Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA
Abstract
:1. Introduction
2. Geochemical Background
2.1. Role of Organic Matter (OM) in REE Partitioning
2.2. Role of Thermal Maturity in HREE Partitioning
3. Geology of Study Area
4. Materials and Methods
5. Results
5.1. General Mineralogical Information of the Shale Samples
5.2. Rare Earth Elements in the Whole Rock
5.3. Rare Earth Elements in the Organic Leachate
6. Discussion
6.1. HREE Enrichment in Black Shale
6.2. REE Distributions in Immature Oil Shales and Kerogen Isolates
6.3. REE Partitioning during Chemical Leaching of OM
6.4. Geochemical Model for REE Incorporation in Mature Organic-Rich Shale
7. Conclusions
- We established an REE inventory from the D1 through A1. The total REE ranges from 180 to 270 ppm and the OM-rich samples tend to contain more REE than the calcareous shales.
- The samples show a relatively higher abundance of middle and heavy REEs than light REEs.
- There is a disproportionate increase in Y and Tb with TOC, suggesting these elements are more strongly bound to OM and thus can be used in tracer studies.
- The organic leachates from our experiments contained more LREE than HREE despite the HREE concentration being higher in OM. This observation suggests that while OM has an affinity for HREE, it also is more challenging to decouple them using traditional leaching techniques. The high Y and Tb content in the whole rock reflects that the HREE are incorporated under high thermal conditions and these elements can be used as reliable proxies for determining nature of refractory OM in highly mature black shales.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnold, B.J. A review of element partitioning in coal preparation. Int. J. Coal Geol. 2023, 274, 104296. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Considine, T.; Watson, R.; Blumsack, S. The Economic Impacts of the Pennsylvania Marcellus Shale Natural Gas Play: An Update; The Pennsylvania State University, Department of Energy and Mineral Engineering: State College, PA, USA, 2010. [Google Scholar]
- Phan, T.T.; Hakala, J.A.; Lopano, C.L.; Sharma, S. Rare earth elements and radiogenic strontium isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian Basin. Chem. Geol. 2019, 509, 194–212. [Google Scholar] [CrossRef]
- Yang, J.; Torres, M.; McManus, J.; Algeo, T.J.; Hakala, J.A.; Verba, C. Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: Role of post-depositional diagenesis of phosphorus phases. Chem. Geol. 2017, 466, 533–544. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Agrawal, V.; Sharma, S. Association of Rare Earths in Different Phases of Marcellus and Haynesville Shale: Implications on Release and Recovery Strategies. Minerals 2022, 12, 1120. [Google Scholar] [CrossRef]
- Scott, C.; Slack, J.F.; Kelley, K.D. The hyper-enrichment of V and Zn in black shales of the Late Devonian-Early Mississippian Bakken Formation (USA). Chem. Geol. 2017, 452, 24–33. [Google Scholar] [CrossRef]
- Freslon, N.; Bayon, G.; Toucanne, S.; Bermell, S.; Bollinger, C.; Chéron, S.; Etoubleau, J.; Germain, Y.; Khripounoff, A.; Ponzevera, E.; et al. Rare earth elements and neodymium isotopes in sedimentary organic matter. Geochim. Cosmochim. Acta 2014, 140, 177–198. [Google Scholar] [CrossRef]
- Elderfield, H.; Greaves, M.J. The rare earth elements in seawater. Nature 1982, 296, 214–219. [Google Scholar] [CrossRef]
- Elderfield, H. The oceanic chemistry of the rare-earth elements. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1988, 325, 105–126. [Google Scholar]
- Sholkovitz, E.; Ronald, S. The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems. Earth Planet. Sci. Lett. 2000, 179, 299–309. [Google Scholar] [CrossRef]
- Milodowski, A.E.; Zalasiewicz, J.A. Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from central Wales. Geol. Soc. Lond. Spec. Publ. 1991, 57, 101–124. [Google Scholar] [CrossRef]
- Goldberg, E.D.; Koide, M.; Schmitt, R.A.; Smith, R.H. Rare-Earth distributions in the marine environment. J. Geophys. Res. 1963, 68, 4209–4217. [Google Scholar] [CrossRef]
- Byrne, R.H.; Sholkovitz, E.R. Marine chemistry and geochemistry of the lanthanides. Handb. Phys. Chem. Rare Earths 1996, 23, 497–593. [Google Scholar]
- Wood, S.A. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 1990, 82, 159–186. [Google Scholar] [CrossRef]
- Millero, F.J. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 1992, 56, 3123–3132. [Google Scholar] [CrossRef]
