Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries
Abstract
:1. Introduction
2. Adsorption Method—Adsorbents
2.1. Carbon-Based Adsorbent Materials
2.1.1. Activated Carbon
2.1.2. Activated Carbon Fiber
2.1.3. Biomass Charcoal
2.1.4. Carbon Nanotubes and Graphite
2.2. Oxygen-Containing Adsorbent Materials
2.2.1. Metal–Organic Framework (MOF) Materials
2.2.2. Zeolites (Molecular Sieves)
2.2.3. Silica Gel
2.2.4. Clay
2.3. Other Adsorbent Materials
Adsorption Resin
3. Absorption Method—Absorbents
4. Catalytic Oxidation Method and Catalytic Combustion Method—Catalysts
4.1. Precious-Metal Catalysts
4.2. Non-Precious-Metal Catalysts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Pusede, S.E.; Steiner, A.L.; Cohen, R.C. Temperature and recent trends in the chemistry of continental surface ozone. Chem. Rev. 2015, 115, 3898–3918. [Google Scholar] [CrossRef]
- Pullinen, I.; Schmitt, S.; Kang, S.; Sarrafzadeh, M.; Schlag, P.; Andres, S.; Kleist, E.; Mentel, T.F.; Rohrer, F.; Springer, M.; et al. Impact of NO x on secondary organic aerosol (SOA) formation from α-pinene and β-pinene photooxidation: The role of highly oxygenated organic nitrates. Atmos. Chem. Phys. 2020, 20, 10125–10147. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Klett, C.; Duten, X.; Tieng, S.; Touchard, S.; Jestin, P.; Hassouni, K.; Vega-González, A. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process. J. Hazard. Mater. 2014, 279, 356–364. [Google Scholar] [CrossRef]
- McDonald, B.C.; De Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yan, Y.; Li, H.; Zhang, Y.; Chen, L.; Wang, Y. Characteristics and reactivity of volatile organic compounds from non-coal emission sources in China. Atmos. Environ. 2015, 115, 153–162. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, C.; Peng, J.; Wang, T.; Wu, L.; Chen, Q.; Sun, L.; Sun, S.; Zou, C.; Zhao, J.; et al. Evaporative emission from China 5 and China 6 gasoline vehicles: Emission factors, profiles and future perspective. J. Clean. Prod. 2022, 331, 129861. [Google Scholar] [CrossRef]
- Gaspar, D.J.; Phillips, S.D.; Polikarpov, E.; Albrecht, K.O.; Jones, S.B.; George, A.; Landera, A.; Santosa, D.M.; Howe, D.T.; Baldwin, A.G.; et al. Measuring and predicting the vapor pressure of gasoline containing oxygenates. Fuel 2019, 243, 630–644. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, B.; Li, Y.; Zhang, Y.; Bi, X.; Wu, J.; Song, C.; Dai, Q.; Han, Y.; Ren, G.; et al. Multi-scale volatile organic compound (VOC) source apportionment in TianXi, China, using a receptor model coupled with 1-hr resolution data. Environ. Pollut. 2020, 265, 115023. [Google Scholar] [CrossRef]
- Guo, H.; Zou, S.C.; Tsai, W.Y.; Chan, L.Y.; Blake, D.R. Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong. Atmos. Environ. 2011, 45, 2711–2721. [Google Scholar] [CrossRef]
- Hata, H.; Yamada, H.; Kokuryo, K.; Okada, M.; Funakubo, C.; Tonokura, K. Estimation model for evaporative emissions from gasoline vehicles based on thermodynamics. Sci. Total Environ. 2018, 618, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.M.; Feng, X.Q.; Liu, Y.C.; Gao, Z.J.; Yang, Y.; Zhang, Z.; Wang, X.M.; Zheng, J.Y. Source characteristics of VOCs emissions from vehicular exhaust in the Pearl River Delta region. Acta Sci. Circumstantiae 2014, 34, 826–834. [Google Scholar]
- Fang, L.; Hao, R.; Xie, X.; Li, G.; Wang, H. Characteristics of VOCs emissions from circulating water of typical petrochemical enterprises and their impact on surroundings. Atmosphere 2022, 13, 1985. [Google Scholar] [CrossRef]
- Xie, H.; Gao, W.; Zhao, W.; Han, Y.; Gao, Y.; Liu, B.; Han, Y. Source profile study of VOCs unorganized emissions from typical aromatic devices in petrochemical industry. Sci. Total Environ. 2023, 889, 164098. [Google Scholar] [CrossRef]
- Liang, X.; Chen, X.; Zhang, J.; Shi, T.; Sun, X.; Fan, L.; Wang, L.; Ye, D. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China. Atmos. Environ. 2017, 162, 115–126. [Google Scholar] [CrossRef]
- GB 37822-2019; Standard for Fugitive Emission of Volatile Organic Compounds. National Standard of the People’s Republic of China: Beijing, China, 2019.
- GB 31570—2015; Emission Standard of Pollutants for Petroleum Refining Industry. China Environmental Science: Beijing, China, 2015.
- GB 31571—2015; Emission Standard of Pollutants for Petroleum Chemistry Industry. China Environmental Science: Beijing, China, 2015.
- GB 24409-2020; Limit of Harmful Substances of Vehicle Coatings. State Administration for Market Supervision and Regulation, China National Committee for Standardization: Beijing, China, 2020.
- GB 30981-2020; Limit of Harmful Substances of Industrial Protective Coatings. State Administration for Market Supervision and Regulation, China National Committee for Standardization: Beijing, China, 2020.
