A Stacked Symmetrical Non-Isolated High Step-Up Voltage Gain Converter with High Efficiency and Low Voltage Stress on Components
Abstract
:1. Introduction
2. Structure and Operating Principles
2.1. Structure
2.2. Working Principle
- All components are ideal, with parasitic components disregarded;
- The circuit operates in a steady state with continuous inductor current;
- All capacitors CP and CN have the same value;
- All output capacitors CPout, CNout, and COUT_BB have the same value of Cout and are sufficiently large to keep their voltages constant during the switch-off period.
2.3. Steady-Stage Analysis of the Proposed Converter
2.3.1. Voltage Gain Expression
2.3.2. Voltage Stress on Components
2.3.3. ZVS Condition
3. Design of the Proposed Converter
3.1. The ZVS Inductor Lzvs, Duty Cycle D, and Dead Time TD of Switches
3.2. Capacitor CP and CD
3.3. Main Inductor Design
3.4. Output Capacitor Design
4. Experiment Results
5. Detailed Comparison and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; He, X. Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 2011, 58, 1239–1250. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Gupta, A.; Korada, N.; Ayyanar, R. Quadratic-Extended-Duty-Ratio Boost Converters for Ultra High Gain Application with Low Input Current Ripple and Low Device Stress. IEEE Trans. Ind. Appl. 2023, 59, 938–948. [Google Scholar] [CrossRef]
- Hsieh, Y.; Chen, J.; Liang, T.; Yang, L. Novel high step-up dc–dc converter for distributed generation system. IEEE Trans. Ind. Electron. 2013, 60, 1473–1482. [Google Scholar] [CrossRef]
- Górecki, P.; d’Alessandro, V. A Datasheet-Driven Electrothermal Averaged Model of a Diode–MOSFET Switch for Fast Simulations of DC–DC Converters. Electronics 2024, 13, 154. [Google Scholar] [CrossRef]
- Rosas-Caro, J.C.; Valdez-Resendiz, J.E.; Escobar, G.; Beltran-Carbajal, F. A Multilevel Boost Converter with Reduced Inductor Current. Electronics 2023, 12, 4585. [Google Scholar] [CrossRef]
- Amiri, E.M.; Moghani, J.S.; Gharehpetian, G.B.; Yazdi, S.S.H. Novel two stage buck-boost converter with zero-voltage transition operation. In Proceedings of the 5th Annual International Power Electronics, Drive Systems and Technologies Conference (PEDSTC 2014), Tehran, Iran, 5–6 February 2014; pp. 143–147. [Google Scholar]
- Aamir, M.; Shinwari, M.Y. Design, implementation and experimental analysis of two-stage boost converter for grid connected photovoltaic system. In Proceedings of the 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; pp. 194–199. [Google Scholar]
- Sarikhani, A.; Allahverdinejad, B.; Hamzeh, M. A Non-Isolated Buck-Boost DC-DC Converter with Continuous Input Current for Photovoltaic Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 804–811. [Google Scholar]
- Zeng, Y.; Li, H.; Wang, W.; Zhang, B.; Zheng, T.Q. High Efficient High Voltage Gain Capacitor Clamped DC-DC Converters and Its Construction Method. IEEE Trans. Ind. Electron. 2020, 68, 3992–4003. [Google Scholar] [CrossRef]
- Alzahrani, A.; Ferdowsi, M.; Shamsi, P. A Family of Scalable Non-Isolated Interleaved DC-DC Boost Converters with Voltage doubler Cell. IEEE Access 2019, 7, 11707–11721. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, Z. Low Input Ripple High Step-Up Extendable Hybrid DC-DC Converter. IEEE Access 2019, 7, 158744–158752. [Google Scholar] [CrossRef]
