Optimal PMU Placement to Enhance Observability in Transmission Networks Using ILP and Degree of Centrality
Abstract
:1. Introduction
- If a PMU is installed on a bus, all its connected branch currents and bus voltage are known. It is a direct measurement.
- If the current phasor and bus voltage information are available at one end of a branch, then the bus voltage phasor can be calculated at the other end of the branch. It is a pseudomeasurement, as shown in Figure 1a.
- If information on bus voltages at both ends of a branch is known, then the current phasor of that branch can be calculated. It is a pseudomeasurement, as shown in Figure 1b.
- If the current phasors of all branches except one, the one connected to the ZIB, are known, then Kirchhoff’s current law (KCL) can be used to figure out the unknown branch current phasor as shown in Figure 1c.
- If the voltage phasors of all incident buses except one, the one connected to the ZIB are known, then Kirchhoff’s voltage law (KVL) can be used to figure out unknown bus voltage phasor as shown in Figure 1d.
- If a group of adjacent ZIBs exists, provided that the voltage phasor of adjacent buses and current phasors of connecting branches to the group of ZIB are known, the bus voltage and the branch current phasors of the group of ZIBs in the network can be calculated. If the current phasors of all branches except one and the voltage phasors of all incident buses except one connected to a group of ZIBs are known, then using rule 4 and rule 5, the unknown branch current and unknown bus voltage can be calculated, as shown in Figure 1e. The measurements obtained using the above three ZIB rules are called extended measurements.
- A proposed modified objective function incorporates the degree of centrality to solve the optimal PMU placement (OPP) problem.
- The contingency of PMU and the effect of zero-injection buses are incorporated to solve the OPP problem.
- The OPP results are evaluated based on measures of observability and redundancy.
- The results are improved as the network’s overall observability is enhanced and the number of PMUs is reduced.
- For future work, the limitations of conventional PMU placement and existing performance measures are addressed.
2. Proposed OPP Formulation with Normalized Degree of Centrality
2.1. Normalized Degree of Centrality
2.2. Mathematical Formulation
2.2.1. Contingency Limitation
2.2.2. Effect of Zero-Injection Bus Limitation
- All unobserved buses must belong to a cluster of ZIB or a cluster adjacent to ZIB.
- For ZIB i, is a set of buses adjacent to bus i. Let . The number of unobservable buses in cluster is at most one.
3. Integer Linear Programming
- Step 1: In the first iteration, generate the binary integer linear programming problem that gives all possible PMU placements. Solve the objective function for the initial problem and check if the results are integers:
- If yes, update the current best solution.
- If no, proceed to branching.
- Step 2: Now, the iteration is incremented, and the decision variable having a value noninteger is used to make two subproblems, where the variable has a value of either 0 or 1. This process is repeated for each subproblem.
- Step 3: Now, each subproblem is solved using LP relaxation. If this solution is worse than the current best integer solution, the branch is pruned; otherwise, the relaxed solution is better.
- Step 4: Steps 2 and 3 are repeated for each subproblem. It is stopped when all subproblems are solved.
- Step 5: During the given iteration, the best solution is updated if a better solution is found. The branch and bound process is updated based on the last best solution.
- Step 6: Step 2 to 5 stop if the stopping criteria are met, i.e., the number of iterations exceeds the maximum iterations.
- Step 7: During this process, the best integer solution gives the OPP adhering power system complete observability.
4. OPP Evaluation
4.1. Measure of Observability
4.2. Measure of Redundancy
4.3. Limitation of Performance Measures
5. Results and Discussion
5.1. Case I: Complete Network Observability in OPP
5.2. Case II: Improving Monitoring Reliability in OPP
5.3. Case III: Cost Reduction with ZIBs in OPP
5.4. Case IV: Integrated Analysis of Complete Observability, Reliability, and ZIB in OPP
- CPU Intel(R) Core(TM) i7-5500U CPU @ 2.40 GHz;
- Level L1 cache: 128 KB, L2 cache: 512 KB, L3 cache: 4.0 MB;
- Memory: 12.0 GB DDR3.