- GB 20951—2020; Emission Standard of Air Pollutant for Petroleum Transport. Ministry of Ecology and Environment, State Administration for Market Supervision and Administration (SAMSA): Beijing, China, 2020.
- GB 20952—2020; Emission Standard of Air Pollutant for Gasoline Filling Stations. Ministry of Ecology and Environment, State Administration for Market Supervision and Administration (SAMSA): Beijing, China, 2020.
- GB 33372-2020; Limit of Volatile Organic Compounds Content in Adhesive. State Administration for Market Supervision and Regulation, China National Committee for Standardization: Beijing, China, 2020.
- GB 38507-2020; Limits of Volatile Organic Compounds (VOCs) in Printing Ink. State Administration for Market Supervision and Regulation, China National Committee for Standardization: Beijing, China, 2020.
- GB 38508-2020; Limits for Volatile Organic Compounds Content in Cleaning Agents. State Administration for Market Supervision and Regulation, China National Committee for Standardization: Beijing, China, 2020.
- GB/T 38597-2020; Technical Requirement for Low-Volatile-Organic-Compound-Content Coatings Product. State Administration for Market Supervision and Regulation, China National Committee for Standardization: Beijing, China, 2020.
- Kujawa, J.; Zięba, M.; Zięba, W.; Al-Gharabli, S.; Kujawski, W.; Terzyk, A.P. Hedgehog-like structure, PVDF-carbon nanohorn hybrid membranes for improved removal of VOCs from water. Chem. Eng. J. 2022, 438, 135574. [Google Scholar] [CrossRef]
- Li, D.; Chen, X.; Shu, C.; Huang, Y.; Zhang, P.; Xiao, B.; Zhou, D. Ca-decorated MoBOH as a promising adsorbent for CH2O, C6H6, C3H6O, and C2HCl3 removal at room temperature: A first-principle study. Appl. Surf. Sci. 2021, 563, 150233. [Google Scholar] [CrossRef]
- Liang, X.M.; Sun, X.B.; Xu, J.T.; Ye, D.Q. Improved emissions inventory and VOC speciation for industrial OFP estimation in China. Sci. Total Environ. 2020, 745, 140838. [Google Scholar] [CrossRef]
- JJia, L.; Shi, J.; Long, C.; Lian, F.; Xing, B. VOCs adsorption on activated carbon with initial water vapor contents: Adsorption mechanism and modified characteristic curves. Sci. Total Environ. 2020, 731, 139184. [Google Scholar] [CrossRef]
- Rakić, V.; Rac, V.; Krmar, M.; Otman, O.; Auroux, A. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J. Hazard. Mater. 2015, 282, 141–149. [Google Scholar] [CrossRef]
- Lu, X.; He, J.; Xie, J.; Zhou, Y.; Liu, S.; Zhu, Q.; Lu, H. Pree and iparation of hydrophobic hierarchical pore carbon–silica compositts adsorption performance toward volatile organic compounds. J. Environ. Sci. 2020, 87, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xi, Y.; Chen, T.; Tang, F.; Cai, J.; Ma, J. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity. Sep. Purif. Technol. 2021, 272, 118659. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Q.; Hao, M.; Zhang, Y.; Ren, X.; Cao, F.; Zhang, L.; Sun, Q.; Wennersten, R. Effect of functional groups on VOCs adsorption by activated carbon: DFT study. Surf. Sci. 2023, 736, 122352. [Google Scholar] [CrossRef]
- Yue, Z.; Vakili, A.; Wang, J. Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds. Chem. Eng. J. 2017, 330, 183–190. [Google Scholar] [CrossRef]
- Xu, A.W.; Lan, Y.; Li, Y.R. Characteristics, Development and Application of Activated Carbon Fiber. Prog. Text. Sci. Technol. 2023, 2, 6–10. [Google Scholar]
- Baur, G.B.; Yuranov, I.; Kiwi-Minsker, L. Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde. Catal. Today 2015, 249, 252–258. [Google Scholar] [CrossRef]
- Wang, Y.H.; Bayatpour, S.; Qian, X.; Frigo-Vaz, B.; Wang, P. Activated carbon fibers via reductive carbonization of cellulosic biomass for adsorption of nonpolar volatile organic compounds. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125908. [Google Scholar] [CrossRef]
- Park, S.; Yaqub, M.; Lee, S.; Lee, W. Adsorption of acetaldehyde from air by activated carbon and carbon fibers. Environ. Eng. Res. 2022, 27, 200549. [Google Scholar] [CrossRef]
- Economy, J.; Daley, M.; Mangun, C. Activated Carbon Fibers-Past, Present and Future; Preprints of Papers; American Chemical Society, Division of Fuel Chemistry; CONF-960376-; American Chemical Society: Washington, DC, USA, 1996; Volume 41. [Google Scholar]
- Mangun, C.L.; Yue, Z.; Economy, J.; Maloney, S.; Kemme, P.; Cropek, D. Adsorption of organic contaminants from water using tailored ACFs. Chem. Mater. 2001, 13, 2356–2360. [Google Scholar] [CrossRef]
- Yue, Z.; Economy, J. Carbonization and activation for production of activated carbon fibers. In Activated Carbon Fiber and Textiles; Elsevier: Amsterdam, The Netherlands, 2017; pp. 61–139. [Google Scholar]
- Wu, R.; Bao, A. Preparation of cellulose carbon material from cow dung and its CO2 adsorption performance. J. CO2 Util. 2023, 68, 102377. [Google Scholar] [CrossRef]
