P. Mohanty and Elias Kougianos
Information 2025, 16(10), 858; https://doi.org/10.3390/info16100858 - 4 Oct 2025
Viewed by 107
Abstract
The recent advancements in blockchain technology have also expanded its applications to smart agricultural fields, leading to increased research and studies in areas such as supply chain traceability systems and insurance systems. Policies and reward systems built on top of centralized systems face [...] Read more.
The recent advancements in blockchain technology have also expanded its applications to smart agricultural fields, leading to increased research and studies in areas such as supply chain traceability systems and insurance systems. Policies and reward systems built on top of centralized systems face several problems and issues, including data integrity issues, modifications in data readings, third-party banking vulnerabilities, and central point failures. The current paper discusses how farming is becoming a leading cause of water and electricity wastage and introduces a novel idea called IncentiveChain. To keep a limit on the usage of resources in farming, we implemented an application for distributing cryptocurrency to the producers, as the farmers are responsible for the activities in farming fields. Launching incentive schemes can benefit farmers economically and attract more interest and attention. We provide a state-of-the-art architecture and design through distributed storage, which will include using edge points and various technologies affiliated with national agricultural departments and regional utility companies to make IncentiveChain practical. We successfully demonstrate the execution of the IncentiveChain application by transferring crypto-ether from utility company accounts to farmer accounts in a decentralized system application. With this system, the ether is distributed to the farmer more securely using the blockchain, which in turn removes third-party banking vulnerabilities and central, cloud, and blockchain constraints and adds data trust and authenticity. Full article
Show Figures

Figure 1

20 pages, 8591 KB  
Communication
Impact of Channel Confluence Geometry on Water Velocity Distributions in Channel Junctions with Inflows at Angles α = 45° and α = 60°
by Aleksandra Mokrzycka-Olek, Tomasz Kałuża and Mateusz Hämmerling
Water 2025, 17(19), 2890; https://doi.org/10.3390/w17192890 - 4 Oct 2025
Viewed by 283
Abstract
Understanding flow dynamics in open-channel node systems is crucial for designing effective hydraulic engineering solutions and minimizing energy losses. This study investigates how junction geometry—specifically the lateral inflow angle (α = 45° and 60°) and the longitudinal bed slope (I = 0.0011 to [...] Read more.
Understanding flow dynamics in open-channel node systems is crucial for designing effective hydraulic engineering solutions and minimizing energy losses. This study investigates how junction geometry—specifically the lateral inflow angle (α = 45° and 60°) and the longitudinal bed slope (I = 0.0011 to 0.0051)—influences the water velocity distribution and hydraulic losses in a rigid-bed Y-shaped open-channel junction. Experiments were performed in a 0.3 m wide and 0.5 m deep rectangular flume, with controlled inflow conditions simulating steady-state discharge scenarios. Flow velocity measurements were obtained using a PEMS 30 electromagnetic velocity probe, which is capable of recording three-dimensional velocity components at a high spatial resolution, and electromagnetic flow meters for discharge control. The results show that a lateral inflow angle of 45° induces stronger flow disturbances and higher local loss coefficients, especially under steeper slope conditions. In contrast, an angle of 60° generates more symmetric velocity fields and reduces energy dissipation at the junction. These findings align with the existing literature and highlight the significance of junction design in hydraulic structures, particularly under high-flow conditions. The experimental data may be used for calibrating one-dimensional hydrodynamic models and optimizing the hydraulic performance of engineered channel outlets, such as those found in hydropower discharge systems or irrigation networks. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 2088 KB  
Article
Flexible, Stretchable, and Self-Healing MXene-Based Conductive Hydrogels for Human Health Monitoring
by Ruirui Li, Sijia Chang, Jiaheng Bi, Haotian Guo, Jianya Yi and Chengqun Chu
Polymers 2025, 17(19), 2683; https://doi.org/10.3390/polym17192683 - 3 Oct 2025
Viewed by 295
Abstract
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In [...] Read more.
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In this study, polyvinyl alcohol (PVA) and polyacrylamide (PAM) were used as the dual-network matrix, lithium chloride and MXene were added, and a simple immersion strategy was adopted to synthesize a multifunctional MXene-based conductive hydrogel in a glycerol/water (1:1) binary solvent system. A subsequent investigation was then conducted on the hydrogel. The prepared PVA/PAM/LiCl/MXene hydrogel exhibits excellent tensile properties (~1700%), high electrical conductivity (1.6 S/m), and good self-healing ability. Furthermore, it possesses multimodal sensing performance, including humidity sensitivity (sensitivity of −1.09/% RH), temperature responsiveness (heating sensitivity of 2.2 and cooling sensitivity of 1.5), and fast pressure response/recovery times (220 ms/230 ms). In addition, the hydrogel has successfully achieved real-time monitoring of human joint movements (elbow and knee bending) and physiological signals (pulse, breathing), as well as enabled monitoring of spatial pressure distribution via a 3 × 3 sensor array. The performance and versatility of this hydrogel make it a promising candidate for next-generation flexible sensors, which can be applied in the fields of human health monitoring, electronic skin, and human–machine interaction. Full article
(This article belongs to the Special Issue Semiflexible Polymers, 3rd Edition)
Show Figures