OPP with Complete Observability, Reliability and ZIB Constraint | |||||
---|---|---|---|---|---|
Bus System | Parameters | [37] ILP | [35] CNS | [41] BPSO | Proposed ILP |
IEEE 7 | PMUs | - | - | - | 4 |
SORI | - | - | - | 13 | |
IEEE 14 | PMUs | 7 | - | - | 7 |
SORI | 33 | - | - | 34 | |
IEEE 30 | PMUs | - | - | - | 13 |
SORI | - | - | - | 57 | |
New England 39 | PMUs | - | - | - | 14 |
SORI | - | - | - | 58 | |
IEEE 57 | PMUs | 29 | - | - | 23 |
SORI | 113 | - | - | 97 | |
IEEE 118 | PMUs | 64 | - | - | 59 |
SORI | 297 | - | - | 280 |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Kronecker delta, which equals 1 if and 0 otherwise. | |
Set of indices for zero injection busses. | |
Normalized degree of centrality of bus i. | |
Highest value of normalized degree centrality observed among all the buses. | |
Lowest value of normalized degree centrality observed among all the buses. | |
A | Binary connectivity matrix. |
Modified binary connectivity matrix. | |
Binary connectivity parameter between buses i and j. | |
B | Network observability matrix. |
Binary variable indicator to verify if PMU j can observe bus i. | |
Maximum value of the bus observability index of bus i. | |
Bus observability index of bus i. | |
C | Constant, cost of PMU device. |
Degree of bus i. | |
E | Set of edges. |
Edge representing line i. | |
K | Total number of failed measurement devices. |
m | Total number of lines. |
N | Total number of phasor measurement units. |
n | Total number of buses. |
Set of buses adjacent to the selected bus i. | |
Set formed by union of set P and selected bus i. | |
Sum of redundancy index. | |
U | Set of bus observability status variable. |
Bus observability status variable. | |
V | Set of vertices. |
Vertex representing bus i. | |
Vertex representing bus j. | |
X | Set of decision variables. |
Decision variables indicating the PMU placement status (1/0) for bus i. | |
Modified set of decision variables. | |
Y | Measurement vector. |
References
- Saly, S.; Signer, K.; Sullivan, A. Power System Monitoring. IFAC Proc. Vol. 1980, 13, 189–198. [Google Scholar] [CrossRef]
- Sefid, M.; Rihan, M. Optimal PMU placement in a smart grid: An updated review. Int. J. Smart Grid Clean Energy 2019, 8, 59–69. [Google Scholar] [CrossRef]
- Phadke, A.G. Synchronized phasor measurements: A historical overview. Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf. 2002, 1, 476–479. [Google Scholar]
- Sodhi, R.; Srivastava, S.C.; Singh, S.N. Optimal PMU placement method for complete topological and numerical observability of power system. Electr. Power Syst. Res. 2010, 80, 1154–1159. [Google Scholar] [CrossRef]
- Brueni, D.J.; Heath, L.S. The PMU placement problem. SIAM J. Discret. Math. 2005, 19, 744–761. [Google Scholar] [CrossRef]
- Abur, A.; Magnago, F.H. Optimal meter placement for maintaining observability during single branch outages. IEEE Power Eng. Rev. 1999, 19, 54–55. [Google Scholar] [CrossRef]
- Abbasy, N.H.; Ismail, H.M. A unified approach for the optimal PMU location for power system state estimation. IEEE Trans. Power Syst. 2009, 24, 806–813. [Google Scholar] [CrossRef]
- Amare, K.; Centeno, V.A.; Pal, A. Unified PMU Placement Algorithm for Power Systems. In Proceedings of the North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; p. 6. [Google Scholar]
- Sarailoo, M.; Wu, N.E. Cost-Effective Upgrade of PMU Networks for Fault-Tolerant Sensing. IEEE Trans. Power Syst. 2018, 33, 3052–3063. [Google Scholar] [CrossRef]
