The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Chen, G.; Chen, S.; Ahmad, N.; Azam, M.; Zheng, Z.; Su, Z.; Cathelinaud, M.; Ma, H.; Chen, Z.; et al. Carrier transport enhancement mechanism in highly efficient antimony selenide thin-film solar cell. Adv. Funct. Mater. 2023, 33, 2213941. [Google Scholar] [CrossRef]
- Fang, X.; Xie, L.; Li, X. Distributed localization in dynamic networks via complex laplacian. Automatica 2023, 151, 110915. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Boix, P.P.; Wong, L.H.; Sun, L.; Lien, S.Y. Towards high efficiency thin film solar cells. Prog. Mater. Sci. 2017, 87, 246–291. [Google Scholar] [CrossRef]
- Fang, X.; Xie, L. Distributed Formation Maneuver Control Using Complex Laplacian. IEEE Trans. Autom. Control. 2023, 69, 1850–1857. [Google Scholar] [CrossRef]
- Pal, K.; Singh, P.; Bhaduri, A.; Thapa, K.B. Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: A review. Sol. Energy Mater. Sol. Cells 2019, 196, 138–156. [Google Scholar] [CrossRef]
- Britt, J.; Ferekides, C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 1993, 62, 2851–2852. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Doumit, N.; Soro, K.; Ozocak, A.; Batut, N.; Schellmanns, A.; Saintaime, E.; Ntsoenzok, E. Boosting the efficiency of CZTS/Si tandem solar cells using In2O3 layer in CZTS top cell. Adv. Theory Simul. 2021, 4, 2100099. [Google Scholar] [CrossRef]
- Shi, Z.; Jayatissa, A.H. Perovskites-based solar cells: A review of recent progress, materials and processing methods. Materials 2018, 11, 729. [Google Scholar] [CrossRef]
- Barbato, M.; Artegiani, E.; Bertoncello, M.; Meneghini, M.; Trivellin, N.; Mantoan, E.; Romeo, A.; Mura, G.; Ortolani, L.; Zanoni, E.; et al. CdTe solar cells: Technology, operation and reliability. Phys. D Appl. Phys. 2021, 54, 333002. [Google Scholar] [CrossRef]
- Gonzalez-Pedro, V.; Juarez-Perez, E.J.; Arsyad, W.S.; Barea, E.M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014, 14, 888–893. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.B.; Li, K.; Chen, C.; Deng, H.X.; Gao, L.; Zhao, Y.; Jiang, F.; Li, L.; Huang, F.; et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2017, 2, 17046. [Google Scholar] [CrossRef]
- Duan, Z.; Liang, X.; Feng, Y.; Ma, H.; Liang, B.; Wang, Y.; Luo, S.; Wang, S.; Schropp, R.E.I.; Mai, Y.; et al. Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Adv. Mater. 2022, 34, 2202969. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.C.; Mandal, T.N.; Yang, W.S.; Lee, Y.H.; Im, S.H.; Noh, J.H.; Seok, S.I. Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor. Angew. Chem. 2014, 126, 1353–1357. [Google Scholar] [CrossRef]
- Tao, J.; Hu, X.; Xue, J.; Wang, Y.; Weng, G.; Chen, S.; Zhu, Z.; Chu, J. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells. Sol. Energy Mater. Sol. Cells 2019, 197, 1–6. [Google Scholar] [CrossRef]
- Lin, J.; Chen, G.; Ahmad, N.; Ishaq, M.; Chen, S.; Su, Z.; Fan, P.; Zhang, Y.; Liang, G. Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells. J. Energy Chem. 2023, 80, 256–264. [Google Scholar] [CrossRef]
- Phillips, L.J.; Savory, C.N.; Hutter, O.S.; Yates, P.J.; Shiel, H.; Mariotti, S.; Bowen, L.; Birkett, M.; Durose, K.; Major, J.D. Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE J. Photov. 2018, 9, 544–551. [Google Scholar] [CrossRef]
- Razykov, T.M.; Shukurov, A.X.; Atabayev, O.K.; Kuchkarov, K.M.; Ergashev, B.; Mavlonov, A.A. Growth and characterization of Sb2Se3 thin films for solar cells. Sol. Energy 2018, 173, 225–228. [Google Scholar] [CrossRef]
- Zeng, Y.; Sun, K.; Huang, J.; Nielsen, M.P.; Ji, F.; Sha, C.; Yuan, S.; Zhang, X.; Yan, C.; Liu, X.; et al. Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition. ACS Appl. Mater. Interfaces 2020, 12, 22825–22834. [Google Scholar] [CrossRef]
