Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels
Abstract
:1. Introduction
2. Predictive Maintenance of PV Systems
- Reactive maintenance: This approach involves repairing equipment only when it breaks down or malfunctions. While it may seem cost-effective in the short term, reactive maintenance can lead to increased downtime and more significant repair costs in the long run [35].
- Preventative maintenance: In contrast to reactive maintenance, preventative maintenance involves regularly scheduled maintenance activities to prevent equipment breakdowns and extend the lifespan of the system. This approach can be more cost-effective over the long term, but it requires a significant investment of time and resources upfront [36].
- Predictive maintenance: This approach uses data analytics and monitoring tools to predict when maintenance will be necessary, allowing for repairs before significant breakdowns occur. Predictive maintenance can be highly effective in reducing downtime and maintenance costs, but it requires a significant investment in data collection and analysis tools [37].
- Condition-based maintenance: This approach involves monitoring equipment performance and condition in real time and scheduling maintenance activities based on that data. Like predictive maintenance, condition-based maintenance can be highly effective in reducing downtime and maintenance costs, but it requires a significant investment in monitoring tools and sensors.
- From the perspective of a single PV plant, predictive maintenance can help identify and prevent equipment failures, reducing downtime and maintenance costs. This approach can help minimize downtime, reduce maintenance costs, and increase the lifetime of the PV system [39].
- From the perspective of a virtual power plant, the main goal is to minimize the difference between the scheduled and the current production. This can be achieved by aggregating several small-scale PV systems and using predictive maintenance algorithms to optimize their output. By monitoring the performance of individual PV systems and predicting potential failures, virtual power plants can optimize energy production and reduce costs [39].
2.1. Typical Maintenance Issues
2.2. Tools and Devices for Predictive Maintenance
3. Operation of PV Plants from the DSO Perspective
3.1. The Role of a DSO
- More entities participating in the energy market.
- Innovative solutions.
- More awareness concerning energy efficiency.
- Reduction in greenhouse gas emissions.
- Improvement of grid reliability.
- Reduction in technical distribution losses.
- Reduction in outage times.
3.2. Integration of PV Sources
3.3. Obstacles and Solutions
3.4. Optimization
4. AI-Based Solutions to Increase PV System Performance and Trading
4.1. Forecasting PV Generation
4.2. Advanced Trading Algorithms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Chala, G.T.; Al Alshaikh, S.M. Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review. Energies 2023, 16, 7919. [Google Scholar] [CrossRef]
- Iftikhar, H.; Sarquis, E.; Branco, P.C. Why can simple operation and maintenance (O&M) practices in large-scale grid-connected PV power plants play a key role in improving its energy output? Energies 2021, 14, 3798. [Google Scholar]
- García, E.; Ponluisa, N.; Quiles, E.; Zotovic-Stanisic, R.; Gutiérrez, S.C. Solar panels string predictive and parametric fault diagnosis using low-cost sensors. Sensors 2022, 22, 332. [Google Scholar] [CrossRef]
- Szabó, S.; Jäger-Waldau, A.; Szabó, L. Risk adjusted financial costs of photovoltaics. Energy Policy 2010, 38, 3807–3819. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of photovoltaics—February 2020. Energies 2020, 13, 930. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. The untapped area potential for photovoltaic power in the European Union. Clean Technol. 2020, 2, 440–446. [Google Scholar] [CrossRef]
- Bamati, N.; Raoofi, A. Development level and the impact of technological factor on renewable energy production. Renew. Energy 2020, 151, 946–955. [Google Scholar] [CrossRef]
- Li, C.; Wang, N.; Zhang, H.; Liu, Q.; Chai, Y.; Shen, X.; Yang, Z.; Yang, Y. Environmental impact evaluation of distributed renewable energy system based on life cycle assessment and fuzzy rough sets. Energies 2019, 12, 4214. [Google Scholar] [CrossRef]
- Przychodzen, W.; Przychodzen, J. Determinants of renewable energy production in transition economies: A panel data approach. Energy 2020, 191, 116583. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M.; Bindzár, P. Assessing the level of renewable energy development in the European Union member states. A 10-year perspective. Energies 2021, 14, 3765. [Google Scholar] [CrossRef]
- Azarova, V.; Cohen, J.; Friedl, C.; Reichl, J. Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland. Energy Policy 2019, 132, 1176–1183. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Manso, J.P. Motivations driving renewable energy in European countries: A panel data approach. Energy Policy 2010, 38, 6877–6885. [Google Scholar] [CrossRef]
- Escobar, P.; Martínez, E.; Saenz-Díez, J.; Jiménez, E.; Blanco, J. Profitability of self-consumption solar PV system in Spanish households: A perspective based on European regulations. Renew. Energy 2020, 160, 746–755. [Google Scholar] [CrossRef]