- Ahmed, M.; Imran, K. An Optimal PMU Placement Against N-1 Contingency of PMU Using Integer Linear Programming Approach. In Proceedings of the 2019 International Conference on Applied and Engineering Mathematics, ICAEM 2019, Taxila, Pakistan, 27–29 August 2019. [Google Scholar]
- Ruben, C.; Dhulipala, S.C.; Bretas, A.S.; Guan, Y.; Bretas, N.G. Multi-objective MILP model for PMU allocation considering enhanced gross error detection: A weighted goal programming framework. Electr. Power Syst. Res. 2020, 182, 106235. [Google Scholar] [CrossRef]
- Elimam, M.; Isbeih, Y.J.; Moursi, M.S.E.; Elbassioni, K.; Hosani, K.H.A. Novel Optimal PMU Placement Approach Based on the Network Parameters for Enhanced System Observability and Wide Area Damping Control Capability. IEEE Trans. Power Syst. 2021, 36, 5345–5358. [Google Scholar] [CrossRef]
- Li, Q.; Cui, T.; Weng, Y.; Negi, R.; Franchetti, F.; Ilic, M.D. An information-theoretic approach to PMU placement in electric power systems. IEEE Trans. Smart Grid 2013, 4, 446–456. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Kyriakides, E.; Eliades, D.G. Placement of synchronized measurements for power system observability. IEEE Trans. Power Deliv. 2009, 24, 12–19. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Chatterjee, S.; Saha Roy, B.K. Optimal PMU placement solution: Graph theory and MCDM-based approach. IET Gener. Transm. Distrib. 2017, 11, 3371–3380. [Google Scholar] [CrossRef]
- Aghaei, J.; Baharvandi, A.; Rabiee, A.; Akbari, M.A. Probabilistic PMU Placement in Electric Power Networks: An MILP-Based Multiobjective Model. IEEE Trans. Ind. Inform. 2015, 11, 332–341. [Google Scholar] [CrossRef]
- Korres, G.N.; Georgilakis, P.S.; Koutsoukis, N.C.; Manousakis, N.M. Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method. IET Gener. Transm. Distrib. 2013, 7, 347–356. [Google Scholar]
- Mazhari, S.M.; Monsef, H.; Lesani, H.; Fereidunian, A. A multi-objective PMU placement method considering measurement redundancy and observability value under contingencies. IEEE Trans. Power Syst. 2013, 28, 2136–2146. [Google Scholar] [CrossRef]
- Kazemi Karegar, H.; Dalali, M. Optimal PMU placement for full observability of the power network with maximum redundancy using modified binary cuckoo optimisation algorithm. IET Gener. Transm. Distrib. 2016, 10, 2817–2824. [Google Scholar]
- Singh, S.P.; Singh, S.P. Optimal cost wide area measurement system incorporating communication infrastructure. IET Gener. Transm. Distrib. 2017, 11, 2814–2821. [Google Scholar] [CrossRef]
- Arul Jeyaraj, K.; Rajasekaran, V.; Nandha Kumar, S.K.; Chandrasekaran, K. A multi-objective placement of phasor measurement units using fuzzified artificial bee colony algorithm, considering system observability and voltage stability. J. Exp. Theor. Artif. Intell. 2016, 28, 113–136. [Google Scholar] [CrossRef]
- Mouwafi, M.T.; El-Sehiemy, R.A.; Abou El-Ela, A.A.; Kinawy, A.M. Optimal placement of phasor measurement units with minimum availability of measuring channels in smart power systems. Electr. Power Syst. Res. 2016, 141, 421–431. [Google Scholar] [CrossRef]
- Castro, C.A.; Müller, H.H. Genetic algorithm-based phasor measurement unit placement method considering observability and security criteria. IET Gener. Transm. Distrib. 2016, 10, 270–280. [Google Scholar]
- Rahman, N.H.A.; Zobaa, A.F. Integrated Mutation Strategy with Modified Binary PSO Algorithm for Optimal PMUs Placement. IEEE Trans. Ind. Inform. 2017, 13, 3124–3133. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Amjad, M.; Qureshi, M.A.; Imran, K.; Haider, Z.M.; Khan, M.O. A Critical Review of State-of-the-Art Optimal PMU Placement Techniques. Energies 2022, 15, 2125. [Google Scholar] [CrossRef]