- Zhu, L.; Shi, T.; Chen, Y. Preparation and characteristics of graphene oxide from the biomass carbon material using fir powder as precursor. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 961–967. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, C.; Lin, B.; Huang, Q. Surface modified and activated waste bone char for rapid and efficient VOCs adsorption. Chemosphere 2020, 256, 127054. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, I.; Torreggiani, A.; Pituello, C.; Pisi, A.; Morari, F.; Francioso, O. Automated image analysis and hyperspectral imagery with enhanced dark field microscopy applied to biochars produced at different temperatures. Waste Manag. 2020, 105, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, A.; Rangkooy, H.; Jonidi-Jafari, A.; Khavanin, A. Surface modification of bone char for removal of formaldehyde from air. Appl. Surf. Sci. 2013, 286, 235–239. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Sun, J.; Chen, J.; Zhang, J.; Wang, Y.; Wang, J.; Zhang, H. Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar. Spectrosc. Lett. 2019, 52, 367–375. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.; Xu, L.; Liu, Z. Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents. Ecotoxicol. Environ. Saf. 2018, 165, 115–125. [Google Scholar] [CrossRef]
- Gomez-Delgado, E.; Nunell, G.; Cukierman, A.L.; Bonelli, P. Agroindustrial waste conversion into ultramicroporous activated carbons for greenhouse gases adsorption-based processes. Bioresour. Technol. Rep. 2022, 18, 101008. [Google Scholar] [CrossRef]
- Yue, X.; Zhao, J.; Shi, H.; Chi, Y.; Salam, M. Preparation of composite adsorbents of activated carbon supported MgO/MnO2 and adsorption of Rhodamine B. Water Sci. Technol. 2020, 81, 906–914. [Google Scholar] [CrossRef]
- Yang, F.; Li, W.; Zhang, L.; Tu, W.; Wang, X.; Li, L.; Yu, C.; Gao, Q.; Yuan, A.; Pan, J. Drastically boosting volatile acetone capture enabled by N-doping activated carbon: An interesting deep surface digging effect. Sep. Purif. Technol. 2021, 276, 119280. [Google Scholar] [CrossRef]
- Hwang, O.; Lee, S.R.; Cho, S.; Ro, K.S.; Spiehs, M.; Woodbury, B.; Silva, P.J.; Han, D.-W.; Choi, H.; Kim, K.-Y.; et al. Efficacy of different biochars in removing odorous volatile organic compounds (VOCs) emitted from swine manure. ACS Sustain. Chem. Eng. 2018, 6, 14239–14247. [Google Scholar] [CrossRef]
- Shen, Y. Biomass-derived porous carbons for sorption of Volatile organic compounds (VOCs). Fuel 2023, 336, 126801. [Google Scholar] [CrossRef]
- Long, R.Q.; Yang, R.T. Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 2001, 123, 2058–2059. [Google Scholar] [CrossRef] [PubMed]
- Crespo, D.; Yang, R.T. Adsorption of organic vapors on single-walled carbon nanotubes. Ind. Eng. Chem. Res. 2006, 45, 5524–5530. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Luan, Z.; Di, Z.; Wang, H.; Tian, B.; Jia, Z. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 2003, 376, 154–158. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, L.; Xing, B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 2006, 40, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Kondratyuk, P.; Yates, J.T., Jr. Desorption kinetic detection of different adsorption sites on opened carbon single walled nanotubes: The adsorption of n-nonane and CCl4. Chem. Phys. Lett. 2005, 410, 324–329. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, J.K.; Wu, Y.; Murray, R.W. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 2003, 3, 403–407. [Google Scholar] [CrossRef]
- Jang, Y.; Bang, J.; Seon, Y.S.; You, D.W.; Oh, J.S.; Jung, K.W. Carbon nanotube sponges as an enrichment material for aromatic volatile organic compounds. J. Chromatogr. A 2020, 1617, 460840. [Google Scholar] [CrossRef]
- Hsu, S.C.; Lu, C. Adsorption kinetic, thermodynamic, and desorption studies of isopropyl alcohol vapor by oxidized single-walled carbon nanotubes. J. Air Waste Manag. Assoc. 2009, 59, 990–997. [Google Scholar] [CrossRef]
- Hussain, C.M.; Saridara, C.; Mitra, S. Modifying the sorption properties of multi-walled carbon nanotubes via covalent functionalization. Analyst 2009, 134, 1928–1933. [Google Scholar] [CrossRef]
- Valcárcel, M.; Cárdenas, S.; Simonet, B.M.; Moliner-Martínez, Y.; Lucena, R. Carbon nanostructures as sorbent materials in analytical processes. TrAC Trends Anal. Chem. 2008, 27, 34–43. [Google Scholar] [CrossRef]
- Li, S.; Tian, S.; Du, C.; He, C.; Cen, C.; Xiong, Y. Vaseline-loaded expanded graphite as a new adsorbent for toluene. Chem. Eng. J. 2010, 162, 546–551. [Google Scholar] [CrossRef]
- Lim, S.T.; Kim, J.H.; Lee, C.Y.; Koo, S.; Jerng, D.W.; Wongwises, S.; Ahn, H.S. Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability. Sci. Rep. 2019, 9, 10922. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Pan, C.; Song, K.; Nam, J.C.; Wu, F.; You, Z.; Hao, Z.; Li, J.; Zhang, Z. Bamboo-derived hydrophobic porous graphitized carbon for adsorption of volatile organic compounds. Chem. Eng. J. 2023, 461, 141979. [Google Scholar] [CrossRef]
