Solar-Pumped Ce:Nd:YAG Laser Amplifier Design
Abstract
1. Introduction
- (i)
- The incorporation of a rectangular hollow secondary concentrator that allowed not only an effective coupling of the concentrated sunlight from the Fresnel lens onto the slab medium at its output, but also served as a homogenizer, ensuring uniform pump light distribution and mitigating thermal effects.
- (ii)
- The integration of a gain medium with a reduced width-to-height ratio, optimized to substantially increase the number of seed laser passes through the pumped region of the active material.
2. Solar-Pumped Ce:Nd:YAG Laser Amplifier Concept
3. Numerical Modeling and Analysis of the Solar-Pumped Ce:Nd:YAG Laser Amplifier
3.1. Solar Radiation Collection and Focusing System
- ▪
- A is the collection area of the Fresnel lens, set to 1.33 m2;
- ▪
- IS represents the terrestrial solar irradiance;
- ▪
- ▪
- ▪
- refers to the non-radiative energy transfer efficiency from Ce3+ to Nd3+, considered to be approximately 70% [18];
- ▪
- corresponds to the radiative energy transfer efficiency from Ce3+ to Nd3+, estimated at 30% [18].
3.2. Ce:Nd:YAG Amplifier Head
3.3. Thermal-Induced Effects in the Solar-Pumped Ce:Nd:YAG Amplifier
4. Estimated Laser Gain Factor of the Proposed Solar-Pumped Ce:Nd:YAG Laser Amplifier
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharif, A.; Meo, M.S.; Chowdhury, M.A.F.; Sohag, K. Role of solar energy in reducing ecological footprints: An empirical analysis. J. Clean. Prod. 2021, 292, 126028. [Google Scholar] [CrossRef]
- Ahmad, N.; Yuan, J.; Zou, Y. One more step towards better stability of non-fullerene organic solar cells: Advances, challenges, future perspective, and era of artificial intelligence. Energy Environ. Sci. 2025, 11, 5093–5158. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.M.; Yang, S.H.; Wang, Y.; Ke, J.Y.; Zhang, H.Y. Demonstration of a free-space optical communication system using a solar-pumped laser as signal transmitter. Laser Phys. Lett. 2017, 14, 055804. [Google Scholar] [CrossRef]
- DeYoung, R.J.; Walker, G.H.; Williams, M.D.; Schuster, G.L.; Conway, E.J. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station. NASA technical memorandum 1987. Available online: https://ntrs.nasa.gov/citations/19870017752 (accessed on 25 June 2025).
- Abdel-Hadi, Y. Space-based solar laser system simulation to transfer power onto the earth. NRIAG J. Astron. Geophys. 2020, 9, 558–562. [Google Scholar] [CrossRef]
- Vasile, M.; Maddock, C.A. Design of a Formation of Solar Pumped Lasers for Asteroid Deflection. Adv. Space Res. 2012, 50, 891–905. [Google Scholar] [CrossRef]
- Johnson, C.S. Solar pumping converts broadband sunlight into efficient laser light. Laser Focus World 2022, 58, 10. Available online: https://www.laserfocusworld.com/lasers-sources/article/14283698/solar-pumping-converts-broadband-sunlight-into-efficient-laser-light (accessed on 25 June 2025).