- Prol, J.L. Regulation, profitability and diffusion of photovoltaic grid-connected systems: A comparative analysis of Germany and Spain. Renew. Sustain. Energy Rev. 2018, 91, 1170–1181. [Google Scholar] [CrossRef]
- Dasí-Crespo, D.; Roldán-Blay, C.; Escrivá-Escrivá, G.; Roldán-Porta, C. Evaluation of the Spanish regulation on self-consumption photovoltaic installations. A case study based on a rural municipality in Spain. Renew. Energy 2023, 204, 788–802. [Google Scholar] [CrossRef]
- Sumper, A.; Robledo-García, M.; Villafáfila-Robles, R.; Bergas-Jané, J.; Andrés-Peiró, J. Life-cycle assessment of a photovoltaic system in Catalonia (Spain). Renew. Sustain. Energy Rev. 2011, 15, 3888–3896. [Google Scholar] [CrossRef]
- Rataj, M.; Berniak-Woźny, J.; Plebańska, M. Poland as the EU leader in terms of photovoltaic market growth dynamics—Behind the scenes. Energies 2021, 14, 6987. [Google Scholar] [CrossRef]
- Szabo, J.; Fabok, M. Infrastructures and state-building: Comparing the energy politics of the European Commission with the governments of Hungary and Poland. Energy Policy 2020, 138, 111253. [Google Scholar] [CrossRef]
- Zsiboracs, H.; Hegedűsné Baranyai, N.; Zentko, L.; Morocz, A.; Pocs, I.; Mate, K.; Pinter, G. Electricity market challenges of photovoltaic and energy storage technologies in the European Union: Regulatory challenges and responses. Appl. Sci. 2020, 10, 1472. [Google Scholar] [CrossRef]
- Zsiborács, H.; Vincze, A.; Háber, I.; Pintér, G.; Hegedűsné Baranyai, N. Challenges of Establishing Solar Power Stations in Hungary. Energies 2023, 16, 530. [Google Scholar] [CrossRef]
- Aszódi, A.; Biró, B.; Adorján, L.; Dobos, Á.C.; Illés, G.; Tóth, N.K.; Zagyi, D.; Zsiborás, Z.T. Comparative analysis of national energy strategies of 19 European countries in light of the green deal’s objectives. Energy Convers. Manag. X 2021, 12, 100136. [Google Scholar] [CrossRef]
- Szabo, J.; Weiner, C.; Deák, A. Energy governance in Hungary. In Handbook of Energy Governance in Europe; Springer: Berlin/Heidelberg, Germany, 2022; pp. 737–768. [Google Scholar]
- Amazing Record for Domestic Solar Power Plants in Hungary. Available online: https://www.portfolio.hu/uzlet/20231116/elkepeszto-rekord-dol-meg-iden-a-magyarorszagi-naperomuveknel-651953 (accessed on 13 January 2024).
- VER Traffic Data:Aggregated Data. Available online: https://www.mavir.hu/web/mavir/ver-forgalmi-adatok-aggregalt-adatok (accessed on 14 January 2024).
- Obi, M.; Bass, R. Trends and challenges of grid-connected photovoltaic systems—A review. Renew. Sustain. Energy Rev. 2016, 58, 1082–1094. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- Silveira, J.L.; Tuna, C.E.; de Queiroz Lamas, W. The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil. Renew. Sustain. Energy Rev. 2013, 20, 133–141. [Google Scholar] [CrossRef]
- Lan, Z.; Li, J. Photovoltaic technology and electricity saving strategies for fixed-velocity-measuring system. TELKOMNIKA Indones. J. Electr. Eng. 2014, 12, 4419–4426. [Google Scholar] [CrossRef]
- Bosman, L.B.; Leon-Salas, W.D.; Hutzel, W.; Soto, E.A. PV system predictive maintenance: Challenges, current approaches, and opportunities. Energies 2020, 13, 1398. [Google Scholar] [CrossRef]
- Keisang, K.; Bader, T.; Samikannu, R. Review of Operation and Maintenance Methodologies for Solar Photovoltaic Microgrids. Front. Energy Res. 2021, 9, 730230. [Google Scholar] [CrossRef]
- Denio, H. Aerial solar thermography and condition monitoring of photovoltaic systems. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 000613–000618. [Google Scholar]
- El Hammoumi, A.; Chtita, S.; Motahhir, S.; El Ghzizal, A. Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Rep. 2022, 8, 11992–12010. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Araneo, R.; Mitolo, M.; Niccolai, A.; Grimaccia, F. Review of O&M practices in PV plants: Failures, solutions, remote control, and monitoring tools. IEEE J. Photovolt. 2020, 10, 914–926. [Google Scholar]
- Poór, P.; Ženíšek, D.; Basl, J. Historical overview of maintenance management strategies: Development from breakdown maintenance to predictive maintenance in accordance with four industrial revolutions. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic, 23–26 July 2019. [Google Scholar]
- Poór, P.; Basl, J. Machinery maintenance model for evaluating and increasing maintenance, repairs and operations within Industry 4.0 concept. IOP Conf. Ser. Mater. Sci. Eng. 2020, 947, 012004. [Google Scholar] [CrossRef]
- Poór, P.; Basl, J. Predictive maintenance as an intelligent service in Industry 4.0. J. Syst. Integr. 2019, 10, 3–10. [Google Scholar]
- Koschikowski, L.; Wolter, M.; Müller, J. Predictive maintenance for photovoltaic systems—A data-driven approach. Appl. Energy 2020, 276, 115402. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Maiti, S.; Das, S. An artificial intelligence based predictive maintenance model for photovoltaic system. Renew. Energy 2019, 141, 174–184. [Google Scholar] [CrossRef]
- Baklouti, A.; Mifdal, L.; Dellagi, S.; Chelbi, A. An optimal preventive maintenance policy for a solar photovoltaic system. Sustainability 2020, 12, 4266. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; Ha, L.; Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renew. Sustain. Energy Rev. 2016, 62, 695–709. [Google Scholar] [CrossRef]