- Zhang, H.; Li, G.L.; Zhang, K.G. Advances of Metal-Organic Frameworks in Adsorption and Separation Applications, China. Acta Chim. Sin. 2017, 75, 841–859. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Jhinjer, H.S.; Singh, A.; Bhattacharya, S.; Jassal, M.; Agrawal, A.K. Metal-organic frameworks functionalized smart textiles for adsorptive removal of hazardous aromatic pollutants from ambient air. J. Hazard. Mater. 2021, 411, 125056. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.H.; Kumar, V.; Giannakoudakis, D.A.; Boukhvalov, D.W. Adsorptive removal of an eight-component volatile organic compound mixture by Cu-, Co-, and Zr-metal-organic frameworks: Experimental and theoretical studies. Chem. Eng. J. 2020, 397, 125391. [Google Scholar] [CrossRef]
- Vellingiri, K.; Kumar, P.; Deep, A.; Kim, K.H. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure. Chem. Eng. J. 2017, 307, 1116–1126. [Google Scholar] [CrossRef]
- Huang, C.Y.; Song, M.; Gu, Z.Y.; Wang, H.F.; Yan, X.P. Probing the adsorption characteristic of metal–organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol. 2011, 45, 4490–4496. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Hu, P.; Tong, Z.; Zhao, Z.; Zhao, Z. Enhanced hydrophobic MIL (Cr) metal-organic framework with high capacity and selectivity for benzene VOCs capture from high humid air. Chem. Eng. J. 2017, 313, 1122–1131. [Google Scholar] [CrossRef]
- Tanabe, K.K.; Cohen, S.M. Postsynthetic modification of metal–organic frameworks—A progress report. Chem. Soc. Rev. 2011, 40, 498–519. [Google Scholar] [CrossRef]
- Duan, C.; Yu, Y.; Xiao, J.; Zhang, X.; Li, L.; Yang, P.; Wu, J.; Xi, H. Water-based routes for synthesis of metal-organic frameworks: A review. Sci. China Mater. 2020, 63, 667–685. [Google Scholar] [CrossRef]
- Qin, C.; Wang, B.; Wu, N.; Han, C.; Wang, Y. General strategy to fabricate porous Co-based bimetallic metal oxide nanosheets for high-performance CO sensing. ACS Appl. Mater. Interfaces 2021, 13, 26318–26329. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Y.; Li, W.; Liu, F.; Qi, X.; Xue, M.; Wang, Y.; Zhao, C. Synthesis and application of Cu-BTC@ ZSM-5 composites as effective adsorbents for removal of toluene gas under moist ambience: Kinetics, thermodynamics, and mechanism studies. Environ. Sci. Pollut. Res. 2020, 27, 6052–6065. [Google Scholar] [CrossRef] [PubMed]
- Centre National de la Recherche Scientifique; Ecole Normale Superieure; Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris; Instituto Superior Tecnico. Metal Organic Frameworks for the Selective Capture of Volatil Organic Compounds Comprising Carboxylic Acid Functional Group(s) and/or Volatile Alcohols. WO2023104665A1, 15 June 2023. [Google Scholar]
- Zheng, Z.; Nguyen, H.L.; Hanikel, N.; Li, K.K.Y.; Zhou, Z.; Ma, T.; Yaghi, O.M. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 2023, 18, 136–156. [Google Scholar] [CrossRef]
- Zuliani, A.; Castillejos, M.C.; Khiar, N. Continuous flow synthesis of PCN-222 (MOF-545) with controlled size and morphology: A sustainable approach for efficient production. Green Chem. 2023, 25, 10596–10610. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Chiang, P.C.; Huang, C.P. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 2001, 39, 523–534. [Google Scholar] [CrossRef]
- Kang, S.; Ma, J.; Wu, Q.; Deng, H. Adsorptive removal of dichloromethane vapor on FAU and MFI zeolites: Si/Al ratio effect and mechanism. J. Chem. Eng. Data 2018, 63, 2211–2218. [Google Scholar] [CrossRef]
- Gao, J.A.; Wang, W.; Zhang, J. The Study of Surface Coating of ZSM-5 Zeolites and Adsorption of Toluene, China. Mod. Chem. Res. 2019, 11, 110–113. [Google Scholar]
- Gao, J.A.; Li, X.; Shi, D.J. Honeycomb molding process of ZSM-5 molecular sieves and adsorption to toluene, China. Mod. Chem. Ind. 2020, 40, 123–127. [Google Scholar]
- Bhatia, S.; Abdullah, A.Z.; Wong, C.T. Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites: Experimental and modelling studies. J. Hazard. Mater. 2009, 163, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Zhao, Y.; Qian, C. Effect of Pore Structure of Alkali Modified ZSM-5 Zeoliteon Its VOCs Adsorption Performance, China. Acta Pet. Sin. Pet. Process. 2024, 40, 37. [Google Scholar]
- Shandong Rongchuang Catalytic New Material Co., Ltd.; Beijing University of Chemical Technology. A Recyclable Regenerative VOCs Adsorbent and Its Preparation Method and Application. Chinese Patent CN112516959B, 18 April 2023. [Google Scholar]
- Chen, W.; Wang, P.F. VOCs removal performance of barium-modified ZSM-5 molecular sieve and its adsorption mechanism, China. Shanghai Chem. Ind. 2023, 48, 9–17. [Google Scholar]
- Sigot, L.; Ducom, G.; Germain, P. Adsorption of octamethylcyclotetrasiloxane (D4) on silica gel (SG): Retention mechanism. Microporous Mesoporous Mater. 2015, 213, 118–124. [Google Scholar] [CrossRef]
- Kutluay, S.; Temel, F. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125848. [Google Scholar] [CrossRef]