- Lee, J.H.; Byrne, R.H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim. Cosmochim. Acta 1992, 56, 1127–1137. [Google Scholar] [CrossRef]
- Abanda, P.A.; Hannigan, R.E. Effect of diagenesis on trace element partitioning in shales. Chem. Geol. 2006, 230, 42–59. [Google Scholar] [CrossRef]
- Haley, B.A.; Klinkhammer, G.P.; McManus, J. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 2004, 68, 1265–1279. [Google Scholar] [CrossRef]
- Moffett, J.W. Microbially mediated cerium oxidation in sea water. Nature 1990, 345, 421–423. [Google Scholar] [CrossRef]
- Klinkhammer, G.; Heggie, D.T.; Graham, D.W. Metal diagenesis in oxic marine sediments. Earth Planet. Sci. Lett. 1982, 61, 211–219. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Sundararaman, P.; Schoell, M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Org. Geochem. 1986, 10, 915–926. [Google Scholar] [CrossRef]
- Ten Haven, H.L.; De Leeuw, J.W.; Peakman, T.M.; Maxwell, J.R. Anomalies in steroid and hopanoid maturity indices. Geochim. Cosmochim. Acta 1986, 50, 853–855. [Google Scholar] [CrossRef]
- Ten Haven, H.L.; De Leeuw, J.W.; Damsté, J.S.S.; Schenck, P.A.; Palmer, S.E.; Zumberge, J.E. Application of biological markers in the recognition of palaeohypersaline environments. Geol. Soc. Lond. Spec. Publ. 1988, 40, 123–130. [Google Scholar] [CrossRef]
- Curiale, J.A.; Odermatt, J.R. Short-term biomarker variability in the Monterey Formation, Santa Maria basin. Org. Geochem. 1989, 14, 1–13. [Google Scholar] [CrossRef]
- Strachan, R.A.; Smith, M.; Harris, A.L.; Fettes, D.J. The Northern Highland and Grampian Terranes; Geological Society of London: London, UK, 2002. [Google Scholar]
- Dahl, I.M.; Kolboe, S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal. Lett. 1993, 20, 329–336. [Google Scholar] [CrossRef]
- Snowdon, L.R. Rock-Eval Tmax suppression: Documentation and amelioration. AAPG Bull. 1995, 79, 1337–1348. [Google Scholar]
- French, K.L.; Hallmann, C.; Hope, J.M.; Schoon, P.L.; Zumberge, J.A.; Hoshino, Y.; Peters, C.A.; George, S.C.; Love, G.D.; Brocks, J.J.; et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl. Acad. Sci. USA 2015, 112, 5915–5920. [Google Scholar] [CrossRef] [PubMed]
- French, K.; Birdwell, J.; Berg, V. Biomarker similarities between the saline lacustrine eocene green river and the paleoproterozoic Barney Creek Formations. Geochim. Cosmochim. Acta 2020, 274, 228–245. [Google Scholar] [CrossRef]
- Kidder, D.L.; Krishnaswamy, R.; Mapes, R.H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chem. Geol. 2003, 198, 335–353. [Google Scholar] [CrossRef]
- Lev, S.M.; McLennan, S.M.; Hanson, G.N. Mineralogic controls on REE mobility during black-shale diagenesis. J. Sediment. Res. 1999, 69, 1071–1082. [Google Scholar] [CrossRef]
- Awwiller, D.N. Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks; a study from the Texas Gulf Coast Paleocene-Eocene. J. Sediment. Res. 1993, 63, 501–512. [Google Scholar]
- Bloch, J.; Hutcheon, I.E. Shale Diagenesis: A Case Study from the Albian Harmon Member (Peace River Formation), Western Canada. Clays Clay Miner. 1992, 40, 682–699. [Google Scholar] [CrossRef]
- Raiswell, R.; Berner, R.A. Organic carbon losses during burial and thermal maturation of normal marine shales. Geology 1987, 15, 853–856. [Google Scholar] [CrossRef]
- Miknis, F.P.; Jiao, Z.S.; MacGowan, D.B.; Surdam, R.C. Solid-state NMR characterization of Mowry shale from the Powder River Basin. Org. Geochem. 1993, 20, 339–347. [Google Scholar] [CrossRef]
- Tait, L. The Character of Organic Matter and the Partitioning of Trace and Rare Earth Elements in Black Shales; Blondeau Formation, Chibougamau, Québec; Université du Québec à Chicoutimi: Chicoutimi, QC, Canada, 1987. [Google Scholar]
- Chen, Z.; Simoneit, B.R.; Wang, T.-G.; Ni, Z.; Yuan, G.; Chang, X. Molecular markers, carbon isotopes, and rare earth elements of highly mature reservoir pyrobitumens from Sichuan Basin, southwestern China: Implications for PreCambrian-Lower Cambrian petroleum systems. Precambrian Res. 2018, 317, 33–56. [Google Scholar] [CrossRef]
- Mastalerz, M.; Glikson, M. In-situ analysis of solid bitumen in coal: Examples from the Bowen Basin and the Illinois Basin. Int. J. Coal Geol. 2000, 42, 207–220. [Google Scholar] [CrossRef]
- Fuchs, S.; Williams-Jones, A.E.; Jackson, S.E.; Przybylowicz, W.J. Metal distribution in pyrobitumen of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: Evidence for liquid hydrocarbon ore fluids. Chem. Geol. 2016, 426, 45–59. [Google Scholar] [CrossRef]