- Sayed, A.; El-Shimy, M.; El-Metwally, M.; Elshahed, M. Reliability, availability and maintainability analysis for grid-connected solar photovoltaic systems. Energies 2019, 12, 1213. [Google Scholar] [CrossRef]
- Spertino, F.; Chiodo, E.; Ciocia, A.; Malgaroli, G.; Ratclif, A. Maintenance activity, reliability, availability, and related energy losses in ten operating photovoltaic systems up to 1.8 MW. IEEE Trans. Ind. Appl. 2020, 57, 83–93. [Google Scholar] [CrossRef]
- Kochendoerfer, N.; Thonney, M.L. Grazing sheep on solar sites in New York State: Opportunities and challenges. In Scope and Scaling-Up of the NYS Sheep Industry to Graze Ground-Mounted Photovoltaic Arrays for Vegetation Management; Cornell University Atkinson Center for a Sustainable Future: Ithaca, NY, USA, 2021. [Google Scholar]
- Chock, R.Y.; Clucas, B.; Peterson, E.K.; Blackwell, B.F.; Blumstein, D.T.; Church, K.; Fernández-Juricic, E.; Francescoli, G.; Greggor, A.L.; Kemp, P.; et al. Evaluating potential effects of solar power facilities on wildlife from an animal behavior perspective. Conserv. Sci. Pract. 2021, 3, e319. [Google Scholar] [CrossRef]
- Walston, L.J., Jr.; Rollins, K.E.; LaGory, K.E.; Smith, K.P.; Meyers, S.A. A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renew. Energy 2016, 92, 405–414. [Google Scholar] [CrossRef]
- Smallwood, K.S. Utility-scale solar impacts to volant wildlife. J. Wildl. Manag. 2022, 86, e22216. [Google Scholar] [CrossRef]
- Manville, A.M. Impacts to birds and bats due to collisions and electrocutions from some tall structures in the United States: Wires, towers, turbines, and solar arrays—State of the art in addressing the problems. In Problematic Wildlife: A Cross-Disciplinary Approach; Springer: Cham, Switzerland, 2016; pp. 415–442. [Google Scholar]
- Giordano, S.; Seitanidis, I.; Ojo, M.; Adami, D.; Vignoli, F. IoT solutions for crop protection against wild animal attacks. In Proceedings of the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018; pp. 1–5. [Google Scholar]
- Taylor, R.; Conway, J.; Gabb, O.; Gillespie, J. Potential Ecological Impacts of Ground-Mounted Photovoltaic Solar Panels; BSG Ecology: Oxford, UK, 2019. [Google Scholar]
- Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Alghoul, M.; Chaichan, M.T. Impact of some environmental variables with dust on solar photovoltaic (PV) performance: Review and research status. Int. Energy Environ. 2013, 7, 152–159. [Google Scholar]
- Jaszczur, M.; Koshti, A.; Nawrot, W.; Sędor, P. An investigation of the dust accumulation on photovoltaic panels. Environ. Sci. Pollut. Res. 2020, 27, 2001–2014. [Google Scholar] [CrossRef] [PubMed]
- Zaki Abdulazeez, M. Experimental Investigation of the Effect of Dust on Moncrystalline Photovoltaic Module Performance in Kirkuk, Iraq. Kirkuk Univ. J.-Sci. Stud. 2018, 13, 127–138. [Google Scholar] [CrossRef]
- Salimi, H.; Mirabdolah Lavasani, A.; Ahmadi-Danesh-Ashtiani, H.; Fazaeli, R. Effect of dust concentration, wind speed, and relative humidity on the performance of photovoltaic panels in Tehran. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 7867–7877. [Google Scholar] [CrossRef]
- Fatima, K.; Minai, A.F.; Malik, H.; Márquez, F.P.G. Experimental analysis of dust composition impact on Photovoltaic panel Performance: A case study. Sol. Energy 2024, 267, 112206. [Google Scholar] [CrossRef]
- Djordjevic, S.; Parlevliet, D.; Jennings, P. Detectable faults on recently installed solar modules in Western Australia. Renew. Energy 2014, 67, 215–221. [Google Scholar] [CrossRef]
- Köntges, M.; Kurtz, S.; Packard, C.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Van Iseghem, M.; Wohlgemuth, J.; et al. Review of Failures of Photovoltaic Modules; IEA: Paris, France, 2014. [Google Scholar]
- Zefri, Y.; ElKettani, A.; Sebari, I.; Ait Lamallam, S. Thermal infrared and visual inspection of photovoltaic installations by UAV photogrammetry—Application case: Morocco. Drones 2018, 2, 41. [Google Scholar] [CrossRef]
- Quater, P.B.; Grimaccia, F.; Leva, S.; Mussetta, M.; Aghaei, M. Light Unmanned Aerial Vehicles (UAVs) for Cooperative Inspection of PV Plants. IEEE J. Photovolt. 2014, 4, 1107–1113. [Google Scholar] [CrossRef]
- Tomita, K.; Chew, M.Y.L. A review of infrared thermography for delamination detection on infrastructures and buildings. Sensors 2022, 22, 423. [Google Scholar] [CrossRef]
- Chakraborty, S.; Haldkar, A.K.; Kumar, N.M. Analysis of the hail impacts on the performance of commercially available photovoltaic modules of varying front glass thickness. Renew. Energy 2023, 203, 345–356. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, M.; Pachauri, R.; Babu, K.D. Impact of hailstorm on the performance of PV module: A review. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 1923–1944. [Google Scholar] [CrossRef]
- Muehleisen, W.; Eder, G.C.; Voronko, Y.; Spielberger, M.; Sonnleitner, H.; Knoebl, K.; Ebner, R.; Ujvari, G.; Hirschl, C. Outdoor detection and visualization of hailstorm damages of photovoltaic plants. Renew. Energy 2018, 118, 138–145. [Google Scholar] [CrossRef]