- Li, J.; Cai, J.; Liu, X.; Guo, Y.; Sui, H.; He, L. Design and Synthesis of a Water-Resistant Mesoporous Silica Gel for the VOC Adsorption–Desorption Treatment. Ind. Eng. Chem. Res. 2023, 62, 20833–20843. [Google Scholar] [CrossRef]
- Sui, H.; An, P.; Li, X.; Cong, S.; He, L. Removal and recovery of o-xylene by silica gel using vacuum swing adsorption. Chem. Eng. J. 2017, 316, 232–242. [Google Scholar] [CrossRef]
- Sui, H.; Liu, H.; An, P.; He, L.; Li, X.; Cong, S. Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process. J. Taiwan Inst. Chem. Eng. 2017, 74, 218–224. [Google Scholar] [CrossRef]
- Farjadian, F.; Hosseini, M.; Ghasemi, S.; Tamami, B. Phosphinite-functionalized silica and hexagonal mesoporous silica containing palladium nanoparticles in Heck coupling reaction: Synthesis, characterization, and catalytic activity. RSC Adv. 2015, 5, 79976–79987. [Google Scholar] [CrossRef]
- Qu, F.; Zhu, L.; Yang, K. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). J. Hazard. Mater. 2009, 170, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tian, S.; Shi, Y. Adsorption of volatile organic compounds onto porous clay heterostructures based on spent organobentonites. Clays Clay Miner. 2005, 53, 123–136. [Google Scholar] [CrossRef]
- Karaoglu, M.H.; Dogan, M.; Alkan, M. Removal of reactive blue 221 by kaolinite from aqueous solutions. Ind. Eng. Chem. Res. 2010, 49, 1534–1540. [Google Scholar] [CrossRef]
- Edmiston, P.L.; Osborne, C.; Reinbold, K.P.; Pickett, D.C.; Underwood, L.A. Pilot scale testing composite swellable organosilica nanoscale zero-valent iron—Iron-Osorb®—For in situ remediation of trichloroethylene. Remediat. J. 2011, 22, 105–123. [Google Scholar] [CrossRef]
- Mobasser, S.; Wager, Y.; Dittrich, T.M. Indoor air purification of volatile organic compounds (VOCs) using activated carbon, zeolite, and organosilica sorbents. Ind. Eng. Chem. Res. 2022, 61, 6791–6801. [Google Scholar] [CrossRef]
- Jarraya, I.; Fourmentin, S.; Benzina, M.; Bouaziz, S. VOC adsorption on raw and modified clay materials. Chem. Geol. 2010, 275, 1–8. [Google Scholar] [CrossRef]
- Gong, S.F.; Long, C.T.; Liu, Y.W. Synthesis of highly crosslinked cylindrical polystyrene adsorbents for efficient adsorption of toluene, China. Ion Exch. Adsorpt. 2012, 37, 244–252. [Google Scholar]
- Zuliani, A.; Chelazzi, D.; Mastrangelo, R.; Giorgi, R.; Baglioni, P. Adsorption kinetics of acetic acid into ZnO/castor oil-derived polyurethanes. J. Colloid Interface Sci. 2023, 632, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Luo, J.; Sun, T.; Yu, F.; Li, C. The absorption performance of ionic liquids–PEG200 complex absorbent for VOCs. Energies 2021, 14, 3592. [Google Scholar] [CrossRef]
- Gui, C.; Li, G.; Zhu, R.; Lei, Z.; Dong, Y. Capturing VOCs in the pharmaceutical industry with ionic liquids. Chem. Eng. Sci. 2022, 252, 117504. [Google Scholar] [CrossRef]
- Fahri, F.; Bacha, K.; Chiki, F.F.; Mbakidi, J.P.; Panda, S.; Bouquillon, S.; Fourmentin, S. Air pollution: New bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency. Environ. Chem. Lett. 2020, 18, 1403–1411. [Google Scholar] [CrossRef]
- Chen, C.C.; Huang, Y.H.; Fang, J.Y. Hydrophobic deep eutectic solvents as green absorbents for hydrophilic VOC elimination. J. Hazard. Mater. 2022, 424, 127366. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Moura, L.; Moufawad, T.; Ferreira, M.; Bricout, H.; Tilloy, S.; Monflier, E.; Gomes, M.F.C.; Landy, D.; Fourmentin, S. Deep eutectic solvents as green absorbents of volatile organic pollutants. Environ. Chem. Lett. 2017, 15, 747–753. [Google Scholar] [CrossRef]
- Moufawad, T.; Gomes, M.C.; Fourmentin, S. Deep eutectic solvents as absorbents for VOC and VOC mixtures in static and dynamic processes. Chem. Eng. J. 2022, 448, 137619. [Google Scholar] [CrossRef]
- Panda, S.; Fourmentin, S. Cyclodextrin-based supramolecular low melting mixtures: Efficient absorbents for volatile organic compounds abatement. Environ. Sci. Pollut. Res. 2022, 29, 264–270. [Google Scholar] [CrossRef]
- Carpentier, J.; Lamonier, J.F.; Siffert, S.; Zhilinskaya, E.A.; Aboukaıs, A. Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene. Appl. Catal. A Gen. 2002, 234, 91–101. [Google Scholar] [CrossRef]
- Yu, X.; Deng, J.; Liu, Y.; Jing, L.; Hou, Z.; Pei, W.; Dai, H. Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis. Catalysts 2022, 12, 1239. [Google Scholar] [CrossRef]
- Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.R.; Li, J.W. Preparation of Cu-Mn-Zr composite catalyst and performance for catalytic oxidation of ethyl acetate. China Environ. Sci. 2018, 38, 2927–2933. [Google Scholar]
- Ying, K.; Chen, R.Y.; Liu, Z.M. Catalytic Removal of Toluene Over Manganese-Based Oxide Catalysts, China. Mater. Rep. 2020, 34, 23051–23056. [Google Scholar]
- Mu, X.; Ding, H.; Pan, W.; Zhou, Q.; Du, W.; Qiu, K.; Ma, J.; Zhang, K. Research progress in catalytic oxidation of volatile organic compound acetone. J. Environ. Chem. Eng. 2021, 9, 105650. [Google Scholar] [CrossRef]