- Yabe, T.; Bagheri, B.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Funatsu, T.; Oishi, T.; Daito, K.; Ishioka, M.; Yasunaga, N.; et al. 100 W-Class Solar Pumped Laser for Sustainable Magnesium-Hydrogen Energy Cycle. J. Appl. Phys. 2008, 104, 083104. [Google Scholar] [CrossRef]
- Yan, B.; Li, Y.; Cao, W.; Zeng, Z.; Liu, P.; Ke, Z.; Yang, G. Efficient and Rapid Hydrogen Extraction from Ammonia–Water via Laser Under Ambient Conditions without Catalyst. J. Am. Chem. Soc. 2024, 146, 4864–4871. [Google Scholar] [CrossRef] [PubMed]
- Motohiro, T.; Takeda, Y.; Ito, H.; Hasegawa, K.; Ikesue, A.; Ichikawa, T.; Higuchi, K.; Ichiki, A.; Mizuno, S.; Ito, T.; et al. Concept of the Solar-Pumped Laser-Photovoltaics Combined System and Its Application to Laser Beam Power Feeding to Electric Vehicles. Jpn. J. Appl. Phys. 2017, 56, 08MA07. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Vistas, C.R.; Tibúrcio, B.D.; Garcia, D. Solar-Pumped Lasers, 1st ed.; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Liang, D.; Costa, H.; Tibúrcio, B.D.; Vistas, C.R.; Almeida, J. High-efficiency solar-pumped lasers. Adv. Photonics X 2025, 10, 1–32. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Almeida, J.; Tibúrcio, B.D.; Garcia, D.; Catela, M.; Costa, H.; Guillot, E. Ce:Nd:YAG side-pumped solar laser. J. Photon. Energy 2021, 11, 018001. [Google Scholar] [CrossRef]
- Cai, Z.; Zhao, C.; Zhao, Z.; Zhang, J.; Zhang, Z.; Zhang, H. Efficient 38.8 W/m2 Solar Pumped Laser with a Ce:Nd:YAG Crystal and a Fresnel Lens. Opt. Express 2023, 31, 1340–1353. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Catela, M.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Lowest Threshold Solar-Pumped Ce:Nd:YAG Laser with 2.06% Solar-to-TEM00 Mode Laser Conversion Efficiency. Sol. Energy Mater. Sol. Cells 2024, 270, 112817. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Garcia, D.; Tibúrcio, B.D.; Catela, M.; Costa, H.; Guillot, E.; Almeida, J. Most efficient simultaneous solar laser emissions from three Ce:Nd:YAG rods within a single pump cavity. Sol. Energy Mater. Sol. Cells 2022, 246, 111921. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Catela, M.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Solar-Pumped Dual-Rod Ce:Nd:YAG Laser with 58 W Continuous-Wave Output Power and 5.1° Tracking Error Compensation Width. Opt. Express 2023, 31, 40041–40055. [Google Scholar] [CrossRef]
- Yamaga, M.; Oda, Y.; Uno, H.; Hasegawa, K.; Ito, H.; Mizuno, S. Energy transfer from Ce to Nd in Y3Al5O12 ceramics. Phys. Status Solidi C 2012, 9, 2300–2303. [Google Scholar] [CrossRef]
- Tai, Y.; Zheng, G.; Wang, H.; Bai, J. Near-infrared quantum cutting of Ce3+–Nd3+ co-doped Y3Al5O12 crystal for crystalline silicon solar cells. J. Photochem. Photobiol. A 2015, 303–304, 80–85. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Garcia, D.; Almeida, J.; Tiburcio, B.D.; Guillot, E. Ce:Nd:YAG continuous-wave solar-pumped laser. Optik 2020, 207, 163795. [Google Scholar] [CrossRef]
- Masuda, T.; Iyoda, M.; Yasumatsu, Y.; Dottermusch, S.; Howard, I.A.; Richards, B.S.; Bisson, J.-F.; Endo, M. A Fully Planar Solar Pumped Laser Based on a Luminescent Solar Collector. Commun. Phys. 2020, 3, 1–6. [Google Scholar] [CrossRef]
- Duocastella, M.; Arnold, C.B. Bessel and annular beams for materials processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Chen, S.; Ueda, K.I. Room temperature high-power TEM00 mode beam from bulk solid-state laser without water cooling. Opt. Las. Technol. 2025, 181, 111630. [Google Scholar] [CrossRef]