- Heidari, N.; Gwamuri, J.; Townsend, T.; Pearce, J.M. Impact of snow and ground interference on photovoltaic electric system performance. IEEE J. Photovolt. 2015, 5, 1680–1685. [Google Scholar] [CrossRef]
- Pawluk, R.E.; Chen, Y.; She, Y. Photovoltaic electricity generation loss due to snow–A literature review on influence factors, estimation, and mitigation. Renew. Sustain. Energy Rev. 2019, 107, 171–182. [Google Scholar] [CrossRef]
- Baldus-Jeursen, C.; Petsuik, A.L.; Rheault, S.A.; Pelland, S.; Côté, A.; Poissant, Y.; Pearce, J.M. Snow Losses for Photovoltaic Systems: Validating the Marion and Townsend Models. IEEE J. Photovolt. 2023, 13, 610–620. [Google Scholar] [CrossRef]
- Golnas, A. PV system reliability: An operator’s perspective. In Proceedings of the 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, Austin, TX, USA, 3–8 June 2012; pp. 1–6. [Google Scholar]
- Tariq, M.S.; Butt, S.A.; Khan, H.A. Impact of module and inverter failures on the performance of central-, string-, and micro-inverter PV systems. Microelectron. Reliab. 2018, 88, 1042–1046. [Google Scholar] [CrossRef]
- Rohouma, W.; Molokhia, I.; Esuri, A. Comparative study of different PV modules configuration reliability. Desalination 2007, 209, 122–128. [Google Scholar] [CrossRef]
- Dhople, S.V.; Davoudi, A.; Chapman, P.L.; Domínguez-García, A.D. Integrating photovoltaic inverter reliability into energy yield estimation with Markov models. In Proceedings of the 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), Boulder, CO, USA, 28–30 June 2010; pp. 1–5. [Google Scholar]
- Haema, J.; Phadungthin, R. Development of condition evaluation for power transformer maintenance. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 620–623. [Google Scholar]
- Sarita, K.; Saket, R.; Khan, B. Reliability, availability, and condition monitoring of inverters of grid-connected solar photovoltaic systems. IET Renew. Power Gener. 2023, 17, 1635–1653. [Google Scholar] [CrossRef]
- Blažević, D.; Keser, T.; Glavaš, H.; Noskov, R. Power Transformer Condition-Based Evaluation and Maintenance (CBM) Using Dempster–Shafer Theory (DST). Appl. Sci. 2023, 13, 6731. [Google Scholar] [CrossRef]
- Orosz, T. Evolution and modern approaches of the power transformer cost optimization methods. Period. Polytech. Electr. Eng. Comput. Sci. 2019, 63, 37–50. [Google Scholar] [CrossRef]
- Dissado, L. Predicting electrical breakdown in polymeric insulators. From deterministic mechanisms to failure statistics. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 860–875. [Google Scholar] [CrossRef]
- Verardi, L.; Fabiani, D.; Montanari, G.; Žák, P. Electrical condition monitoring techniques for low-voltage cables used in nuclear power plants. In Proceedings of the 2013 IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013; pp. 504–508. [Google Scholar]
- Mustafa, E.; Afia, R.S.; Tamus, Z.Á. Investigation of photovoltaic DC cable insulation integrity under Thermal Stress. In Proceedings of the 2020 IEEE 3rd International Conference on Dielectrics (ICD), Valencia, Spain, 5–31 July 2020; pp. 13–16. [Google Scholar]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems. Energy Sustain. Dev. 2022, 66, 165–176. [Google Scholar] [CrossRef]
- Afia, R.S.; Mustafa, E.; Tamus, Z.Á. Condition Assessment of XLPO Insulated Photovoltaic Cables Based on Polarisation/Depolarisation Current. In Proceedings of the 2020 International Conference on Diagnostics in Electrical Engineering (Diagnostika), Pilsen, Czech Republic, 1–4 September 2020; pp. 1–4. [Google Scholar]
- Afia, R.S.; Mustafa, E.; Tamus, Z.A. Condition Monitoring of Photovoltaic Cables Based Cross-Linked Polyolefin Insulation Under Combined Accelerated Aging Stresses: Electrical and Mechanical Assessment. Energy Rep. 2022, 8, 1038–1049. [Google Scholar] [CrossRef]
- Parise, G.; Martirano, L.; Parise, L. Life monitoring tool of insulated cables in photovoltaic installations. IEEE Trans. Ind. Appl. 2013, 50, 2156–2163. [Google Scholar] [CrossRef]
- Parise, G.; Martirano, L.; Parise, L.; Gugliermetti, L.; Nardecchia, F. A life loss tool for an optimal management in the operation of insulated LV power cables. IEEE Trans. Ind. Appl. 2018, 55, 167–173. [Google Scholar] [CrossRef]
- Csányi, G.M.; Bal, S.; Tamus, Z.Á. Dielectric measurement based deducted quantities to track repetitive, short-term thermal aging of Polyvinyl Chloride (PVC) cable insulation. Polymers 2020, 12, 2809. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, E.; Afia, R.S.; Ádam, T.Z. Electrical integrity tests and analysis of low voltage photovoltaic cable insulation under thermal stress. In Proceedings of the 2019 7th International Youth Conference on Energy (IYCE), Bled, Slovenia, 3–6 July 2019; pp. 1–4. [Google Scholar]
- Toledo, C.; Scognamiglio, A. Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns). Sustainability 2021, 13, 6871. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Dargusch, P.; Wadley, D.; Zulkarnain, N.A.; Aziz, A.A. A review of research on agrivoltaic systems. Renew. Sustain. Energy Rev. 2022, 161, 112351. [Google Scholar] [CrossRef]
- Lv, R.; Tang, J.; Jaubert, J.N.; Xing, G. Highly Accelerated Thermal Cycling Test for New Type of Crystalline Silicon Photovoltaic Modules. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1991–1994. [Google Scholar] [CrossRef]