- Martynov, A.G.; Horii, Y.; Katoh, K.; Bian, Y.; Jiang, J.; Yamashita, M.; Gorbunova, Y.G. Rare-earth based tetrapyrrolic sandwiches: Chemistry, materials and applications. Chem. Soc. Rev. 2022, 51, 9262–9339. [Google Scholar] [CrossRef] [PubMed]
- Lewan, M.D.; Maynard, J.B. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim. Cosmochim. Acta 1982, 46, 2547–2560. [Google Scholar] [CrossRef]
- Hodgson, G.W.; Baker, B.L. Vanadium, nickel, and porphyrins in thermal geochemistry of petroleum. AAPG Bull. 1957, 41, 2413–2426. [Google Scholar]
- Rosscup, R.J.; Bowman, D.H. Thermal Stabilities of Vanadium and Nickel Porphyrins. Div. Pet. Chem. Am. Chem. Soc. 1967, 12, 77. [Google Scholar]
- Caughey, W.S.; Corwin, A.H. The Stability of Metalloetioporphyrins toward Acids1. J. Am. Chem. Soc. 1955, 77, 1509–1513. [Google Scholar] [CrossRef]
- Dean, R.A.; Girdler, R.B. Reaction of metal etioporphyrins on dissolution in sulfuric acid. Chem. Indust. 1960, 100–101. [Google Scholar]
- Barnes, J.W.; Dorough, G.D. Exchange and Replacement Reactions of α, β, γ, δ-Tetraphenyl-metalloporphins1. J. Am. Chem. Soc. 1950, 72, 4045–4050. [Google Scholar] [CrossRef]
- Corwin, A.H. Petroporphyrins. In Proceedings of the 5th World Petroleum Congress, New York, NY, USA, 30 May–5 June 1959; Section V. pp. 120–129. [Google Scholar]
- Dunning, H.N.; Moore, J.W.; Denekas, M.O. Interfacial activities and porphyrin contents of petroleum extracts. Ind. Eng. Chem. 1953, 45, 1759–1765. [Google Scholar] [CrossRef]
- Erdman, J.G.; Walter, J.W.; Hanson, W.E. The stability of the porphyrin metallo complexes. Amer. Chem. Soc. Div. Petrol. Chem. Prepr. 1957, 2, 259–267. [Google Scholar]
- Fleischer, E.B. The structure of nickel etioporphyrin-I. J. Am. Chem. Soc. 1963, 85, 146–148. [Google Scholar] [CrossRef]
- Jiang, J.; Ng, D.K.P. A decade journey in the chemistry of sandwich-type tetrapyrrolato− rare earth complexes. Acc. Chem. Res. 2009, 42, 79–88. [Google Scholar] [CrossRef]
- Jiang, J.; Bian, Y.; Furuya, F.; Liu, W.; Choi, M.T.M.; Kobayashi, N.; Li, H.-W.; Yang, Q.; Mak, T.C.W.; Ng, D.K.P. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of Rare Earth Sandwich Compounds with Mixed 2, 3-Naphthalocyaninato and Octaethylporphyrinato Ligands. Chem. A Eur. J. 2001, 7, 5059–5069. [Google Scholar] [CrossRef]
- Pushkarev, V.E.; Tomilova, L.G.; Nemykin, V.N. Historic overview and new developments in synthetic methods for preparation of the rare-earth tetrapyrrolic complexes. Coord. Chem. Rev. 2016, 319, 110–179. [Google Scholar] [CrossRef]
- Lysenko, A.B.; Malinovskii, V.L.; Padmaja, K.; Wei, L.; Diers, J.R.; Bocian, D.F.; Lindsey, J.S. Multistate molecular information storage using S-acetylthio-derivatized dyads of triple-decker sandwich coordination compounds. J. Porphyr. Phthalocyanines 2005, 9, 491–508. [Google Scholar] [CrossRef]
- Ali, M.F.; Abbas, S. A review of methods for the demetallization of residual fuel oils. Fuel Process. Technol. 2006, 87, 573–584. [Google Scholar] [CrossRef]
- Brongersma-Sanders, M. On conditions favouring the preservation of chlorophyll in marine sediments. In Proceedings of the World Petroleum Congress, The Hague, The Netherlands, 28 May–6 June 1951; p. WPC-4027. [Google Scholar]
- Gorham, E.; Sanger, J. Plant pigments in woodland soils. Ecology 1967, 48, 306–308. [Google Scholar] [CrossRef]
- Drozdova, T.V.; Gorskiy, Y.N. Conditions of preservation of chlorophyll, pheophytin and humic matter in Black Sea sediments. Geokhimiya 1972, 3, 323–334. [Google Scholar]
- He, R.; Lu, W.; Junium, C.K.; Straeten, C.A.V.; Lu, Z. Paleo-redox context of the Mid-Devonian Appalachian Basin and its relevance to biocrises. Geochim. Cosmochim. Acta 2020, 287, 328–340. [Google Scholar] [CrossRef]
- Brett, C.E.; Baird, G.C.; Bartholomew, A.J.; DeSantis, M.K.; Straeten, C.A.V. Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 21–53. [Google Scholar] [CrossRef]
- Ver Straeten, C.A.; Brett, C.E.; Sageman, B.B. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 54–73. [Google Scholar] [CrossRef]
- Ver Straeten, C.; Baird, G.; Brett, C.; Lash, G.; Over, J.; Karaca, C.; Jordan Blood, R. The Marcellus Subgroup in its type area, Finger Lakes area of New York, New York State Geological Association Field Guide. In Proceedings of the 83rd Annual Meeting, 14–16 October 2011; pp. 23–86. [Google Scholar]