- Wu, T.; Lai, Y.; Hung, J.; Chen, Y. Boost converter with coupled inductors and buck–boost type of active clamp. IEEE Trans. Ind. Electron. 2008, 55, 154–162. [Google Scholar] [CrossRef]
- Wai, R.; Lin, C. High-efficiency, high-step-up dc–dc converter for fuel-cell generation system. IEEE Proc. Elect. Power Appl. 2005, 152, 1371–1378. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, J.F.; Yang, L.S.; Wu, C.Y.; Liu, W.S. High conversion-ratio bidirectional DC/DC converter with couple inductor. IEEE Trans. Ind. Electron. 2014, 61, 1311–1319. [Google Scholar] [CrossRef]
- Chen, S.M.; Liang, T.J.; Yang, L.S.; Chen, J.F. A boost converter with capacitor multiplier and coupled inductor for ac module applications. IEEE Trans. Ind. Electron. 2013, 60, 1503–1511. [Google Scholar] [CrossRef]
- Das, M.; Agarwal, V. Design and Analysis of a High-Efficiency DC–DC Converter with Soft Switching Capability for Renewable Energy Applications Requiring High Voltage Gain. IEEE Trans. Ind. Electron. 2016, 63, 2936–2944. [Google Scholar] [CrossRef]
- Molavi, N.; Adib, E.; Farzanehfard, H. Soft-switched non-isolated high step-up DC–DC converter with reduced voltage stress. IET Power Electron. 2016, 9, 1711–1718. [Google Scholar] [CrossRef]
- Kumar, A.; Peri, R.; Kundu, U.; Sensarma, P. A high voltage gain current fed non-isolated dc-dc converter. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. [Google Scholar]
- Hassan, W.; Lu, D.D.; Xiao, W. Analysis and experimental verification of a single-switch high-voltage gain ZCS DC–DC converter. IET Power Electron. 2019, 12, 2146–2153. [Google Scholar] [CrossRef]
- Zaoskoufis, K.; Tatakis, E.C. An Improved Boost-based DC/DC Converter with High Voltage step-up ratio for DC Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1837–1853. [Google Scholar] [CrossRef]
- Chen, M.; Yin, C.; Loh, P.C.; Ioinovici, A. Improved Large DC Gain Converters with Low Voltage Stress on Switches Based on Coupled-Inductor and Voltage doubler for Renewable Energy Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2824–2836. [Google Scholar] [CrossRef]
- Mohseni, P.; Hosseini, S.H.; Maalandish, M. A New Soft Switching DC-DC Converter with High Voltage Gain Capability. IEEE Trans. Ind. Electron. 2020, 67, 7386–7398. [Google Scholar] [CrossRef]
- Liu, T.; Lin, M.; Ai, J. High Step-Up Interleaved DC-DC Converter with Asymmetric Voltage Multiplier Cell and Coupled Inductor. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 4209–4222. [Google Scholar] [CrossRef]
- Ismail, E.H.; Al-Saffar, M.A.; Sabzali, A.J.; Fardoun, A.A. A family of single-switch PWM converters with high step-up conversion ratio. IEEE Trans. Circuits Syst. I Reg. Pap. 2008, 55, 1159–1171. [Google Scholar] [CrossRef]
- Wu, G.; Ruan, X.; Ye, Z. Nonisolated High Step-Up DC–DC Converters Adopting Switched-Capacitor Cell. IEEE Trans. Ind. Electron. 2015, 62, 383–393. [Google Scholar] [CrossRef]
- Tran, V.-T.; Nguyen, M.-K.; Choi, Y.-O.; Cho, G.-B. Switched-Capacitor-Based High Boost DC-DC Converter. Energies 2018, 11, 987. [Google Scholar] [CrossRef]
- Jalilzadeh, T.; Rostami, N.; Babaei, E.; Maalandish, M. Non-Isolated Topology for High Step-Up DC-DC Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 1154–1168. [Google Scholar] [CrossRef]