- Ayadi, O.; Jamra, M.; Jaber, A.; Ahmad, L.; Alnaqep, M. An Experimental Comparison of Bifacial and Monofacial PV Modules. In Proceedings of the 2021 12th International Renewable Engineering Conference (IREC), Amman, Jordan, 14–15 April 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Acharya, S.; Panda, T.; Mandal, N.C.; Bose, S.; Nandi, A.; Das, G.; Chakraborty, S.; Maity, S.; Chaudhuri, P.; et al. Detailed Study on the Role of Nature and Distribution of Pinholes and Oxide Layer on the Performance of Tunnel Oxide Passivated Contact (TOPCon) Solar Cell. IEEE Trans. Electron. Devices 2022, 69, 5618–5623. [Google Scholar] [CrossRef]
- Kiaee, Z.; Fellmeth, T.; Steinhauser, B.; Reichel, C.; Nazarzadeh, M.; Nölken, A.C.; Keding, R. TOPCon Silicon Solar Cells with Selectively Doped PECVD Layers Realized by Inkjet-Printing of Phosphorus Dopant Sources. IEEE J. Photovolt. 2022, 12, 31–37. [Google Scholar] [CrossRef]
- Florides, M.; Makrides, G.; Georghiou, G.E. Early Detection of Potential Induced Degradation in the Field: Testing a New Method for Silicon PV Modules. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 0950–0953. [Google Scholar] [CrossRef]
- Sopori, B.; Basnyat, P.; Devayajanam, S.; Shet, S.; Mehta, V.; Binns, J.; Appel, J. Understanding light-induced degradation of c-Si solar cells. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 001115–001120. [Google Scholar] [CrossRef]
- Hassan, S.; Dhimish, M. A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions. Solar 2023, 3, 663–683. [Google Scholar] [CrossRef]
- Dhoke, A.; Sharma, R.; Saha, T.K. Condition monitoring of a large-scale PV power plant in Australia. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Lombez, L.; Paire, M.; Ory, D.; Delamarre, A.; Rodière, J.; Rale, P.; El-Hajje, G.; Guillemoles, J.F. Direct imaging of quasi Fermi level splitting in photovoltaic absorbers. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 0695–0697. [Google Scholar] [CrossRef]
- Meribout, M. Sensor Systems for Solar Plant Monitoring. IEEE Trans. Instrum. Meas. 2023, 72, 9502016. [Google Scholar] [CrossRef]
- Vergura, S.; Colaprico, M.; de Ruvo, M.F.; Marino, F. A Quantitative and Computer-Aided Thermography-Based Diagnostics for PV Devices—Part II: Platform and Results. IEEE J. Photovolt. 2017, 7, 237–243. [Google Scholar] [CrossRef]
- Zhao, Y.; An, A.; Xu, Y.e.a. Model predictive control of grid-connected PV power generation system considering optimal MPPT control of PV modules. Prot. Control Mod. Power Syst. 2021, 6, 32. [Google Scholar] [CrossRef]
- Srinivas, V.L.; Singh, B.; Mishra, S. Finite Control-Set Model Predictive Control for Leakage Current Suppression in Grid Interfaced Solar PV System. In Proceedings of the 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 30–31 October 2020; pp. 675–680. [Google Scholar] [CrossRef]
- Arunkumar, G. AI-Based Predictive Maintenance Strategies for Electrical Equipment and Power Networks. Int. J. Artif. Intell. Electr. Eng. (IJAIEE) 2024, 2, 1–13. [Google Scholar]
- Sarquis Filho, E.A.; Santos, F.C.; Costa Branco, P.J. Development of Predictive Maintenance Algorithms for Photovoltaic Systems Using Synthetic Datasets. In Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition, Online, 7–11 September 2020; pp. 1584–1589. [Google Scholar]
- Abubakar, A.; Almeida, C.; Gemignani, M. Review of Artificial Intelligence-Based Failure Detection and Diagnosis Methods for Solar Photovoltaic Systems. Machines 2021, 9, 328. [Google Scholar] [CrossRef]
- Sridevi, H.; Bothra, S. Predictive Maintenance of Lead-Acid Batteries Using Machine Learning Algorithms. In Emerging Research in Computing, Information, Communication and Applications; Shetty, N., Patnaik, L., Prasad, N., Eds.; Springer: Singapore, 2023; Volume 928. [Google Scholar] [CrossRef]
- Parag, Y.; Sovacool, B.K. Electricity market design for the prosumer era. Nat. Energy 2016, 1, 16032. [Google Scholar] [CrossRef]
- Minniti, S.; Haque, N.; Nguyen, P.; Pemen, G. Local markets for flexibility trading: Key stages and enablers. Energies 2018, 11, 3074. [Google Scholar] [CrossRef]
- European Union. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on common rules for the internal market for electricity and amending Directive 2012/27. J. Eur. Union 2019, 158, 125–199. [Google Scholar]
- Directorate-General for Energy (European Commission). Clean energy for all Europeans. Euroheat Power 2019, 14. [Google Scholar] [CrossRef]
- Boscán, L.; Poudineh, R. Business models for power system flexibility: New actors, new roles, new rules. In Future of Utilities Utilities of the Future; Academic Press: Cambridge, MA, USA, 2016; pp. 363–382. [Google Scholar]
- Haque, A.; Nguyen, P.; Bliek, F.; Slootweg, J. Demand response for real-time congestion management incorporating dynamic thermal overloading cost. Sustain. Energy Grids Netw. 2017, 10, 65–74. [Google Scholar] [CrossRef]
- Salinas-Herrera, F.; Moeini, A.; Kamwa, I. Survey of Simulation Tools to Assess Techno-Economic Benefits of Smart Grid Technology in Integrated T&D Systems. Sustainability 2022, 14, 8108. [Google Scholar]
- EU-SysFlex Website. Available online: https://eu-sysflex.com/ (accessed on 15 April 2023).