- Stein, W.E.; Mannolini, F.; Hernick, L.V.; Landing, E.; Berry, C.M. Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature 2007, 446, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Ettensohn, F.R.; Miller, M.L.; Dillman, S.B.; Elam, T.D.; Geller, K.L.; Swager, D.R.; Markowitz, G.; Woock, R.D.; Barron, L.S. Characterization and Implications of the Devonian-Mississippian Black Shale Sequence, Eastern and Central Kentucky, USA: Pycnoclines, Transgression, Regression, and Tectonism; AAPG: Tulsa, OK, USA, 1988; pp. 323–345. [Google Scholar]
- Woodrow, D.L.; Dennison, J.M.; Ettensohn, F.R.; Sevon, W.T.; Kirchgasser, W.T. Middle and Upper Devonian Stratigraphy and Paleogeography of the Central and Southern Appalachians and Eastern Midcontinent, USA; AAPG: Tulsa, OK, USA, 1988; pp. 277–301. [Google Scholar]
- Ettensohn, F.R.; Barron, L.S. Tectono-climatic model for origin of Devonian-Mississippian black gas shales of east-central United States. AAPG Bull. 1981, 65, 923. [Google Scholar]
- Chen, R.; Sharma, S. Linking the Acadian Orogeny with organic-rich black shale deposition: Evidence from the Marcellus Shale. Mar. Pet. Geol. 2017, 79, 149–158. [Google Scholar] [CrossRef]
- Ettensohn, F.R. Modeling the nature and development of major Paleozoic clastic wedges in the Appalachian Basin, USA. J. Geodyn. 2004, 37, 657–681. [Google Scholar] [CrossRef]
- Murphy, A.E.; Sageman, B.B.; Hollander, D.J.; Lyons, T.W.; Brett, C.E. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography 2000, 15, 280–291. [Google Scholar] [CrossRef]
- Werne, J.P.; Sageman, B.B.; Lyons, T.W.; Hollander, D.J. An integrated assessment of a “type euxinic” deposit: Evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. Am. J. Sci. 2002, 302, 110–143. [Google Scholar] [CrossRef]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Straeten, C.A.V.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Algeo, T.J. Can marine anoxic events draw down the trace element inventory of seawater? Geology 2004, 32, 1057–1060. [Google Scholar] [CrossRef]
- Rimmer, S.M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chem. Geol. 2004, 206, 373–391. [Google Scholar] [CrossRef]
- Gordon, G.W.; Lyons, T.W.; Arnold, G.L.; Roe, J.; Sageman, B.B.; Anbar, A.D. When do black shales tell molybdenum isotope tales? Geology 2009, 37, 535–538. [Google Scholar] [CrossRef]
- Lash, G.G.; Blood, D.R. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin. Mar. Pet. Geol. 2014, 57, 244–263. [Google Scholar] [CrossRef]
- Blood, D.R.; Lash, G.G.; Larsen, D.; Egenhoff, S.O.; Fishman, N.S. Dynamic redox conditions in the Marcellus Shale as recorded by pyrite framboid size distributions. Paying Atten. Mudrocks Priceless 2015, 515, 153–168. [Google Scholar]
- Chen, R.; Sharma, S. Role of alternating redox conditions in the formation of organic-rich interval in the Middle Devonian Marcellus Shale, Appalachian Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 446, 85–97. [Google Scholar] [CrossRef]
- Blakey, R. Global Paleogeography. 2005. Available online: http://jan.ucc.nau.edu/~rcb7/globaltext2.html (accessed on 24 September 2009).
- Ver Straeten, C.A. Microstratigraphy and depositional environments of a middle Devonian foreland basin: Berne and Otsego members, Mount Marion formation, eastern New York state. Stud. Stratigr. Paleontol. Honor Donald W. Fish. N. Y. State Mus. Bull. 1994, 481, 367–380. [Google Scholar]
- Straeten, C.A.V.; Brett, C.E. Pragian to Eifelian strata (middle Lower to lower Middle Devonian), northern Appalachian Basin-stratigraphic nomenclatural changes. Northeast. Geol. Environ. Sci. 2006, 28, 80. [Google Scholar]
- Ver Straeten, C.A. Basinwide stratigraphic synthesis and sequence stratigraphy, upper Pragian, Emsian and Eifelian stages (Lower to Middle Devonian), Appalachian Basin. Geol. Soc. Lond. Spec. Publ. 2007, 278, 39–81. [Google Scholar] [CrossRef]
- Engelder, T.; Lash, G.G.; Uzcátegui, R.S. Joint sets that enhance production from Middle and Upper Devonian gas shales of the Appalachian Basin. AAPG Bull. 2009, 93, 857–889. [Google Scholar] [CrossRef]
- U.S. EPA. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; U.S. EPA: Cincinnati, OH, USA, 1994; Revision 4.4.
- U.S. EPA. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry; U.S. EPA: Cincinnati, OH, USA, 1994; Revision 5.4.
- Lewan, M.D.; Bjorøy, M.; Dolcater, D.L. Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale. Geochim. Cosmochim. Acta 1986, 50, 1977–1987. [Google Scholar] [CrossRef]
- USGS Mineral Resources Program. Method 18—Sixty Elements by Inductively Coupled Plasma-Optical Emission Spectroscopy-Mass Spectroscopy (ICP-OES-MS), Sodium Peroxide Fusion (ICP-60). 2018. Available online: https://www.usgs.gov/media/files/60-elements-icp-oes-ms-na2o-fusion-method (accessed on 15 April 2022).