- AvGarcía, R.G.A.; Cerdán-Pasarán, A.; Madrigal, A.F.; Mathews, N.R. Antimony Selenide Thin Films by Electrodeposition: Influence of Deposition Conditions and Post-Deposition Thermal Treatment on Physical and Photoelectrochemical Properties. Phys. Status Solidi (A) 2022, 219, 2200185. [Google Scholar]
- Brito, D.; Anacleto, P.; Pérez-Rodríguez, A.; Fonseca, J.; Santos, P.; Alves, M.; Cavalli, A.; Sharma, D.; Claro, M.S.; Nicoara, N.; et al. Antimony Selenide Solar Cells Fabricated by Hybrid Reactive Magnetron Sputtering. Nanomaterials 2023, 13, 2257. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.J.; Tang, R.; Chen, S.; Zheng, Z.H.; Su, Z.H.; Ma, H.L.; Zhang, X.H.; Fan, P.; Liang, G.X. Crystal growth promotion and defect passivation by hydrothermal and selenized deposition for substrate-structured antimony selenosulfide solar cells. ACS Appl. Mater. Interfaces 2022, 14, 31986–31997. [Google Scholar] [CrossRef] [PubMed]
- Eensalu, J.S.; Tonsuaadu, K.; Acik, I.O.; Krunks, M. Sb2S3 thin films by ultrasonic spray pyrolysis of antimony ethyl xanthate. Mater. Sci. Semicond. Process. 2022, 137, 106209. [Google Scholar] [CrossRef]
- Wang, X.; Tang, R.; Yin, Y.; Ju, H.; Zhu, C.; Chen, T. Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells. Sol. Energy Mater. Sol. Cells 2019, 189, 5–10. [Google Scholar] [CrossRef]
- Paudel, N.R.; Grice, C.R.; Xiao, C.; Yan, Y. High temperature CSS processed CdTe solar cells on commercial SnO2: F/SnO2 coated soda-lime glass substrates. J. Mater. Sci. Mater. Electron. 2015, 26, 4708–4715. [Google Scholar] [CrossRef]
- Lin, J.; Mahmood, A.; Chen, G.; Ahmad, N.; Chen, M.; Fan, P.; Chen, S.; Tang, R.; Liang, G. Crystallographic orientation control and defect passivation for high-efficient antimony selenide thin-film solar cells. Mater. Today Phys. 2022, 27, 100772. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, M.; Song, K.; Bin, L.; Wang, Y.; Liu, R.; Gong, X.; Zhang, D.; Cao, L.; Chen, S. A highly [001]-textured Sb2Se3 photocathode for efficient photoelectrochemical water reduction. Nanoscale 2019, 11, 22871–22879. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 2019, 10, 125. [Google Scholar] [CrossRef]
- Singh, Y.; Maurya, K.K.; Singh, V.N. A review on properties, applications, and deposition techniques of antimony selenide. Sol. Energy Mater. Sol. Cells 2021, 230, 111223. [Google Scholar]
- Wang, W.; Cao, Z.; Wu, L.; Liu, F.; Ao, J.; Zhang, Y. Remarkable Sb2Se3 solar cell with a carbon electrode by tailoring film growth during the VTD process. ACS Appl. Energy Mater. 2021, 4, 13335–13346. [Google Scholar] [CrossRef]
- Tao, R.; Tan, T.; Zhang, H.; Meng, Q.; Zha, G. Sb2Se3 solar cells fabricated via close-space sublimation. J. Vac. Sci. Technol. B 2021, 39, 052203. [Google Scholar] [CrossRef]
- Rijal, S.; Li, D.B.; Awni, R.A.; Bista, S.S.; Song, Z.; Yan, Y. Influence of post-selenization temperature on the performance of substrate-type Sb2Se3 solar cells. ACS Appl. Energy Mater. 2021, 4, 4313–4318. [Google Scholar] [CrossRef]
- Fan, P.; Chen, G.J.; Chen, S.; Zheng, Z.H.; Azam, M.; Ahmad, N.; Su, Z.H.; Liang, G.H.; Zhang, X.-H.; Chen, Z.G. Quasi-vertically oriented Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV prepared via close-space sublimation and selenization. ACS Appl. Mater. Interfaces 2021, 13, 46671–46680. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xin-Yun, Z.; Han-Bo, C.; Wang, C.G.; Zhang, X.T.; Hou, B.D.; Shen, M.R.; Jing, Z. Simulation and optimal design of antimony selenide thin film solar cells. Acta Phys. Sin. 2018, 67, 247301. [Google Scholar]
- Memari, A.; Javadian Sarraf, M.; Seyyed Mahdavi Chabok, S.J.; Motevalizadeh, L. Comprehensive guidance for optimizing the colloidal quantum dot (CQD) Perovskite solar cells: Experiment and simulation. Sci. Rep. 2023, 13, 16675. [Google Scholar] [CrossRef] [PubMed]
- Barthwal, S.; Gupta, R.; Kumar, A.; Ramesh, K.; Pathak, S.; Karak, S. Band offset engineering in antimony sulfide (Sb2S3) solar cells, using SCAPS simulation: A route toward PCE > 10%. Optik 2023, 282, 170868. [Google Scholar] [CrossRef]