Figure 1

18 pages, 4261 KB  
Article
Research on Evolutionary Patterns of Water Source–Water Use Systems from a Synergetic Perspective: A Case Study of Henan Province, China
by Shengyan Zhang, Tengchao Li, Henghua Gong, Shujie Hu, Zhuoqian Li, Ninghao Wang, Yuqin He and Tianye Wang
Water 2025, 17(19), 2888; https://doi.org/10.3390/w17192888 - 3 Oct 2025
Viewed by 363
Abstract
China faces the persistent challenge of uneven spatiotemporal water resource distribution, constraining economic and social development while exacerbating regional disparities. Achieving co-evolution between water source systems and water use systems is thus a critical proposition in water resources management. Based on synergetics theory, [...] Read more.
China faces the persistent challenge of uneven spatiotemporal water resource distribution, constraining economic and social development while exacerbating regional disparities. Achieving co-evolution between water source systems and water use systems is thus a critical proposition in water resources management. Based on synergetics theory, this study takes Henan Province, a typical water-scarce social–ecological system, as the research object, and constructs a quantitative analysis framework for supply–demand bidirectional synergy. It systematically reveals the evolution patterns of water resource systems under the mutual feedback mechanism between water sources and water use. Findings indicate that between 2012 and 2022, the synergy degree of Henan’s water resource system increased by nearly 40%, exhibiting significant spatiotemporal differentiation: spatially “lower north, higher south”, and dynamically shifting from demand-constrained to supply-optimized. Specifically, the water source system’s order degree showed a “higher northwest, lower southeast” spatial pattern. Since the operation of the South-to-North Water Diversion Middle Route Project, the provincial average order degree increased significantly (annual growth rate of 0.01 units), though with distinct regional disparities. The water use system’s order degree also exhibited “lower north, higher south” pattern but achieved greater growth (annual growth rate of 0.03 units), with narrowing north–south gaps driven by improved management efficiency and technological capacity. This study innovatively integrates water source systems and water use systems into a unified analytical framework, systematically elucidating the intrinsic evolution mechanisms of water resource systems from the perspective of supply–demand mutual feedback. It provides theoretical and methodological support for advancing systematic water resource governance. Full article
Show Figures

Figure 1

15 pages, 2076 KB  
Article
Forecasting Urban Water Demand Using Multi-Scale Artificial Neural Networks with Temporal Lag Optimization
by Elias Farah and Isam Shahrour
Water 2025, 17(19), 2886; https://doi.org/10.3390/w17192886 - 3 Oct 2025
Viewed by 305
Abstract
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization [...] Read more.
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization to predict daily and hourly water consumption across heterogeneous user profiles. Using high-resolution smart metering data from the SunRise Smart City Project in Lille, France, four demand nodes were analyzed: a District Metered Area (DMA), a student residence, a university restaurant, and an engineering school. Results demonstrate that incorporating lagged consumption variables substantially improves prediction accuracy, with daily R2 values increasing from 0.490 to 0.827 at the DMA and from 0.420 to 0.806 at the student residence. At the hourly scale, the 1-h lag model consistently outperformed other configurations, achieving R2 up to 0.944 at the DMA, thus capturing both peak and off-peak consumption dynamics. The findings confirm that short-term autocorrelation is a dominant driver of demand variability, and that ANN-based forecasting enhanced by temporal lag features provides a robust, computationally efficient tool for real-time water network management. Beyond improving forecasting performance, the proposed methodology supports operational applications such as leakage detection, anomaly identification, and demand-responsive planning, contributing to more sustainable and resilient urban water systems. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