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- De Baar, H.J.W.; Bacon, M.P.; Brewer, P.G. Rare-earth distributions with a positive Ce anomaly in the Western North Atlantic Ocean. Nature 1983, 301, 324–327. [Google Scholar] [CrossRef]
- Kim, J.-H.; Torres, M.E.; Haley, B.A.; Kastner, M.; Pohlman, J.W.; Riedel, M.; Lee, Y.-J. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem. Geol. 2012, 291, 152–165. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Shale gas potential of the lower Jurassic Gordondale member, northeastern British Columbia, Canada. Bull. Can. Pet. Geol. 2007, 55, 51–75. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. Int. J. Coal Geol. 2007, 70, 223–239. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. Bull. Can. Pet. Geol. 2008, 56, 1–21. [Google Scholar] [CrossRef]
- Valenza, J.J.; Drenzek, N.; Marques, F.; Pagels, M.; Mastalerz, M. Geochemical controls on shale microstructure. Geology 2013, 41, 611–614. [Google Scholar] [CrossRef]
- Carroll, A.R. Upper Permian lacustrine organic facies evolution, southern Junggar Basin, NW China. Org. Geochem. 1998, 28, 649–667. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T. Organic matter–hosted pore system, Marcellus formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Laughrey, C.D. Produced Gas and Condensate Geochemistry of the Marcellus Formation in the Appalachian Basin: Insights into Petroleum Maturity, Migration, and Alteration in an Unconventional Shale Reservoir. Minerals 2022, 12, 1222. [Google Scholar] [CrossRef]
- Laughrey, C.D.; Lemmens, H.; Ruble, T.E.; Butcher, A.R.; Walker, G.; Kostelnik, J.; Barnes, J.; Knowles, W. Black shale diagenesis: Insights from integrated high-definition analyses of post-mature Marcellus Formation rocks, northeastern Pennsylvania. In Critical Assessment of Shale Resource Plays; AAPG: Tulsa, OK, USA, 2013; AAPG Memoir 103. [Google Scholar]
- Delle Piane, C.; Bourdet, J.; Josh, M.; Clennell, M.B.; Rickard, W.D.A.; Saunders, M.; Sherwood, N.; Li, Z.; Dewhurst, D.N.; Raven, M.D. Organic matter network in post-mature Marcellus Shale: Effects on petrophysical properties. AAPG Bull. 2018, 102, 2305–2332. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1984; p. 699. [Google Scholar]
- Sholkovitz, E.R.; Landing, W.M.; Lewis, B.L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 1994, 58, 1567–1579. [Google Scholar] [CrossRef]
- Hathorne, E.C.; Stichel, T.; Brück, B.; Frank, M. Rare earth element distribution in the Atlantic sector of the Southern Ocean: The balance between particle scavenging and vertical supply. Mar. Chem. 2015, 177, 157–171. [Google Scholar] [CrossRef]
- Klinkhammer, G.P.; Elderfield, H.; Edmond, J.M.; Mitra, A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim. Cosmochim. Acta 1994, 58, 5105–5113. [Google Scholar] [CrossRef]
- Douville, E.; Charlou, J.L.; Oelkers, E.H.; Bienvenu, P.; Colon, C.F.J.; Donval, J.P.; Fouquet, Y.; Prieur, D.; Appriou, P. The rainbow vent fluids (36 14′ N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 2002, 184, 37–48. [Google Scholar] [CrossRef]
- Tostevin, R.; Wood, R.A.; Shields, G.A.; Poulton, S.W.; Guilbaud, R.; Bowyer, F.; Penny, A.M.; He, T.; Curtis, A.; Hoffmann, K.H.; et al. Low-oxygen waters limited habitable space for early animals. Nat. Commun. 2016, 7, 12818. [Google Scholar] [CrossRef]