- Marzang, V.; Hosseini, S.H.; Rostami, N.; Alavi, P.; Mohseni, P.; Hashemzadeh, S.M. A High Step-Up Non-Isolated DC-DC Converter with Flexible Voltage Gain. IEEE Trans. Power Electron. 2020, 35, 10489–10500. [Google Scholar] [CrossRef]
- Kumar, A.; Wang, Y.; Pan, X.; Raghuram, M.; Singh, S.K.; Xiong, X.; Tripathi, A.K. Switched-LC based High Gain Converter with Lower Component Count. IEEE Trans. Ind. Appl. 2020, 56, 2816–2827. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, K.W.E. A Family of Single-Stage Switched-Capacitor–Inductor PWM Converters. IEEE Trans. Power Electron. 2013, 28, 5196–5205. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Y.; Wu, B.; Smedley, K.M. A Family of Resonant Two-Switch Boosting Switched-Capacitor Converter with ZVS Operation and a Wide Line Regulation Range. IEEE Trans. Power Electron. 2018, 33, 448–459. [Google Scholar] [CrossRef]
- Salvador, M.A.; De Andrade, J.M.; Lazzarin, T.B.; Coelho, R.F. Non-isolated High-Step-Up DC-DC Converter Derived from Switched-Inductors and Switched-Capacitors. IEEE Trans. Ind. Electron. 2020, 67, 8506–8516. [Google Scholar] [CrossRef]
- Mohammadi, F.; Gharehpetian, G.B. Rastegar and M. Farhadi-Kangarlu. Non-isolated Step-up DC-DC Converter Based on Switched Capacitor Cells. CSEE J. Power Energy Syst. 2023, 9, 1161–1172. [Google Scholar]
- Prudente, M.; Pfitscher, L.L.; Emmendoerfer, G.; Romaneli, E.F.; Gules, R. Voltage doubler Cell Applied to Non-Isolated DC–DC Converters. IEEE Trans. Power Electron. 2008, 23, 871–887. [Google Scholar] [CrossRef]
- Alcazar, Y.J.A.; de Souza Oliveira, D.; Tofoli, F.L.; Torrico-Bascopé, R.P. DC–DC Nonisolated Boost Converter Based on the Three-State Switching Cell and Voltage doubler Cell. IEEE Trans. Ind. Electron. 2013, 60, 4438–4449. [Google Scholar] [CrossRef]
- Prudente, M.; Pfitscher, L.; Gules, R. A Boost Converter with Voltage doubler Cell. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Dresden, Germany, 16 June 2005; pp. 2716–2721. [Google Scholar]
- AxeLZVSod, B.; Golan, G.; Berkovich, Y.; Shenkman, A. Diode–capacitor voltage doublers combined with boost-converters: Topologies and characteristics. IET Power Electron. 2012, 5, 873–884. [Google Scholar]
- Feretti, P.H.; Tofoli, F.L.; Ribeiro, E.R. Family of Non-Isolated High Step-Up DC–DC Converters Based on the Multi-State Switching Cell. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5882–5893. [Google Scholar] [CrossRef]
- Wu, B.; Li, S.; Liu, Y.; Smedley, K.M. A New Hybrid Boosting Converter for Renewable Energy Applications. IEEE Trans. Power Electron. 2016, 31, 1203–1215. [Google Scholar] [CrossRef]
- Luo, F.L.; Ye, H. Positive output super-lift converters. IEEE Trans. Power Electron. 2003, 18, 105–113. [Google Scholar]
- Sayed, S.; Elmenshawy, M.; Elmenshawy, M.; Ben-Brahim, L.; Massoud, A. Design and analysis of high-gain medium-voltage DC-DC converters for high-power PV applications. In Proceedings of the 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, Qatar, 10–12 April 2018; pp. 1–5. [Google Scholar]