- Islam, M.; Lin, Y.; Vokkarane, V.; Ogle, J. Observability-Aware Resilient PMU Networking. IEEE Trans. Power Syst. 2024, 1–12. [Google Scholar] [CrossRef]
- Mandal, A.; De, S. Joint Optimal PMU Placement and Data Pruning for Resource Efficient Smart Grid Monitoring. IEEE Trans. Power Syst. 2023, 39, 5382–5392. [Google Scholar] [CrossRef]
- Perl, M.; Sun, Z.; Machlev, R.; Belikov, J.; Levy, K.; Levron, Y. PMU placement for fault line location using neural additive models—A global XAI technique. Int. J. Electr. Power Energy Syst. 2024, 155, 109573. [Google Scholar] [CrossRef]
- Asadzadeh, B.; Tousi, B.; Galvani, S.; Talavat, V. A robust state estimation by optimal placement of measurement units considering loads/renewable generations and measurements uncertainty. IET Renew. Power Gener. 2024, 1–17. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Shi, Y.; Jiang, Q.; Zhou, C.; Zheng, Z. Deep Reinforcement Learning-Based Optimal PMU Placement Considering the Degree of Power System Observability. IEEE Trans. Ind. Inform. 2024, 1–12. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Z.; Yan, J.; Lu, R.; Guan, X. Attack-Resilient Optimal PMU Placement via Reinforcement Learning Guided Tree Search in Smart Grids. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1919–1929. [Google Scholar] [CrossRef]
- Cojoaca, I. A Multi Agent-System Approach for the Optimal Placement of PMUs in Power Systems. In Proceedings of the 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE) 2023, Bucharest, Romania, 23–25 March 2023. [Google Scholar]
- Chinnasamy, P.; Sathya, K.; Jebamani, B.; Nithyasri, A.; Fowjiya, S. Deep Learning: Algorithms, techniques, and applications—A systematic survey. Deep. Learn. Res. Appl. Nat. Lang. Process. 2022, 12, 1–17. [Google Scholar]
- Cheng, Y.; Foggo, B.; Yamashita, K.; Yu, N. Missing Value Replacement for PMU Data via Deep Learning Model With Magnitude Trend Decoupling. IEEE Access 2023, 11, 27450–27461. [Google Scholar] [CrossRef]
- Hyacinth, L.R.; Gomathi, V. Optimal pmu placement technique to maximize measurement redundancy based on closed neighbourhood search. Energies 2021, 14, 4782. [Google Scholar] [CrossRef]
- Ahmed, M.; Amjad, M.; Qureshi, M.A. Optimising PMU Placement using Integer Linear Programming for Complete Network Observability with Zero Injection Bus and N-1 Contingency. In Proceedings of the 2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC), Gujrat, Pakistan, 8–9 March 2023. [Google Scholar]
- Dua, D.; Dambhare, S.; Gajbhiye, R.K.; Soman, S.A. Optimal multistage scheduling of PMU placement: An ILP approach. IEEE Trans. Power Deliv. 2008, 23, 1812–1820. [Google Scholar] [CrossRef]
- Gómez, O.; Ríos, M.A. ILP-based multistage placement of PMUs with dynamic monitoring constraints. Int. J. Electr. Power Energy Syst. 2013, 53, 95–105. [Google Scholar] [CrossRef]
- Theodorakatos, N.P.; Babu, R.; Moschoudis, A.P. The Branch-and-Bound Algorithm in Optimizing Mathematical Programming Models to Achieve Power Grid Observability. Axioms 2023, 12, 1040. [Google Scholar] [CrossRef]
- Zimmerman, R.D.; Murillo-Sanchez, C.E. MATPOWER Users Manual 7.0. 2019; 250p. Available online: https://matpower.org/docs/MATPOWER-manual-7.0.pdf (accessed on 7 July 2023).