- Koechner, W. Solid-State Laser Engineering, 6th ed.; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Feng, Y.; Bi, Y.; Xu, Z.; Zhang, G. Thermally near-unstable resonator design for solid state lasers. In Proceedings of the Laser Resonators and Beam Control VI, San Jose, CA, USA, 25 June 2003. [Google Scholar] [CrossRef]
- Liu, J.M. Laser amplifiers. In Photonic Devices; Cambridge University Press: Cambridge, UK, 2005; pp. 613–683. [Google Scholar] [CrossRef]
- Idit, L.; Naftali, N.; Yogev, A. High-power solar-pumped Nd: YAG laser amplifier for free-space laser communication. In Proceedings of the Nonimaging Optics: Maximum Efficiency Light Transfer IV, San Diego, CA, USA, 27–28 July 1997. [Google Scholar]
- Guan, Z.; Zhao, C.; Yang, S.; Zhang, H.; Qian, Y.; Xu, P.; Hao, J.; Wang, H. Solar pumped total reflection slab laser amplifier. J. Beijing Inst. Technol. 2013, 22, 132–135. [Google Scholar]
- Wang, Y.; Zhao, C.; Yang, S.; Zhang, H.; Guan, Z. Solar directly pumped 1064 nm laser amplifier. Chin. J. Lasers 2017, 44, 0301003. [Google Scholar] [CrossRef]
- Saiki, T.; Taniguchi, S.; Nakamura, K.; Iida, Y. Development of Solar-Pumped Lasers and Its Application. Electr. Eng. Jpn. 2017, 199, 559–564. [Google Scholar] [CrossRef]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z.; Sumathy, K. Concentrated Solar Energy Applications Using Fresnel Lenses: A Review. Renew. Sustain. Energy Rev. 2011, 15, 2588–2606. [Google Scholar] [CrossRef]
- Hornung, T.; Nitz, P. Light diffraction by concentrator Fresnel lenses. Opt. Express 2014, 22, A686–A704. [Google Scholar] [CrossRef]
- Almeida, J.; Costa, H.; Vistas, C.R.; Tibúrcio, B.D.; Matos, A.; Liang, D. Multirod Pumping Approach with Fresnel Lens and Ce:Nd:YAG Media for Enhancing the Solar Laser Efficiency. Energies 2024, 17, 5630. [Google Scholar] [CrossRef]
- Welford, W.T.; Winston, R. High Collection Nonimaging Optics, 1st ed.; Academic Press: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- MIRO® High Reflective 95—Alanod GmbH & Co. KG. Available online: https://alanod.com/products/miro-high-reflective-95 (accessed on 7 February 2025).
- ASTM G173-03; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Wallhead, I.; Jiménez, T.M.; Ortiz, J.V.G.; Toledo, I.G.; Toledo, C.G. Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy Collection. Opt. Express 2012, 20, A1005–A1010. [Google Scholar] [CrossRef]
- Yeh, N. Analysis of spectrum distribution and optical losses under Fresnel lenses. Renew. Sustain. Energy Rev. 2010, 14, 2926–2935. [Google Scholar] [CrossRef]
- Kumar, V.; Shrivastava, R.L.; Untawale, S.P. Fresnel lens: A promising alternative of reflectors in concentrated solar power. Renew. Sustain. Energy Rev. 2015, 44, 376–390. [Google Scholar] [CrossRef]
- Jacobson, B.A.; Gengelbach, R.D.; Ferri, J.M. Beam-shape transforming devices in high-efficiency projection systems. In Proceedings of the Nonimaging Optics: Maximum Efficiency Light Transfer IV, San Diego, CA, USA, 27–28 July 1997. [Google Scholar] [CrossRef]
- Weksler, M.; Shwartz, J. Solar-pumped solid-state lasers. IEEE J. Quantum Electron. 1988, 24, 1222–1228. [Google Scholar] [CrossRef]
- Nd:Ce:YAG Laser Crystals—Hangzhou Shalom Electro-Optics Technology Co., Ltd. Available online: https://www.shalomeo.com/Laser-Crystals-and-Components/Laser-Crystals/Nd-Ce-YAG-Laser-Crystals/product-290.html (accessed on 1 June 2025).