- Fan, J.; Ren, Q.; Mo, S.; Sun, Y.; Fu, M.; Wu, J.; Chen, L.; Chen, P.; Ye, D. Transient in-situ DRIFTS Investigation of Catalytic Oxidation of Toluene over α-, γ-and β-MnO2. ChemCatChem 2020, 12, 1046–1054. [Google Scholar] [CrossRef]
- Kim, S.C.; Shim, W.G. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B Environ. 2010, 98, 180–185. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Zhu, S.; Fu, S.; Dong, X.; Ida, S.; Zhang, L.; Guo, L. Layered δ-MnO2 as an active catalyst for toluene catalytic combustion. Appl. Catal. A Gen. 2020, 602, 117715. [Google Scholar] [CrossRef]
- Yang, W.; Su, Z.A.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B Environ. 2020, 260, 118150. [Google Scholar] [CrossRef]
- Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 2012, 46, 4034–4041. [Google Scholar] [CrossRef]
- Song, C.; Yi, Q.R.; Li, J.W. Preparation of Mn2O3 with different morphologies and their catalytic performance for chlorobenzene, China. J. Funct. Mater. 2014, 45, 13050–13055. [Google Scholar]
- Li, W.; Bollecker, S.S.; Schofield, J.D. Glutathione and related thiol compounds. I. Glutathione and related thiol compounds in flour. J. Cereal Sci. 2004, 39, 205–212. [Google Scholar] [CrossRef]
- Ismail, A.; Zahid, M.; Hu, B.; Khan, A.; Ali, N.; Zhu, Y. Effect of morphology-dependent oxygen vacancies of CeO2 on the catalytic oxidation of toluene. Catalysts 2022, 12, 1034. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, Y.; Zhang, G.; Zeng, X.; Xu, G.; Cui, Y. Toluene catalytic oxidation over gold catalysts supported on cerium-based high-entropy oxides. Environ. Technol. 2023, 1–13. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, C.; Zhang, W.; Song, Y.; Liu, B.; Wu, H.; Zhang, Z.; Yang, H. Commercial SCR catalyst modified with Cu metal to simultaneously efficiently remove NO and toluene in the fuel gas. Environ. Sci. Pollut. Res. 2023, 30, 96543–96553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Valverde, J.L.; Giroir-Fendler, A. Co3O4-based catalysts for propane total oxidation: A state-of-the-art minireview. Appl. Catal. B Environ. 2023, 337, 122908. [Google Scholar] [CrossRef]
- Sun, L.; Liang, X.; Liu, H.; Cao, H.; Liu, X.; Jin, Y.; Li, X.; Chen, S.; Wu, X. Activation of Co-O bond in (110) facet exposed Co3O4 by Cu doping for the boost of propane catalytic oxidation. J. Hazard. Mater. 2023, 452, 131319. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Zhang, J.; Liu, Y. High catalytic performance of neodymium modified Co3O4 for toluene oxidation. J. Rare Earths 2022, 42, 94–101. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Zhang, W.; Liu, L.; Ju, J. Efficient VOC removal over grape-like GdCoO3 perovskite prepared from the viscous mixture. Mater. Lett. 2024, 357, 135796. [Google Scholar] [CrossRef]
- Hu, W.; Guo, T.; Ma, K.; Li, X.; Luo, W.; Wu, M.; Guo, H.; Zhang, Y.; Shangguan, W. Promoted catalytic performance of Ag-Mn bimetal catalysts synthesized through reduction route. J. Environ. Sci. 2024, 137, 358–369. [Google Scholar] [CrossRef]
- Shah, P.M.; Bailey, L.A.; Taylor, S.H. The influence of cerium to manganese ratio and preparation method on the activity of ceria-manganese mixed metal oxide catalysts for VOC total oxidation. Catalysts 2023, 13, 114. [Google Scholar] [CrossRef]
- Cocuzza, C.; Sartoretti, E.; Novara, C.; Giorgis, F.; Bensaid, S.; Russo, N.; Russo, N.; Fino, D.; Piumetti, M. Copper-manganese oxide catalysts prepared by solution combustion synthesis for total oxidation of VOCs. Catal. Today 2023, 423, 114292. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, H.; Jiang, S.; Zhang, X.; Song, Z. Preparation of Au@ Cu-MnO2 and its application in the catalytic oxidation of VOCs. Mater. Lett. 2023, 340, 134109. [Google Scholar] [CrossRef]
- He, C.; Ao, C.; Ruan, S.; Xu, K.; Zhang, L. Catalytic combustion of propane over Zr-modified Co3O4 catalysts: An experimental and theoretical study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128617. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, W.; Zhang, F.; Zhang, S.; Jin, W. Experimental study and kinetic model analysis on photothermal catalysis of formaldehyde by manganese and cerium based catalytic materials. J. Air Waste Manag. Assoc. 2023, 73, 345–361. [Google Scholar] [CrossRef]
- Yang, Q.Q. Research Progress of Supported Catalysts Based on Porous Materials for Catalytic Oxidation of VOCs, China. Chem. Eng. Des. Commun. 2023, 49, 70–77. [Google Scholar]
- Chen, X.; Yu, E.; Cai, S.; Jia, H.; Chen, J.; Liang, P. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem. Eng. 2018, 344, 469–479. [Google Scholar] [CrossRef]
- Du, Z.; Yuan, Y.; Zhou, C.; Li, W.; Wang, H.; Wu, H.; Zhang, Z.; Yang, H. Gaseous toluene heterogeneous oxidative degradation by iron-based hypercrosslinked polymeric resin LXQ-10. Fuel 2023, 344, 128080. [Google Scholar] [CrossRef]