- INTERRFACE Website. Available online: http://www.interrface.eu/ (accessed on 15 April 2023).
- OneNet Website. Available online: https://onenet-project.eu/ (accessed on 15 April 2023).
- Marino, C.; Tegas, S.; D’Orazio, L.; Di Felice, G.; Clerici, D.; Viganò, G.; Michelangeli, C. Set-up of a new coordinated process for ancillary services provision from DSO to the TSO: An innovative approach to the exploitation of flexibilities connected to the distribution grid. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Online, 20–23 September 2021. [Google Scholar]
- Filipe, N.L.; Marques, M.; Villar, J.; Silva, B.; Moreira, J.; Louro, M.; Retorta, F.; Aguiar, J.; Rezende, I.; Simões, T.; et al. Flexibility hub–flexibility provision by decentralised assets connected to the distribution grid. In Proceedings of the CIRED 2020 Berlin Workshop (CIRED 2020), Online, 22–23 September 2020; Volume 2020, pp. 602–605. [Google Scholar]
- Schittekatte, T.; Reif, V.; Meeus, L. Welcoming new entrants into European electricity markets. Energies 2021, 14, 4051. [Google Scholar] [CrossRef]
- Peltoketo, S.; Kuusela, A.; Nikkilä, A.J.; Mäkihannu, T.; Rauhala, T. Utilization of Flexibility Mechanisms in Regional Outage Planning of Transmission Systems. In Proceedings of the 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, 10–12 October 2022; pp. 1–6. [Google Scholar]
- Mufti, G.; Asprou, M.; Panayiotou, C. Estimation of Residential PV Power Generation Using Panel Azimuth Information. In Proceedings of the 2022 International Conference on Smart Energy Systems and Technologies (SEST), Eindhoven, The Netherlands, 5–7 September 2022; pp. 1–6. [Google Scholar]
- E-REDES Open Data. Available online: https://e-redes.opendatasoft.com/pages/homepage/ (accessed on 15 April 2023).
- Elia Open Data. Available online: https://opendata.elia.be/pages/home/ (accessed on 1 May 2023).
- NIE Networks Open Data Hub. Available online: https://nienetworks.opendatasoft.com/pages/home/ (accessed on 1 May 2023).
- Kost, C.; Mayer, J.; Thomsen, J.; Hartmann, N.; Senkpiel, C.; Philipps, S.; Nold, S.; Lude, S.; Saad, N.; Schlegl, T. Levelized Cost of Electricity Renewable Energy Technologies; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2013; Volume 144, pp. 1–42. [Google Scholar]
- Yang, Y.; Zhou, K.; Blaabjerg, F. Current harmonics from single-phase grid-connected inverters—Examination and suppression. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 4, 221–233. [Google Scholar] [CrossRef]
- Elomari, Y.; Norouzi, M.; Marín-Genescà, M.; Fernández, A.; Boer, D. Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis. Sustainability 2022, 14, 9249. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, S.; Sparks, R.; Green, I. Impacts of solar PV generators on power system stability and voltage performance. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–7. [Google Scholar]
- Tamimi, B.; Cañizares, C.; Bhattacharya, K. System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada. IEEE Trans. Sustain. Energy 2013, 4, 680–688. [Google Scholar] [CrossRef]
- Chamier-Gliszczynski, N.; Trzmiel, G.; Jajczyk, J.; Juszczak, A.; Woźniak, W.; Wasiak, M.; Wojtachnik, R.; Santarek, K. The Influence of Distributed Generation on the Operation of the Power System, Based on the Example of PV Micro-Installations. Energies 2023, 16, 1267. [Google Scholar] [CrossRef]
- Production Units for Self-Consumption. Available online: https://www.e-redes.pt/en/production-units-self-consumption (accessed on 15 April 2023).
- Sedzro, K.S.A.; Horowitz, K.; Jain, A.K.; Ding, F.; Palmintier, B.; Mather, B. Evaluating the Curtailment Risk of Non-Firm Utility-Scale Solar Photovoltaic Plants under a Novel Last-In First-Out Principle of Access Interconnection Agreement. Energies 2021, 14, 1463. [Google Scholar] [CrossRef]
- Maghami, M.R.; Pasupuleti, J.; Ling, C.M. A Static and Dynamic Analysis of Photovoltaic Penetration into MV Distribution Network. Processes 2023, 11, 1172. [Google Scholar] [CrossRef]
- Uzum, B.; Onen, A.; Hasanien, H.M.; Muyeen, S. Rooftop solar pv penetration impacts on distribution network and further growth factors—A comprehensive review. Electronics 2020, 10, 55. [Google Scholar] [CrossRef]
- Lage, M.; Castro, R. A Practical Review of the Public Policies Used to Promote the Implementation of PV Technology in Smart Grids: The Case of Portugal. Energies 2022, 15, 3567. [Google Scholar] [CrossRef]
- Bødal, E.F.; Lakshmanan, V.; Sperstad, I.B.; Degefa, M.Z.; Hanot, M.; Ergun, H.; Rossi, M. Demand flexibility modelling for long term optimal distribution grid planning. IET Gener. Transm. Distrib. 2022, 16, 5002–5014. [Google Scholar] [CrossRef]
- Riaz, M.; Hanif, A.; Hussain, S.J.; Memon, M.I.; Ali, M.U.; Zafar, A. An optimization-based strategy for solving optimal power flow problems in a power system integrated with stochastic solar and wind power energy. Appl. Sci. 2021, 11, 6883. [Google Scholar] [CrossRef]
- Charfeddine, S.; Alharbi, H.; Jerbi, H.; Kchaou, M.; Abbassi, R.; Leiva, V. A stochastic optimization algorithm to enhance controllers of photovoltaic systems. Mathematics 2022, 10, 2128. [Google Scholar] [CrossRef]
- GOFLEX Website. Available online: https://goflex-project.eu/ (accessed on 1 May 2023).