- Teimouri, R.; Keshtmand, R.; Mehrvarz, S.; Ghasemi, F.; Mahjoory, A.; Kolahdouz, M.; Taghavinia, N. Enhancing Planar Perovskite Solar Cell Performance by SnO2 Interface Treatment Using Urea as an Additive: A Comparative Study of Simple, Low-Temperature Approaches. ACS Appl. Electron. Mater. 2023, 5, 6014–6025. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Abouelatta, M.; Alanazi, A.; Al-Dhlan, K.A.; Almurayziq, T.S. Numerical analysis of hole transport layer-free antimony selenide solar cells: Possible routes for efficiency promotion. Opt. Mater. 2022, 129, 112473. [Google Scholar] [CrossRef]
- Karimi, E.; Ghorashi, S.M.B. Simulation of perovskite solar cell with P3HT hole-transporting materials. J. Nanophotonics 2017, 11, 032510. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, Y.; Lu, S.; Li, K.; Yang, B.; Chen, W.; Wang, K.; Li, D.; Deng, H.; Yi, F.; et al. Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Adv. Energy Mater. 2017, 7, 1700866. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Gao, L.; Nam, D.; Li, D.; Li, K.; Zhao, Y.; Ge, C.; Cheong, H.; Liu, H.; et al. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2017, 2, 2125–2132. [Google Scholar] [CrossRef]
- Wen, X.; Chen, C.; Lu, S.; Li, K.; Kondrotas, R.; Zhao, Y.; Chen, W.; Gao, L.; Wang, C.; Zhang, J.; et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 2018, 9, 2179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, H.; Zhang, X.; Chi, K.; Cai, Y.; Cao, Y.; Pang, J. Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: Morphology, carrier transport and photovoltaic performance. J. Alloys Compd. 2021, 862, 158703. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Abbas, M.; Fu, C.; Su, Z.; Tang, R.; Chen, S.; Fan, P.; Liang, G. Tellurium doping inducing defect passivation for highly effective antimony selenide thin film solar cell. Nanomaterials 2023, 13, 1240. [Google Scholar] [CrossRef]
- Karade, V.C.; Jang, J.S.; Kumbhar, D.; Rao, M.; Pawar, P.S.; Kim, S.; Gour, K.S.; Park, J.; Heo, J.; Dongale, T.D.; et al. Combating open circuit voltage loss in Sb2Se3 solar cell with an application of SnS as a back surface field layer. Sol. Energy 2022, 233, 435–445. [Google Scholar] [CrossRef]
Parameter | SnO2 | Sb2Se3 | P3HT |
---|---|---|---|
Thickness (nm) | 50 | 500 | 50 |
Relative permittivity (εr) | 9 | 10 | 10 |
Electron affinity, Χ (eV) | 4.5 | 4.04 | 4 |
Electron mobility, μn (cm2/Vs) | 0.2 | 4 | 0.006 |
Hole mobility, μp (cm2/Vs) | 0.2 | 0.1 | 0.006 |
Na (1/cm3) | 0 | 1 × 1013 | 5 × 1019 |
Nd (1/cm3) | 1 × 1018 | 0 | 0 |
Nt (1/cm3) | 1 × 1018 | 2 × 1016 | 1 × 1017 |
Eg (eV) | 3.6 | 1.2 | 3.2 |
Density of state of the conduction band, Nc (1/cm3) | 2.2 × 1018 | 2.2 × 1018 | 1.0 × 1021 |
Density of state of the valence band, Nv (l/cm3) | 1.8 × 1019 | 1.8 × 1019 | 2.0 × 1020 |
Deposition Time (s) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Rs (Ω) | Rsh (Ω) |
---|---|---|---|---|---|---|
40 | 0.284 | 20.05 | 47.43 | 2.704 | 79.56 | 2379.4 |
50 | 0.318 | 22.01 | 54.19 | 3.794 | 63.55 | 4465.1 |
60 | 0.352 | 26.79 | 53.76 | 5.067 | 54.72 | 4556.2 |
70 | 0.295 | 23.51 | 44.00 | 3.047 | 81.85 | 829.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, S. The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells. Energies 2024, 17, 1937. https://doi.org/10.3390/en17081937
Zhang J, Li S. The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells. Energies. 2024; 17(8):1937. https://doi.org/10.3390/en17081937
Chicago/Turabian StyleZhang, Jie, and Shanze Li. 2024. "The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells" Energies 17, no. 8: 1937. https://doi.org/10.3390/en17081937
APA StyleZhang, J., & Li, S. (2024). The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells. Energies, 17(8), 1937. https://doi.org/10.3390/en17081937