- Ma, X.; Wang, W.; Zhang, X.; Li, H.; Sun, J.; Liu, X.; Sun, C. MOF-derived FeOx with highly dispersed active sites as an efficient catalyst for enchaning catalytic oxidation of VOCs. J. Environ. Chem. Eng. 2024, 12, 111966. [Google Scholar] [CrossRef]
Ordinal Number | Standard Caliber | Standard Name | Implementation Date |
---|---|---|---|
1 | GB 31570—2015 [18] | Emission standard of pollutants for the petroleum refining industry | 1 July 2015 |
2 | GB 31571—2015 [19] | Emission standard of pollutants for the petroleum chemistry industry | 1 July 2015 |
3 | GB 24409-2020 [20] | Limit of harmful substances from vehicle coatings | 1 December 2020 |
4 | GB 30981-2020 [21] | Limit of harmful substances from industrial protective coatings | 1 December 2020 |
5 | GB 20951—2020 [22] | Emission standard for air pollutants in petroleum transport | 1 April 2021 |
6 | GB 20952—2020 [23] | Emission standard for air pollutants in gasoline filling stations | 1 April 2021 |
7 | GB 33372-2020 [24] | Limits for volatile organic compound content in adhesives | 1 December 2020 |
8 | GB 38507-2020 [25] | Limits for volatile organic compounds (VOCs) in printing inks | 1 April 2021 |
9 | GB/T 38508-2020 [26] | Limits for volatile organic compound content in cleaning agents | 1 December 2020 |
10 | GB/T 38597-2020 [27] | Technical requirement for low-volatile-organic-compound-content coating products | 1 February 2021 |
Activated-Carbon Status | Water Contact Angle (>90 Indicates Hydrophobicity) | Adsorption of Toluene (RH: 0%, 60%, 90%) (mg/g) (Breakthrough Adsorption Capacity and Saturation Adsorption Capacity) | Toluene Adsorbed after Regeneration (1st, 2nd, 3rd) (mg/g) (Breakthrough Adsorption Capacity and Saturation Adsorption Capacity) |
---|---|---|---|
Bare AC | 111.6° ± 1.61° | 462.1–564.1 | 165.4–237.3 |
232.5–311.0 | 120.0–172.4 | ||
170.0–201.3 | 119.7–160.4 | ||
AC/TEOS-30%TMCS-24h | 143.6° ± 2.66° | 363.4–439.7 | 247.3–357.2 |
352.9–413.3 | 152.4–229.6 | ||
325.3–397.8 | 150.9–218.8 | ||
C/TEOS-50%TMCS-24h | 143.4° ± 1.35° | 379.3–444.6 | |
366.1–404.9 | |||
332.1–384.6 |
Modification Method | Purpose | Common Reagents |
---|---|---|
Alkali modification | Increased surface area, oxygenated functional groups | KOH, NaOH, ammonia, etc. |
Acid modification | To remove impurities such as metals and to introduce acid functional groups on the surface of the physical carbon | Sulfuric acid, nitric acid, phosphoric acid and citric acid |
Grafting of chemical functional groups | Increased adsorption properties, regulated hydrophilic/hydrophobicity, pH, surface charge, etc. | Carboxy, carbonyl, phenolic hydroxyl and lactone groups. |
Metal salt or metal oxide modification | To improve the adsorption efficiency toward VOCs, it is necessary to add properties such as catalytic and magnetic properties | MgNO3, MgSO4, MgCl2, CH3COOH. |
Water Contact Angle | Polarities |
---|---|
0° ≤ θ ≤ 70° | Hydrophilic |
70° ≤ θ ≤ 110° | Mesopolar |
110° ≤ θ ≤ 180° | Hydrophobic |
Absorbent Material | Pros | Cons | Applicable VOC Types |
---|---|---|---|
raw materials | High adsorption capacity, acid and alkali resistance, low cost | Incomplete desorption/desorption Difficult regeneration due to high-temperature resistance | Small molecular weight, medium to high polarity, gaseous, water-soluble, and aromatic VOCs |
activated carbon fiber | Fast adsorption, easy regeneration, large adsorption capacity | Higher cost, easy to saturate, poor specificity | Small molecular weight, low to medium polarity, and aromatic groups containing VOCs. |
biochar | Green environmental protection, high-efficiency adsorption, safety | Slow adsorption speed, high cost, poor adsorption selectivity | Large molecular weight, medium to low polarity, and oxygenated compounds |
carbon nanotube | Fast adsorption, efficient adsorption, renewability | High preparation cost, poor stability, possible toxicity, and environmental impacts | Adsorption of many types of VOCs, especially small molecular weight, polar, and aromatic hydrocarbon VOCs |
graphene | Highly efficient adsorption, high stability, renewability | Slow adsorption speed, easy to saturate, can only be used in specific environments. | Small molecular weight, polar, and aromatic VOCs |
MOF | With high adsorption capacity, the special network structure is predictable, versatile, and tunable. | High cost of preparation of precursors, poor thermal stability | A variety of VOCs with different molecular weights, polarities, and chemical properties |
zeolite molecular sieve | Highly ordered in molecular size, adjustable pore size, microporous pore, rich skeleton structure, selective adsorption according to the molecular size of VOCs, and molecular sieve thermal stability, easy to regenerate. | The adsorption effect is affected by temperature and humidity | Small molecular weight, low polarity, volatile organic compounds that are stable at moderate to high temperatures. |