- DRES2Market Website. Available online: https://www.dres2market.eu/ (accessed on 1 May 2023).
- InterFlex Website. Available online: https://interflex-h2020.com (accessed on 1 May 2023).
- Loßner, M.; Böttger, D.; Bruckner, T. Economic assessment of virtual power plants in the German energy market—A scenario-based and model-supported analysis. Energy Econ. 2017, 62, 125–138. [Google Scholar] [CrossRef]
- Dietrich, K.; Latorre, J.M.; Olmos, L.; Ramos, A. Modelling and assessing the impacts of self supply and market-revenue driven Virtual Power Plants. Electr. Power Syst. Res. 2015, 119, 462–470. [Google Scholar] [CrossRef]
- Ahmadian, A.; Ponnambalam, K.; Almansoori, A.; Elkamel, A. Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning. Energies 2023, 16, 1000. [Google Scholar] [CrossRef]
- Cabezón, L.; Ruiz, L.G.B.; Criado-Ramón, D.; J. Gago, E.; Pegalajar, M.C. Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study. Energies 2022, 15, 8732. [Google Scholar] [CrossRef]
- Gumar, A.K.; Demir, F. Solar Photovoltaic Power Estimation Using Meta-Optimized Neural Networks. Energies 2022, 15, 8669. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.h.; Chong, K.T. A Study of Neural Network Framework for Power Generation Prediction of a Solar Power Plant. Energies 2022, 15, 8582. [Google Scholar] [CrossRef]
- Scott, C.; Ahsan, M.; Albarbar, A. Machine learning for forecasting a photovoltaic (PV) generation system. Energy 2023, 278, 127807. [Google Scholar] [CrossRef]
- Tavares, I.; Manfredini, R.; Almeida, J.; Soares, J.; Ramos, S.; Foroozandeh, Z.; Vale, Z. Comparison of PV Power Generation Forecasting in a Residential Building using ANN and DNN. IFAC-PapersOnLine 2022, 55, 291–296. [Google Scholar] [CrossRef]
- Jurado, M.; Samper, M.; Rosés, R. An improved encoder-decoder-based CNN model for probabilistic short-term load and PV forecasting. Electr. Power Syst. Res. 2023, 217, 109153. [Google Scholar] [CrossRef]
- Nguyen Trong, T.; Vu Xuan Son, H.; Do Dinh, H.; Takano, H.; Nguyen Duc, T. Short-term PV power forecast using hybrid deep learning model and Variational Mode Decomposition. Energy Rep. 2023, 9, 712–717. [Google Scholar] [CrossRef]
- Van den Bergh, K.; Delarue, E. Energy and reserve markets: Interdependency in electricity systems with a high share of renewables. Electr. Power Syst. Res. 2020, 189, 106537. [Google Scholar] [CrossRef]
- Peng, Z.; Yu, D.; Huang, D.; Heiser, J.; Yoo, S.; Kalb, P. 3D cloud detection and tracking system for solar forecast using multiple sky imagers. Sol. Energy 2015, 118, 496–519. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, F.; Zhen, Z.; Mi, Z.; Liu, C.; Wang, B.; Lu, J. Research on short-term module temperature prediction model based on BP neural network for photovoltaic power forecasting. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, J.; Zhang, Z.; Wang, F.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep Learning Based Surface Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image. IEEE Trans. Ind. Appl. 2020, 56, 3385–3396. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y. A state-of-art method for solar irradiance forecast via using fisheye lens. Int. J. Low-Carbon Technol. 2020, 16, 555–569. [Google Scholar] [CrossRef]
- Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 2015, 1, 38–46. [Google Scholar] [CrossRef]
- Si, Z.; Yang, M.; Yu, Y.; Ding, T. Photovoltaic power forecast based on satellite images considering effects of solar position. Appl. Energy 2021, 302, 117514. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Mei, S.; Su, Y.; Zhen, Z.; Zou, Z.; Zhang, X.; Yin, R.; Duić, N.; Shafie-khah, M.; et al. A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant. Energy 2022, 238, 121946. [Google Scholar] [CrossRef]
- Pérez, E.; Pérez, J.; Segarra-Tamarit, J.; Beltran, H. A deep learning model for intra-day forecasting of solar irradiance using satellite-based estimations in the vicinity of a PV power plant. Sol. Energy 2021, 218, 652–660. [Google Scholar] [CrossRef]
- Yu, D.; Lee, S.; Lee, S.; Choi, W.; Liu, L. Forecasting Photovoltaic Power Generation Using Satellite Images. Energies 2020, 13, 6603. [Google Scholar] [CrossRef]
- Boccard, N.; Gautier, A. Solar rebound: The unintended consequences of subsidies. Energy Econ. 2021, 100, 105334. [Google Scholar] [CrossRef]
- Wrede, M. The influence of state politics on solar energy auction results. Energy Policy 2022, 168, 113130. [Google Scholar] [CrossRef]
- Green, R.; Staffell, I. The contribution of taxes, subsidies, and regulations to British electricity decarbonization. Joule 2021, 5, 2625–2645. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Sun, K. Policy impact of cancellation of wind and photovoltaic subsidy on power generation companies in China. Renew. Energy 2021, 177, 134–147. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, T. Photovoltaic subsidy withdrawal: An evolutionary game analysis of the impact on Chinese stakeholders’ strategic choices. Sol. Energy 2022, 241, 302–314. [Google Scholar] [CrossRef]
- Liu, D.; Qi, S.; Xu, T. In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced? Energy Policy 2023, 174, 113451. [Google Scholar] [CrossRef]
- Sendstad, L.H.; Hagspiel, V.; Mikkelsen, W.J.; Ravndal, R.; Tveitstøl, M. The impact of subsidy retraction on European renewable energy investments. Energy Policy 2022, 160, 112675. [Google Scholar] [CrossRef]
- Nagy, R.L.; Hagspiel, V.; Kort, P.M. Green capacity investment under subsidy withdrawal risk. Energy Econ. 2021, 98, 105259. [Google Scholar] [CrossRef]
- Johnson, R.; Mayfield, M. The economic and environmental implications of post feed-in tariff PV on constrained low voltage networks. Appl. Energy 2020, 279, 115666. [Google Scholar] [CrossRef]
- Ihlemann, M.; van Stiphout, A.; Poncelet, K.; Delarue, E. Benefits of regional coordination of balancing capacity markets in future European electricity markets. Appl. Energy 2022, 314, 118874. [Google Scholar] [CrossRef]
- Nominated Electricity Market Operators (NEMO) Committee. EUPHEMIA Public Description; Technical Report; 2020. Available online: https://www.nemo-committee.eu/assets/files/euphemia-public-description.pdf (accessed on 29 May 2023).