- Jiao, Y.; Luo, F.L.; Zhu, M. Voltage-lift-type switched-inductor Cell for enhancing DC-DC boost ability: Principles and integrations in Luo converter. IET Power Electron. 2011, 4, 131–142. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, D.; Wang, T.; Xu, Z. Analysis of Active-Network Converter with Coupled Inductors. IEEE Trans. Power Electron. 2015, 30, 4874–4882. [Google Scholar] [CrossRef]
- Meinagh, F.A.A.; Ranjbarizad, V.; Babaei, E. New Non-Isolated High Voltage Gain Single-Switch DC-DC Converter Based on Voltage-Lift Technique*. In Proceedings of the 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, 12–14 February 2019; pp. 219–223. [Google Scholar]
- Yang, L.; Liang, T.; Chen, J. Transformerless DC–DC Converters with High Step-Up Voltage Gain. IEEE Trans. Ind. Electron. 2009, 56, 3144–3152. [Google Scholar] [CrossRef]
- AxeLZVSod, B.; Berkovich, Y.; Ioinovici, A. Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 687–696. [Google Scholar]
- Rosas-Caro, J.C.; Ramirez, J.M.; Peng, F.Z.; Valderrabano, A. A DC-DC multilevel boost converter. IET Power Electron. 2010, 3, 129–137. [Google Scholar] [CrossRef]
Parameter | Designator | Value |
---|---|---|
Input voltage | 40 V | |
Output voltage | 380 V | |
Power | 360 W | |
Switching frequency | 100 kHz |
Devices | Part Number | Specification |
---|---|---|
Switches (, ) | SiR570DP | 150 V, 77.4 A |
Diodes | STPS10200SF | 150 V, 10 A |
Capacitors | 106MMR250K | 10 μF/150 V |
Main Inductor () | CTX100-10-52-R | 300 μH |
ZVS Inductor () | XAL1580-302MED | 3 μH |
Topology | Voltage Gain (Vo/Vin) | Voltage Stress on Switches (Vs/Vin) | Maximum Voltage Stress on Diodes (VDmax/Vin) | Maximum Voltage Stress on Output Capacitors (VCo/Vin) | S/D/I/C/T | Efficiency |
---|---|---|---|---|---|---|
[9] | NI | 2/3/2/3/10 | 93.9% | |||
[12] | 2/2/2/3/9 | 95.3% | ||||
[25] (Figure 2e) | NI | 1/3/1/3/8 | 92.1% | |||
[24] (Figure 4c) | NI | NI | 1/3/1/3/8 | 95.8% | ||
[28] | 2/5/3/6/16 | 95.22% | ||||
[29] | 3/3/2/3/10 | 95.8% | ||||
[30] | 2/6/2/4/14 | 92.8% | ||||
[35] (Figure 38 with M = 1) | 2/12/2/7/23 | 95.3% | ||||
[40] (Figure 1h) | 1/4/1/4/10 | 95.44% | ||||
[46] (Figure 2c) | NI | 2/3/2/3/10 | NI | |||
[47] (Figure 11) | NI | NI | 1/2/2/3/8 | NI | ||
[48] (Figure 2, n = 2) | NI | 1/5/1/5/12 | 90% | |||
[34] | NI | 1/4/4/1/10 | 96% | |||
[39] (Figure 3) | NI | 3/9/1/7/20 | 97.35% | |||
Proposed converter | 2/4/2/5/13 | 97.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinh, M.-C.; Le, T.-T.; Park, M. A Stacked Symmetrical Non-Isolated High Step-Up Voltage Gain Converter with High Efficiency and Low Voltage Stress on Components. Energies 2024, 17, 1668. https://doi.org/10.3390/en17071668
Dinh M-C, Le T-T, Park M. A Stacked Symmetrical Non-Isolated High Step-Up Voltage Gain Converter with High Efficiency and Low Voltage Stress on Components. Energies. 2024; 17(7):1668. https://doi.org/10.3390/en17071668
Chicago/Turabian StyleDinh, Minh-Chau, Thi-Tinh Le, and Minwon Park. 2024. "A Stacked Symmetrical Non-Isolated High Step-Up Voltage Gain Converter with High Efficiency and Low Voltage Stress on Components" Energies 17, no. 7: 1668. https://doi.org/10.3390/en17071668
APA StyleDinh, M. -C., Le, T. -T., & Park, M. (2024). A Stacked Symmetrical Non-Isolated High Step-Up Voltage Gain Converter with High Efficiency and Low Voltage Stress on Components. Energies, 17(7), 1668. https://doi.org/10.3390/en17071668