- Ahmadi, A.; Alinejad-Beromi, Y.; Moradi, M. Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy. Expert Syst. Appl. 2011, 38, 7263–7269. [Google Scholar] [CrossRef]
Busi | Di | ζi | 1 − ζi |
---|---|---|---|
1 | 1 | 0.0625 | 0.9375 |
2 | 4 | 0.2500 | 0.7500 |
3 | 3 | 0.1875 | 0.8125 |
4 | 3 | 0.1875 | 0.8125 |
5 | 1 | 0.0625 | 0.9375 |
6 | 2 | 0.1250 | 0.8750 |
7 | 2 | 0.1250 | 0.8750 |
Bus System | PMU Location | BOI |
---|---|---|
IEEE 7 | 2, 4 | 1, 1, 2, 1, 1, 1, 2 |
IEEE 14 | 2, 6, 7, 9 | 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1 |
IEEE 30 | 2, 4, 6, 9, 10, 12, 15, 20, 25, 27 | 1, 3, 1, 4, 1, 5, 1, 1, 3, 4, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1 |
New England 39 | 2, 6, 9, 10, 13, 14, 17, 19, 20, 22, 23, 25, 29 | 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
IEEE 57 | 1, 4, 6, 9, 15, 20, 24, 25, 28, 32, 36, 38, 41, 47, 50, 53, 57 | 2, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1 |
IEEE 118 | 3, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37, 40, 45, 49, 53, 56, 62, 64, 68, 70, 71, 76, 79, 85, 86, 89, 92, 96, 100, 105, 110, 114 | 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
Complete Network Observability in OPP | |||||
---|---|---|---|---|---|
Bus System | Parameters | [37] ILP | [35] CNS | [41] BPSO | Proposed ILP |
IEEE 7 | PMUs | - | 2 | 2 | 2 |
SORI | - | 9 | 9 | 9 | |
IEEE 14 | PMUs | 4 | 4 | 4 | 4 |
SORI | 19 | 19 | 19 | 19 | |
IEEE 30 | PMUs | - | 10 | 10 | 10 |
SORI | - | 50 | 52 | 52 | |
New England 39 | PMUs | - | - | - | 13 |
SORI | - | - | - | 52 | |
IEEE 57 | PMUs | 17 | 17 | 17 | 17 |
SORI | 72 | 71 | 71 | 72 | |
IEEE 118 | PMUs | 32 | 32 | 32 | 32 |
SORI | 164 | 156 | 148 | 162 |
Bus System | PMU Location | BOI |
---|---|---|
IEEE 7 | 1, 2, 3, 4, 5 | 2, 3, 3, 3, 2, 2, 2 |
IEEE 14 | 2, 4, 5, 6, 7, 8, 9, 11, 13 | 2, 3, 2, 5, 4, 4, 4, 2, 3, 2, 2, 2, 2, 2 |
IEEE 30 | 1, 2, 4, 5, 6, 9, 10, 11, 12, 13, 15, 17, 19, 20, 22, 24, 25, 26, 27, 28, 30 | 2, 5, 2, 4, 2, 6, 2, 2, 4, 6, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 4, 2, 4, 3, 2, 2 |
New England 39 | 2, 3, 6, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 | 2, 4, 2, 2, 2, 3, 2, 2, 3, 4, 3, 2, 3, 2, 2, 3, 2, 2, 4, 3, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
IEEE 57 | 1, 3, 4, 6, 9, 11, 12, 15, 19, 20, 22, 24, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 41, 44, 46, 47, 50, 51, 53, 54, 56 | 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
IEEE 118 | 1, 3, 5, 6, 9, 10, 11, 12, 15, 17, 19, 21, 22, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 40, 42, 44, 45, 46, 49, 50, 51, 52, 54, 56, 59, 61, 62, 64, 66, 68, 70, 71, 73, 75, 76, 77, 79, 80, 83, 85, 86, 87, 89, 91, 92, 94, 96, 100, 101, 105, 106, 108, 110, 111, 112, 115, 116, 117 | 2, 2, 4, 2, 4, 2, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 3, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 4, 2, 2, 2, 7, 2, 3, 2, 2, 4, 3, 3, 2, 2, 4, 3, 4, 3, 2, 2, 3, 3, 2, 2, 5, 4, 3, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 3, 2, 2, 4, 3, 2, 2, 3, 2, 2, 5, 2, 4, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2 |
OPP with Complete Observability and Reliability Constraint | |||||
---|---|---|---|---|---|
Bus System | Parameters | [37] ILP | [35] CNS | [41] BPSO | Proposed ILP |
IEEE 7 | PMUs | - | - | - | 5 |
SORI | - | - | - | 17 | |
IEEE 14 | PMUs | 9 | - | - | 9 |
SORI | 39 | - | - | 39 | |
IEEE 30 | PMUs | - | - | - | 21 |
SORI | - | - | - | 85 | |
New England 39 | PMUs | - | - | - | 28 |
SORI | - | - | - | 52 | |
IEEE 57 | PMUs | 33 | - | - | 33 |
SORI | 130 | - | - | 130 | |