25 pages, 3874 KB  
Article
Evaluation of Water Resources Carrying Capacity and Analysis of Influencing Factors in China’s Major Grain-Producing Areas Based on Machine Learning
by Kun Cheng, Xingyang Zhang and Nan Sun
Agriculture 2025, 15(19), 2074; https://doi.org/10.3390/agriculture15192074 - 2 Oct 2025
Viewed by 253
Abstract
Evaluating regional water resource carrying capacity (WRCC) helps alleviate regional water supply–demand conflicts. This study constructed a 17-indicator system for evaluating WRCC in Major Grain-Producing Areas (MGPAs) based on the “production–living–ecology” functional perspective. It employed a combined Entropy Weight–Root Mean Square Deviation–CRITIC weighting [...] Read more.
Evaluating regional water resource carrying capacity (WRCC) helps alleviate regional water supply–demand conflicts. This study constructed a 17-indicator system for evaluating WRCC in Major Grain-Producing Areas (MGPAs) based on the “production–living–ecology” functional perspective. It employed a combined Entropy Weight–Root Mean Square Deviation–CRITIC weighting approach with a BP neural network model to conduct a comprehensive assessment of WRCC across 13 MGPAs from 2004 to 2023. The results demonstrated the following: (1) Both MGPAs and the national level exhibit a “ecology dominance–living secondary–production weakness” pattern in functional weighting. (2) WRCC in MGPAs is characterized by agricultural production dominance, basic domestic needs as the core, and localized ecological protection as the focus—significantly differing from the national pattern of industrial-driven, economically interconnected, and trans-regional ecological concerns. (3) Spatiotemporally, WRCC levels across the 13 provinces have consistently increased, with a spatial distribution characterized by “higher in the north, lower in the south.” These findings reveal that water resource management in MGPAs requires strategies distinct from national approaches, emphasizing agricultural water conservation and efficiency alongside localized ecological protection. This provides precise policy tools and scientific decision support for implementing water-based production quotas and coordinating food security with water resource security in these regions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
18 pages, 1586 KB  
Article
A Comprehensive Model for Predicting Water Advance and Determining Infiltration Coefficients in Surface Irrigation Systems Using Beta Cumulative Distribution Function
by Amir Panahi, Amin Seyedzadeh, Miguel Ángel Campo-Bescós and Javier Casalí
Water 2025, 17(19), 2880; https://doi.org/10.3390/w17192880 - 2 Oct 2025
Viewed by 207
Abstract
Surface irrigation systems are among the most common yet often inefficient methods due to poor design and management. A key factor in optimizing their design is the accurate prediction of the water advance and infiltration relationships’ coefficients. This study introduces a novel model [...] Read more.
Surface irrigation systems are among the most common yet often inefficient methods due to poor design and management. A key factor in optimizing their design is the accurate prediction of the water advance and infiltration relationships’ coefficients. This study introduces a novel model based on the Beta cumulative distribution function for predicting water advance and estimating infiltration coefficients in surface irrigation systems. Traditional methods, such as the two-point approach, rely on limited data from only the midpoint and endpoint of the field, often resulting in insufficient accuracy and non-physical outcomes under heterogeneous soil conditions. The proposed model enhances predictive flexibility by incorporating the entire advance dataset and integrating the midpoint as a constraint during optimization, thereby improving the accuracy of advance curve estimation and subsequent infiltration coefficient determination. Evaluation using field data from three distinct sites (FS, HF, WP) across 10 irrigation events demonstrated the superiority of the proposed model over the conventional power advance method. The new model achieved average RMSE, MAPE, and R2 values of 0.790, 0.109, and 0.997, respectively, for advance estimation. For infiltration prediction, it yielded an average error of 12.9% in total infiltrated volume—outperforming the two-point method—and also showed higher accuracy during the advance phase, with average RMSE, MAPE, and R2 values of 0.427, 0.075, and 0.990, respectively. These results confirm that the Beta-based model offers a more robust, precise, and reliable tool for optimizing the design and management of surface irrigation systems. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

18 pages, 2078 KB  
Article
Unraveling Belowground Community Assembly in Temperate Steppe Ecosystems
by Ping Wang, Shuai Shang, Zhengyang Rong, Jingkuan Sun, Jinzhao Ma, Zhaohua Lu, Fei Wang and Zhanyong Fu
Biology 2025, 14(10), 1350; https://doi.org/10.3390/biology14101350 - 2 Oct 2025
Viewed by 217
Abstract
The composition, architecture, and plant traits of temperate steppe communities are intricately associated with environmental factors. However, most studies primarily focus on aboveground observations, often overlooking the critical role of belowground root systems. Here we conducted a field survey at a large-regional scale [...] Read more.
The composition, architecture, and plant traits of temperate steppe communities are intricately associated with environmental factors. However, most studies primarily focus on aboveground observations, often overlooking the critical role of belowground root systems. Here we conducted a field survey at a large-regional scale to investigate the composition of temperate steppe communities and plant root traits. Cluster analysis, correspondence analysis and Pearson correlation coefficient matrix method were employed to classify vegetation associations based on plant community composition and root traits. The principal driving and limiting factors shaping plant root communities were systematically investigated. The results showed that the temperate steppe was categorized into three community subtypes: meadow steppe, typical steppe, and desert steppe, comprising five plant groups and thirteen plant associations. The RLFS analysis, based on belowground architectural and functional traits, demonstrated a spatial gradient differentiation with three ecological adaptations: tufted herbs, rhizome herbs, and non-tufted or rhizome herbs. Key environmental driving factors for meadow steppe included precipitation, soil carbon, nitrogen, and phosphorus content, while the average growing-season temperature as a limiting factor. The environmental driving factors for the typical steppe were not apparent, and the limiting factor was water. For the desert steppe, the environmental driving factors were altitude and average growing-season temperature. These findings reveal notable spatial heterogeneity and a distinct distribution pattern in community composition and vegetation classification based on belowground root traits in the Inner Mongolia steppes. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