- Sensarma, S.; Saha, A.; Hazra, A. Implications of REE incorporation and host sediment influence on the origin and growth processes of ferromanganese nodules from Central Indian Ocean Basin. Geosci. Front. 2021, 12, 101123. [Google Scholar] [CrossRef]
- Birdwell, J.E. Rare Earth Element Concentrations for Oil Shales and Isolated Kerogens from around the world: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2024. [CrossRef]
Sample Identifier | Lithofacies | Sample Type |
---|---|---|
D1 | Clay-rich | 1.5-inch plug, center depth (Upper) |
D1 | Clay-rich | 1.5-inch plug, center depth (Lower) |
C3 | Clay-rich | 1.5-inch plug and laterally adjacent core segment |
C2 | Carbonate-rich | 1.5-inch plug, center depth |
C1 | Carbonate-rich | 1.5-inch plug, center depth |
B | Organic-rich | 1.5-inch plug, center depth (Upper) |
B | Organic-rich | 1.5-inch plug, center depth (Lower) |
A2 | Organic-rich | 1.5-inch plug, center depth (Upper) |
A2 | Organic-rich | core segment (Lower) |
A1 | Carbonate-rich | core segment |
ID | Qtz | Plag | Kfsp | Ill/Mic | Chl | Cal | Dol | Fe-Dol | Pyr | Bar | Anat | TOC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | % | % | % | % | |
D1 | 27.9 | 5.6 | 0.5 | 52.4 | 7.7 | 0.6 | 0.6 | 0.0 | 2.5 | 0.0 | 1.1 | 1.90 |
D1 | 30.6 | 6.0 | 0.4 | 45.7 | 5.6 | 1.4 | 0.3 | 1.1 | 5.9 | 0.0 | 1.1 | 3.37 |
C3 | 29.0 | 6.8 | 0.3 | 40.1 | 3.1 | 13.6 | 1.4 | 4.5 | 1.8 | 0.0 | 1.1 | 4.18 |
C2 | 19.3 | 5.4 | 0.4 | 38.2 | 0.9 | 30.5 | 3.7 | 1.6 | 1.4 | 0.0 | 0.7 | 3.27 |
C1 | 24.6 | 6.0 | 0.3 | 37.7 | 1.0 | 26.7 | 8.8 | 11.0 | 2.5 | 0.0 | 0.8 | 0.41 |
B | 27.2 | 7.4 | 0.0 | 42.1 | 1.6 | 11.0 | 4.2 | 1.7 | 4.5 | 0.0 | 0.6 | 5.63 |
B | 30.3 | 6.7 | 0.0 | 34.8 | 0.0 | 12.3 | 1.3 | 0.6 | 6.5 | 0.0 | 0.7 | 8.69 |
A2 | 26.8 | 6.5 | 0.0 | 22.5 | 0.0 | 30.0 | 1.4 | 0.3 | 4.7 | 0.0 | 0.7 | 8.73 |
A2 | 34.0 | 6.7 | 0.0 | 16.9 | 0.0 | 29.4 | 5.8 | 0.3 | 5.5 | 0.0 | 0.7 | 6.75 |
A1 | 21.1 | 4.7 | 0.0 | 13.3 | 0.0 | 53.5 | 6.2 | 1.0 | 2.0 | 0.0 | 0.5 | 4.90 |
Sample ID | SiO2 % | TiO2 % | Al2O3 % | Fe2O3 % | MnO % | MgO % | CaO % | Na2O % | K2O % | P2O5 % | Leco S % | BaO % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 59.02 | 0.78 | 16.35 | 6.37 | 0.03 | 1.70 | 0.97 | 1.05 | 4.15 | 0.08 | 1.59 | 0.25 |
D1 | 60.14 | 0.69 | 14.24 | 7.52 | 0.03 | 1.45 | 1.24 | 1.07 | 3.70 | 0.09 | 3.90 | 0.37 |
C3 | 53.10 | 0.54 | 11.91 | 3.64 | 0.03 | 1.87 | 6.99 | 1.10 | 3.09 | 0.05 | 1.10 | 0.24 |
C2 | 40.76 | 0.57 | 11.22 | 2.63 | 0.03 | 1.60 | 16.77 | 0.89 | 2.91 | 0.04 | 0.83 | 0.26 |
C1 | 46.35 | 0.63 | 11.21 | 5.74 | 0.07 | 3.04 | 10.63 | 1.00 | 2.65 | 0.13 | 1.87 | 0.36 |
B | 55.14 | 0.63 | 13.08 | 5.24 | 0.03 | 1.43 | 4.81 | 1.12 | 3.43 | 0.09 | 2.55 | 0.36 |
B | 52.42 | 0.49 | 10.37 | 5.57 | 0.02 | 1.06 | 6.67 | 1.08 | 2.65 | 0.10 | 4.06 | 0.29 |
A2 | 41.48 | 0.32 | 6.92 | 3.80 | 0.02 | 0.92 | 16.64 | 1.01 | 1.90 | 0.09 | 2.84 | 0.16 |
A2 | 45.75 | 0.28 | 5.45 | 5.45 | 0.02 | 1.89 | 15.42 | 0.78 | 1.21 | 0.10 | 3.91 | 0.12 |
A1 | 34.26 | 0.24 | 4.42 | 1.61 | 0.01 | 2.07 | 25.19 | 0.63 | 0.82 | 0.11 | 1.05 | 0.14 |