IEEE 118 | PMUs | 68 | - | - | 68 |
SORI | 309 | - | - | 309 |
Bus System | PMU Location | BOI |
---|---|---|
IEEE 7 | 2, 4 | 1, 1, 2, 1, 1, 1, 2 |
IEEE 14 | 2, 6, 9 | 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
IEEE 30 | 2, 4, 10, 12, 15, 18, 27 | 1, 2, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
New England 39 | 2, 8, 12, 16, 20, 23, 25, 29 | 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
IEEE 57 | 1, 4, 13, 19, 25, 29, 32, 38, 41, 51, 54 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1 |
IEEE 118 | 3, 9, 11, 12, 15, 17, 21, 27, 31, 32, 34, 40, 45, 49, 52, 56, 59, 62, 72, 75, 77, 80, 85, 86, 90, 94, 101, 105, 110 | 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1 |
OPP with Complete Observability and ZIB Constraint | |||||
---|---|---|---|---|---|
Bus System | Parameters | [37] ILP | [35] CNS | [41] BPSO | Proposed ILP |
IEEE 7 | PMUs | - | - | 2 | 2 |
SORI | - | - | 9 | 9 | |
IEEE 14 | PMUs | 3 | - | 3 | 3 |
SORI | 15 | - | 16 | 16 | |
IEEE 30 | PMUs | - | - | 7 | 7 |
SORI | - | - | 34 | 41 | |
New England 39 | PMUs | - | - | - | 8 |
SORI | - | - | - | 44 | |
IEEE 57 | PMUs | 14 | - | 13 | 11 |
SORI | 61 | - | 64 | 61 | |
IEEE 118 | PMUs | 29 | - | 29 | 29 |
SORI | 152 | - | 155 | 161 |
Bus System | PMU Location | BOI |
---|---|---|
IEEE 7 | 1, 2, 4, 5 | 2, 2, 2, 2, 2, 1, 2 |
IEEE 14 | 2, 4, 5, 6, 9, 10, 13 | 2, 3, 2, 4, 4, 3, 2, 1, 3, 2, 2, 2, 2, 2 |
IEEE 30 | 1, 2, 4, 7, 10, 12, 13, 15, 17, 19, 20, 24, 27 | 2, 3, 2, 3, 2, 4, 1, 1, 1, 3, 1, 4, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1 |
New England 39 | 2, 6, 8, 13, 16, 20, 23, 25, 26, 29, 34, 36, 37, 38 | 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1 |
IEEE 57 | 1, 3, 4, 9, 12, 14, 15, 18, 20, 25, 27, 29, 30, 32, 33, 36, 38, 41, 50, 51, 53, 54, 56 | 2, 2, 3, 3, 1, 1, 1, 1, 2, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1 |
IEEE 118 | 1, 3, 6, 8, 11, 12, 15, 17, 19, 21, 22, 24, 25, 27, 29, 31, 32, 34, 35, 40, 42, 44, 45, 46, 49, 50, 51, 52, 54, 56, 59, 62, 66, 69, 70, 75, 76, 77, 78, 80, 83, 85, 86, 87, 89, 90, 92, 94, 96, 100, 101, 105, 106, 108, 110, 111, 112, 114, 117 | 2, 2, 3, 1, 4, 1, 2, 1, 1, 1, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 1, 3, 2, 2, 2, 4, 4, 1, 2, 1, 2, 3, 1, 1, 2, 2, 3, 2, 2, 4, 2, 3, 2, 8, 2, 3, 2, 2, 4, 3, 3, 2, 2, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 5, 4, 1, 1, 1, 2, 4, 2, 6, 2, 2, 3, 1, 3, 2, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 4, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.M.; Amjad, M.; Qureshi, M.A.; Khan, M.O.; Haider, Z.M. Optimal PMU Placement to Enhance Observability in Transmission Networks Using ILP and Degree of Centrality. Energies 2024, 17, 2140. https://doi.org/10.3390/en17092140
Ahmed MM, Amjad M, Qureshi MA, Khan MO, Haider ZM. Optimal PMU Placement to Enhance Observability in Transmission Networks Using ILP and Degree of Centrality. Energies. 2024; 17(9):2140. https://doi.org/10.3390/en17092140
Chicago/Turabian StyleAhmed, Muhammad Musadiq, Muhammad Amjad, Muhammad Ali Qureshi, Muhammad Omer Khan, and Zunaib Maqsood Haider. 2024. "Optimal PMU Placement to Enhance Observability in Transmission Networks Using ILP and Degree of Centrality" Energies 17, no. 9: 2140. https://doi.org/10.3390/en17092140
APA StyleAhmed, M. M., Amjad, M., Qureshi, M. A., Khan, M. O., & Haider, Z. M. (2024). Optimal PMU Placement to Enhance Observability in Transmission Networks Using ILP and Degree of Centrality. Energies, 17(9), 2140. https://doi.org/10.3390/en17092140