18 pages, 1420 KB  
Review
Legislative, Social and Technical Frameworks for Supporting Electricity Grid Stability and Energy Sharing in Slovakia
by Viera Joklova, Henrich Pifko and Katarina Kristianová
Energies 2025, 18(19), 5233; https://doi.org/10.3390/en18195233 - 2 Oct 2025
Viewed by 352
Abstract
The equilibrium between electricity demand and consumption is vital to ensure the stability of the transmission and distribution systems grid (TS & DS) and to ensure the stable operation of the electrical system. The aim of this review study is to highlight the [...] Read more.
The equilibrium between electricity demand and consumption is vital to ensure the stability of the transmission and distribution systems grid (TS & DS) and to ensure the stable operation of the electrical system. The aim of this review study is to highlight the current legislative and technical situation and the possibilities for managing peak loads, decentralization, sharing, storage, and sale of electricity generated from renewable sources in Slovakia. The European Union′s (EU) goal of achieving carbon neutrality by 2050 and a minimum of 42.5% renewable energy consumption by 2030 brings with it obligations for individual member states. These are transposed into national strategies. The current share of renewable sources in Slovakia is approximately 24% and the EU target by 2030 is probably unrealistic. Water resources are practically exhausted; other possibilities for increasing the share of renewable energy sources (RES) are in photovoltaics, wind, and thermal sources. Due to long-term geographical and historical development, electricity production in Slovakia is based on large-scale solutions. The move towards decentralization requires legislative and technical support. The review article examines the possibilities of increasing the share of RES and energy sharing in Slovakia, and examines the legislative, economic, and social barriers to their wider application. At the same time as the share of renewable sources in electricity generation increases, the article examines and presents solutions capable of ensuring the stability of electricity networks across Europe. The study formulates diversified strategies at the distribution network level and the consumer and building levels, and identifies physical (various types of electricity storage, electromobility, electricity liquidators) and virtual (electricity sharing, energy communities, virtual batteries) solutions. In conclusion, it defines the necessary changes in the legislative, technical, social, and economic areas for the most optimal improvement of the situation in the area of increasing the share of RES, supporting the decentralization of the electric power industry, and sharing electricity in Slovakia, also based on experience and good examples from abroad. Full article
Show Figures

Figure 1

17 pages, 2793 KB  
Article
Full-Spectrum LED-Driven Underwater Spectral Detection System and Its Applications
by Yunfei Li, Jun Wei, Shaohua Cheng, Tao Yu, Hong Zhao, Guancheng Li and Fuhong Cai
Chemosensors 2025, 13(10), 359; https://doi.org/10.3390/chemosensors13100359 - 1 Oct 2025
Viewed by 262
Abstract
Spectral detection technology offers non-destructive, in situ, and high-speed capabilities, making it widely applicable for detecting biological and chemical samples and quantifying their concentrations. Water resources, essential to life on Earth, are widely distributed across the planet. The application of spectral technology to [...] Read more.
Spectral detection technology offers non-destructive, in situ, and high-speed capabilities, making it widely applicable for detecting biological and chemical samples and quantifying their concentrations. Water resources, essential to life on Earth, are widely distributed across the planet. The application of spectral technology to underwater environments is useful for wide-area water resource monitoring. Although spectral detection technology is well-established, its underwater application presents challenges, including waterproof housing design, power supply, and data transmission, which limit widespread application of underwater spectral detection. Furthermore, underwater spectral detection necessitates the development of compatible computational methods for sample classification or regression analysis. Focusing on underwater spectral detection, this work involved the construction of a suitable hardware system. A compact spectrometer and LEDs (400 nm–800 nm) were employed as the detection and light source modules, respectively, resulting in a compact system architecture. Extensive tests confirmed that the miniaturized design-maintained system performance. Further, this study addressed the estimation of total phosphorus (TP) concentration in water using spectral data. Samples with varying TP concentrations were prepared and calibrated against standard detection instruments. Subsequently, classification algorithms applied to the acquired spectral data enabled the in situ underwater determination of TP concentration in these samples. This work demonstrates the feasibility of underwater spectral detection for future in situ, high-speed monitoring of aquatic biochemical indicators. In the future, after adding UV LED light source, more water quality parameter information can be obtained. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

Back to TopTop