ID | Sc ppm | Y ppm | La ppm | Ce ppm | Pr ppm | Nd ppm | Sm ppm | Eu ppm | Gd ppm | Tb ppm | Dy ppm | Ho ppm | Er ppm | Tm ppm | Yb ppm | Lu ppm | TREE ppm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 16.7 | 25.0 | 44.5 | 90.2 | 10.6 | 40.9 | 7.5 | 1.63 | 7.5 | 1.1 | 6.8 | 1.40 | 3.9 | 0.6 | 3.7 | 0.6 | 262.5 |
D1 | 13.2 | 24.9 | 45.3 | 89.6 | 11.3 | 44.9 | 9.4 | 2.07 | 9.2 | 1.4 | 7.5 | 1.55 | 4.4 | 0.7 | 4.3 | 0.6 | 270.3 |
C3 | 13.4 | 18.7 | 37.0 | 72.1 | 9.2 | 35.6 | 6.7 | 1.39 | 6.5 | 0.9 | 5.1 | 1.08 | 3.2 | 0.4 | 2.9 | 0.6 | 214.7 |
C2 | 11.9 | 18.9 | 38.6 | 73.3 | 9.3 | 35.1 | 5.9 | 1.28 | 6.1 | 0.8 | 5.1 | 0.99 | 2.9 | 0.4 | 2.9 | 0.4 | 213.8 |
C1 | 10.5 | 15.2 | 33.0 | 65.5 | 7.8 | 29.7 | 5.8 | 1.40 | 6.1 | 0.9 | 5.2 | 1.02 | 2.8 | 0.4 | 2.7 | 0.4 | 188.5 |
B | 13.6 | 24.4 | 40.4 | 78.8 | 9.8 | 38.6 | 7.7 | 1.97 | 8.1 | 1.2 | 7.2 | 1.47 | 4.2 | 0.6 | 3.8 | 0.4 | 242.2 |
B | 13.5 | 29.8 | 39.2 | 73.7 | 9.8 | 39.5 | 8.6 | 2.03 | 9.4 | 1.4 | 8.2 | 1.68 | 4.7 | 0.7 | 4.3 | 0.6 | 247.1 |
A2 | 11.4 | 56.5 | 39.1 | 58.9 | 9.2 | 39.1 | 8.9 | 2.24 | 11.2 | 1.7 | 10.0 | 2.20 | 6.2 | 0.9 | 5.6 | 0.6 | 264.1 |
A2 | 11.9 | 34.7 | 28.9 | 46.7 | 7.9 | 32.5 | 6.7 | 1.54 | 7.6 | 1.1 | 6.8 | 1.35 | 4.0 | 0.6 | 3.8 | 0.9 | 196.7 |
A1 | 7.7 | 26.6 | 23.9 | 33.0 | 5.3 | 21.3 | 4.7 | 1.07 | 6.0 | 0.9 | 5.2 | 1.08 | 2.9 | 0.4 | 2.6 | 0.5 | 143.2 |
PAAS | 15.9 | 27.3 | 44.6 | 88.3 | 10.2 | 37.3 | 6.9 | 1.2 | 6.0 | 0.9 | 5.3 | 1.1 | 3.1 | 0.5 | 3.0 | 0.4 | 252.0 |
ID | SiO2 | TiO2 | Al2O3 | K2O | CaO | Chlorite | LREE (La–Nd) | Leco S | Leco Bulk TOC | HREE (Tb–Lu) |
---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | ppm | % | % | ppm | |
D1 | 59.02 | 0.78 | 16.35 | 4.15 | 0.97 | 7.7 | 186.11 | 1.59 | 1.9 | 18.04 |
D1 | 60.14 | 0.69 | 14.24 | 3.70 | 1.24 | 5.6 | 191.09 | 3.90 | 3.37 | 20.35 |
C3 | 53.10 | 0.54 | 11.91 | 3.09 | 6.99 | 3.1 | 153.95 | 1.10 | 4.18 | 14.09 |
C2 | 40.76 | 0.57 | 11.22 | 2.91 | 16.77 | 0.9 | 156.25 | 0.83 | 3.27 | 13.48 |
C1 | 46.35 | 0.63 | 11.21 | 2.65 | 10.63 | 1.0 | 136.03 | 1.87 | 0.413 | 13.37 |
B | 55.14 | 0.63 | 13.08 | 3.43 | 4.81 | 1.6 | 167.55 | 2.55 | 5.63 | 18.95 |
B | 52.42 | 0.49 | 10.37 | 2.65 | 6.67 | 0.0 | 162.13 | 4.06 | 8.69 | 21.61 |
A2 | 41.48 | 0.32 | 6.92 | 1.90 | 16.64 | 0.0 | 146.24 | 2.84 | 8.73 | 27.66 |
A2 | 45.75 | 0.28 | 5.45 | 1.21 | 15.42 | 0.0 | 116.03 | 3.91 | 6.75 | 18.21 |
A1 | 34.26 | 0.24 | 4.42 | 0.82 | 25.19 | 0.0 | 83.50 | 1.05 | 4.9 | 13.34 |
ID | Sc | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | TREY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
D1 | 0.396 | 0.162 | 1.036 | 2.160 | 0.327 | 1.432 | 0.188 | 0.028 | 0.112 | 0.013 | 0.065 | 0.013 | 0.038 | 0.005 | 0.026 | 0.004 | 6.004 |
D1 | 0.303 | 0.221 | 0.556 | 1.344 | 0.219 | 1.053 | 0.137 | 0.022 | 0.087 | 0.013 | 0.065 | 0.013 | 0.039 | 0.005 | 0.028 | 0.005 | 4.110 |
C3 | 0.177 | 0.083 | 0.431 | 1.051 | 0.178 | 0.698 | 0.069 | 0.013 | 0.055 | 0.007 | 0.036 | 0.007 | 0.019 | 0.002 | 0.014 | 0.002 | 2.842 |
C2 | 0.071 | 0.076 | 0.404 | 1.133 | 0.178 | 0.610 | 0.056 | 0.011 | 0.047 | 0.006 | 0.040 | 0.008 | 0.022 | 0.003 | 0.014 | 0.002 | 2.682 |
C1 | 0.127 | 0.148 | 0.285 | 0.777 | 0.125 | 0.482 | 0.068 | 0.016 | 0.072 | 0.010 | 0.061 | 0.012 | 0.032 | 0.004 | 0.021 | 0.002 | 2.241 |
B | 0.206 | 0.247 | 0.361 | 0.963 | 0.167 | 0.664 | 0.078 | 0.019 | 0.081 | 0.014 | 0.078 | 0.015 | 0.044 | 0.005 | 0.035 | 0.005 | 2.980 |