silica gel | Good stability, high adaptability to humidity, simple operation | Poor hydrothermal stability and mainly microporous structure, not conducive to the adsorption of VOC gas at low concentrations, easily rigid | Small molecules, low to medium polarity, VOCs in humid environments, VOCs that require high reproducibility and stability, and VOCs that are suitable for operation at low temperatures and do not require particularly rapid treatment. |
clay | Low cost, environmental protection, stable adsorption effect | Limited capacity, slow adsorption speed, short replacement cycle, greatly affected by humidity | Suitable for the adsorption of polar and small- and medium-sized molecules, humid environments, VOCs requiring rapid adsorption, high renewability requirements, low-cost needs, and the need for flexible control of adsorption performance |
adsorption resin | High-efficiency adsorption, easy operation, good selectivity | High cost and limited adsorption capacity | Suitable for the adsorption of high polarity, large molecular weight, liquid phase VOCs requiring selective adsorption, high efficiency adsorption, good regeneration performance, as well as special environmental adaptability. |
Absorbent Type | Pros | Cons | Applicable VOC Types |
---|---|---|---|
organic solvent | Effective removal, a wide range of applications | Toxic, high energy consumption | Suitable for hydrophobic, polar, and specific compounds; |
surfactant | Easy to operate, selective, efficient absorption | Difficult to regenerate, poor regeneration, pollution of water quality | Hydrophobic, polar |
microemulsion | Efficient absorption and good stability | Complex operation, high cost, need for waste liquid treatment | Hydrophobic, polar, volatile compounds at high temperatures |
ionic liquid | Thermally stable, renewable, highly efficient, relatively environmentally friendly | High cost, toxicity limitations, solubility limitations | Hydrophobic, polar, volatile compounds at high temperatures; unsuitable for high-molecular-weight and toxic compounds |
hydrophobic deep eutectic solvents | High absorption efficiency, green, flexible, renewable | High cost | Suitable for low-molecular-weight VOCs |
Temperature | Catalytic Efficiency | Formaldehyde Concentration (ppm) | Catalytic Efficiency | Load Rate (g/m2) | Catalytic Efficiency |
---|---|---|---|---|---|
56.7 ± 0.2 °C | 76.2% | 200 | 63% | 10 | 62.8% |
62.6 ± 0.2 °C | 78.3% | 500 | 78.3% | 20 | 78.3% |
68.2 ± 0.2 °C | 82.1% | 1000 | 70.6% | 40 | 81.1% |
Catalysts | Pros | Cons | Applicable VOCs |
---|---|---|---|
Precious-metal catalysts | Anti-toxicity, high activity, good stability | High cost, easy to be poisoned, scarce resources | Exhaust gases with highly volatile organic compounds (VOCs), such as benzene compounds, aldehydes, phenols, ketones, and so on. These VOCs are usually highly reactive and more difficult to degrade. |
Non-precious-metal catalysts | Inexpensive, resistant to poisoning, resourceful | Poor activity, poor stability | Suitable for treating some common and less difficult-to-degrade VOCs, such as some low-molecular-weight alcohols, ketones, aldehydes, etc. |
Manganese oxide catalysts | Low cost, environmentally friendly, high activity | Poor stability, need to be regenerated frequently, general selection. | Manganese-based oxide catalysts are suitable for treating some relatively simple low-molecular-weight VOCs, such as alcohols, aldehydes, ketones, etc. |
Cerium-based oxide catalysts | Resistant to toxinization and highly active | Expensive, poor selectivity | Suitable for treating some VOCs containing sulfur, chlorine, etc., which can easily generate toxic intermediates, such as mercaptans and chlorinated alkanes. |
Copper-based oxide catalysts | High activity, good stability | Active, poor stability | Suitable for treating some VOCs containing active groups such as hydroxyl and ketone groups, such as alcohols and ketones. |
Cobalt-based oxide catalysts | Low cost, high selectivity | High cost, general stability | Suitable for treating some VOCs containing high redox-reaction activity, such as alcohols, aldehydes, and ketones. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Zhu, Y.; Yuan, J.; Guo, X.; Zhang, Q. Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries. Energies 2024, 17, 1861. https://doi.org/10.3390/en17081861
Wu L, Zhu Y, Yuan J, Guo X, Zhang Q. Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries. Energies. 2024; 17(8):1861. https://doi.org/10.3390/en17081861
Chicago/Turabian StyleWu, Lixia, Yu Zhu, Jing Yuan, Xiaozhong Guo, and Qianfeng Zhang. 2024. "Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries" Energies 17, no. 8: 1861. https://doi.org/10.3390/en17081861
APA StyleWu, L., Zhu, Y., Yuan, J., Guo, X., & Zhang, Q. (2024). Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries. Energies, 17(8), 1861. https://doi.org/10.3390/en17081861