- Divényi, D.; Polgári, B.; Sleisz, Á.; Sőrés, P.; Raisz, D. Algorithm design for European electricity market clearing with joint allocation of energy and control reserves. Int. J. Electr. Power Energy Syst. 2019, 111, 269–285. [Google Scholar] [CrossRef]
- Jeon, W.; Mo, J. Estimating the Operating Reserve Demand Curve for Efficient Adoption of Renewable Sources in Korea. Energies 2023, 16, 1426. [Google Scholar] [CrossRef]
- Klaar, A.C.R.; Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.d.S. Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico. Energies 2023, 16, 3184. [Google Scholar] [CrossRef]
- Guo, F.; Deng, S.; Zheng, W.; Wen, A.; Du, J.; Huang, G.; Wang, R. Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM. Energies 2022, 15, 8445. [Google Scholar] [CrossRef]
- Gunduz, S.; Ugurlu, U.; Oksuz, I. Transfer learning for electricity price forecasting. Sustain. Energy Grids Netw. 2023, 34, 100996. [Google Scholar] [CrossRef]
- Sridharan, V.; Tuo, M.; Li, X. Wholesale Electricity Price Forecasting Using Integrated Long-Term Recurrent Convolutional Network Model. Energies 2022, 15, 7606. [Google Scholar] [CrossRef]
- Hernández Rodríguez, M.; Baca Ruiz, L.G.; Criado Ramón, D.; Pegalajar Jiménez, M.d.C. Artificial Intelligence-Based Prediction of Spanish Energy Pricing and Its Impact on Electric Consumption. Mach. Learn. Knowl. Extr. 2023, 5, 431–447. [Google Scholar] [CrossRef]
- Heidarpanah, M.; Hooshyaripor, F.; Fazeli, M. Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market. Energy 2023, 263, 126011. [Google Scholar] [CrossRef]
- Merten, M.; Rücker, F.; Schoeneberger, I.; Sauer, D.U. Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches. Appl. Energy 2020, 268, 114978. [Google Scholar] [CrossRef]
- Kraft, E.; Russo, M.; Keles, D.; Bertsch, V. Stochastic optimization of trading strategies in sequential electricity markets. Eur. J. Oper. Res. 2023, 308, 400–421. [Google Scholar] [CrossRef]
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|---|---|---|
Hungary | 13 | 31 | 73 | 148 | 205 | 327 | 741 | 1441 | 2161 | 2949 |
Spain | 4561 | 4639 | 4646 | 4656 | 4669 | 4688 | 4707 | 8711 | 11,669 | 15,286 |
Estonia | 0.2 | 2 | 3 | 7 | 10 | 15 | 32 | 121 | 208 | 395 |
European Union | 68,640 | 80,330 | 86,850 | 95,020 | 101,110 | 106,690 | 114,810 | 131,020 | 149,640 | 175,700 |
Source | Machine Learning Tool | Note |
---|---|---|
[142] | eXtreme Gradient Boosting, Light Gradient Boosting, MultiLayer Perceptron, Elman Neural Network, Long Short-Term Memory | comparative study |
[143] | MultiLayer Perceptron | metaheuristic training |
[144] | Deep Neural Network | auxiliary irradiation forecast |
[145] | Random Forest, Neural Networks, Support Vector Machines | comparative study |
[146] | MultiLayer Perceptron, Deep Neural Network | comparative study |
[147] | Convolutional Neural Network | combined with load forecasting |
[148] | Transfer Neural Network, Convolutional Neural Network | hybrid model with enhanced data preprocessing |
[148] | Radial Basis Function Neural Network | integrated Grey Theory System |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orosz, T.; Rassõlkin, A.; Arsénio, P.; Poór, P.; Valme, D.; Sleisz, Á. Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels. Energies 2024, 17, 1306. https://doi.org/10.3390/en17061306
Orosz T, Rassõlkin A, Arsénio P, Poór P, Valme D, Sleisz Á. Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels. Energies. 2024; 17(6):1306. https://doi.org/10.3390/en17061306
Chicago/Turabian StyleOrosz, Tamás, Anton Rassõlkin, Pedro Arsénio, Peter Poór, Daniil Valme, and Ádám Sleisz. 2024. "Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels" Energies 17, no. 6: 1306. https://doi.org/10.3390/en17061306