B | 0.129 | 0.161 | 0.534 | 1.294 | 0.208 | 0.729 | 0.080 | 0.016 | 0.080 | 0.000 | 0.058 | 0.010 | 0.031 | 0.004 | 0.024 | 0.003 | 3.359 |
A2 | 0.049 | 0.087 | 0.403 | 0.706 | 0.084 | 0.249 | 0.037 | 0.010 | 0.041 | 0.000 | 0.030 | 0.006 | 0.015 | 0.002 | 0.012 | 0.001 | 1.735 |
A2 | 0.061 | 0.074 | 0.279 | 0.409 | 0.050 | 0.157 | 0.027 | 0.008 | 0.030 | 0.000 | 0.024 | 0.005 | 0.015 | 0.002 | 0.014 | 0.002 | 1.158 |
A1 | 0.018 | 0.055 | 0.154 | 0.169 | 0.025 | 0.103 | 0.025 | 0.007 | 0.029 | 0.000 | 0.020 | 0.003 | 0.009 | 0.001 | 0.005 | 0.000 | 0.623 |
Sample ID | Mineralogy | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | TREE | HREE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ||
GR | Carbonate–quartz/feldspar | 7.5 | 8.9 | 14.4 | 1.56 | 4.6 | 0.7 | 0.13 | 0.6 | 0.16 | 1.03 | 0.24 | 0.79 | 0.15 | 1 | 0.18 | 34.46 | 2.12 |
TM | ML clays–carbonate | 10.5 | 3 | 5.8 | 0.61 | 1.9 | 0.5 | 0.13 | 0.9 | 0.19 | 1.56 | 0.34 | 1.21 | 0.21 | 1.5 | 0.27 | 18.08 | 3.19 |
GI | Carbonate | 1.4 | 0.8 | 1.7 | 0.19 | 0.6 | 0.1 | BRL | 0.1 | BRL | 0.21 | BRL | 0.15 | BRL | 0.2 | BRL | 4.05 | 0.35 |
GJ | Carbonate–clay | 2 | 1 | 1.9 | 0.2 | 0.6 | 0.1 | BRL | 0.1 | BRL | 0.26 | 0.07 | 0.2 | BRL | 0.3 | 0.06 | 4.82 | 0.56 |
KB | Claystone | 5 | 1.9 | 3.6 | 0.44 | 1.5 | 0.3 | 0.09 | 0.5 | 0.1 | 0.73 | 0.16 | 0.49 | 0.08 | 0.5 | 0.08 | 10.47 | 1.15 |
IF | Quartz–illite | 22.9 | 19 | 35.1 | 4.22 | 15.4 | 3.4 | 0.66 | 3.8 | 0.7 | 4.05 | 0.76 | 2.02 | 0.31 | 1.7 | 0.29 | 91.39 | 4.32 |
GD | Quartz | 7.3 | 0.5 | 0.9 | 0.11 | 0.5 | 0.1 | BRL | 0.1 | BRL | 0.54 | 0.18 | 0.72 | 0.14 | 0.9 | 0.16 | 4.88 | 1.92 |
PR | Quartz–ML clays | 8.9 | 19 | 7.3 | 1.08 | 3.1 | 0.5 | 0.13 | 0.6 | 0.15 | 1.04 | 0.22 | 0.73 | 0.14 | 0.9 | 0.15 | 35.05 | 1.92 |
PO | Quartz–kaolinite | 14.6 | 6.9 | 11.8 | 1.37 | 4.3 | 0.8 | 0.22 | 1.1 | 0.26 | 2.01 | 0.46 | 1.72 | 0.33 | 2.3 | 0.43 | 33.96 | 4.78 |
NA | Quartz–illite | 18.3 | 6.5 | 11.3 | 1.22 | 4 | 0.9 | 0.27 | 1.8 | 0.41 | 2.86 | 0.6 | 1.73 | 0.27 | 1.6 | 0.23 | 33.73 | 3.83 |
EK | Carbonate–clay | 1.3 | 0.6 | 1 | 0.16 | 0.6 | 0.1 | BRL | 0.2 | BRL | 0.18 | BRL | 0.09 | BRL | BRL | BRL | 2.91 | 0.09 |
AS | Quartz–illite | 12.4 | 11.4 | 17.2 | 1.68 | 5.3 | 1.1 | 0.27 | 1.5 | 0.28 | 1.89 | 0.4 | 1.15 | 0.16 | 1 | 0.16 | 43.47 | 2.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, S.; Sharma, S.; Agrawal, V.; Dix, M.C.; Zanoni, G.; Birdwell, J.E.; Wylie, A.S., Jr.; Wagner, T. Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA. Energies 2024, 17, 2107. https://doi.org/10.3390/en17092107
Bhattacharya S, Sharma S, Agrawal V, Dix MC, Zanoni G, Birdwell JE, Wylie AS Jr., Wagner T. Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA. Energies. 2024; 17(9):2107. https://doi.org/10.3390/en17092107
Chicago/Turabian StyleBhattacharya, Shailee, Shikha Sharma, Vikas Agrawal, Michael C. Dix, Giovanni Zanoni, Justin E. Birdwell, Albert S. Wylie, Jr., and Tom Wagner. 2024. "Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA" Energies 17, no. 9: 2107. https://doi.org/10.3390/en17092107
APA StyleBhattacharya, S., Sharma, S., Agrawal, V., Dix, M. C., Zanoni, G., Birdwell, J. E., Wylie, A. S., Jr., & Wagner, T. (2024). Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA. Energies, 17(9), 2107. https://doi.org/10.3390/en17092107