Parameters | Fresnel Lens-Homogenizer Stage | Parabolic Mirror-Homogenizer Stage |
---|---|---|
Primary concentrator: | ||
Collection area | 1.33 m2 | |
Focal length | 2.0 m | |
Secondary concentrator: | ||
Input aperture | 40 mm × 40 mm | |
Length | 200 mm | 320 mm |
Output aperture | 11 mm × 26 mm | |
Useful pump light distribution at the homogenizer input aperture | ||
Useful pump power: 296 W | Useful pump power: 310 W | |
Useful pump light distribution at the homogenizer output aperture | ||
Useful pump power: 230 W | Useful pump power: 203 W |
Parameters | Source 1 | Source 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wavelength (nm) | 527 | 531 | 569 | 579 | 588 | 592 | 732 | 736 | 743 | 746 | 753 | 527 | 531 | 569 |
758 | 790 | 793 | 803 | 805 | 808 | 811 | 815 | 820 | 865 | 880 | 579 | 588 | 592 | |
Weight | 0.82 | 1.00 | 0.92 | 0.92 | 0.93 | 0.90 | 0.73 | 0.77 | 0.79 | 0.79 | 0.78 | 1.00 | 0.99 | 0.71 |
0.78 | 0.70 | 0.70 | 0.69 | 0.68 | 0.70 | 0.68 | 0.58 | 0.56 | 0.62 | 0.61 | 0.63 | 0.54 | 0.49 |
Fresnel Lens Parameters | Value |
---|---|
Material | PMMA |
Diameter | 1.3 m |
Focal length | 2.0 m |
Rim angle | 18° |
Thickness | 5 mm |
Pitch angle | 12° |
Depth | 0.3 mm |
Conic | −0.7 |
Focal spot width (1/e2) | 40 mm |
Transmission efficiency of useful pump radiation | 81.3% |
Parameters | Previous Solar-Pumped Nd:YAG Laser Amplifier [28] | Proposed Solar-Pumped Ce:Nd:YAG Laser Amplifier (Configuration 2) | Improvement Over [28] |
---|---|---|---|
Primary concentrator: | |||
Type | Flat Fresnel lens | — | |
Collection area | 1.33 m2 | — | |
Focal length | 1.2 m | 2.0 m | — |
Numerical calculated transmission efficiency (40 mm × 40 mm detector area) | 59.8% | 81.3% | 1.36 times |
Secondary concentrator: | |||
Type | No secondary concentrator | Reflective homogenizer | — |
Input aperture | W 40 mm × H 40 mm | — | |
Length | 200 mm | — | |
Output aperture | W 11.3 mm × H 26 mm | — | |
Transmission efficiency | 77.7% | — | |
Gain medium: | |||
Material | Nd:YAG | Ce:Nd:YAG | — |
Geometry | Slab | — | |
Dimensions (Width-to-height ratio) | W 16.3 mm × H 18 mm × T 2.9 mm (0.91) | W 11.3 mm × H 26 mm × T 2.9 mm (0.44) | — |
Pumping performance with optimal alignment at the focal spot (Δα = 0.0°, Δh = 0.0°) | |||
Incident pumping profile | Non-uniform | Uniform | Much more uniform |
Average incident solar density on the slab (950 W/m2 solar irradiance) | 1.22 W/mm2 | 2.50 W/mm2 | 2.05 times |
Pumping performance with typical solar tracking error of Δα = ±0.2° (Δh = ± 0.06°) | |||
Incident pumping profile | Non-uniform | Less Uniform | Much more uniform |
Average incident solar density on the slab (950 W/m2 solar irradiance) | 1.08 W/mm2 (11.5% reduction) | 2.37 W/mm2 (5.2% reduction) | 2.19 times |
Seed laser path: | |||
Number of total internal reflections | 20 | 32 | 1.6 times |
Path length | ~251 mm | ~365 mm | 1.45 times |
Laser gain (Δα = 0.0°, Δh = 0.0°) | 1.64 (Experimental) | 6.82 (Estimated) | 4.16-fold increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, J.; Tibúrcio, B.D.; Costa, H.; Vistas, C.R.; Liang, D. Solar-Pumped Ce:Nd:YAG Laser Amplifier Design. Energies 2025, 18, 5009. https://doi.org/10.3390/en18185009
Almeida J, Tibúrcio BD, Costa H, Vistas CR, Liang D. Solar-Pumped Ce:Nd:YAG Laser Amplifier Design. Energies. 2025; 18(18):5009. https://doi.org/10.3390/en18185009
Chicago/Turabian StyleAlmeida, Joana, Bruno D. Tibúrcio, Hugo Costa, Cláudia R. Vistas, and Dawei Liang. 2025. "Solar-Pumped Ce:Nd:YAG Laser Amplifier Design" Energies 18, no. 18: 5009. https://doi.org/10.3390/en18185009
APA StyleAlmeida, J., Tibúrcio, B. D., Costa, H., Vistas, C. R., & Liang, D. (2025). Solar-Pumped Ce:Nd:YAG Laser Amplifier Design. Energies, 18(18), 5009. https://doi.org/10.3390/en18185009