Design and Development of High-Power, High-Efficiency, and Low-Noise Microwave Sources for Wireless Power Transmission
Abstract
1. Introduction
2. Simulation Models and Setup
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, D. Space-Based Solar Power; United States Department of Energy (DOE): Washington, DC, USA, 2014. Available online: https://www.energy.gov/articles/space-based-solar-power (accessed on 30 August 2025).
- Glaser, P.E. Power from the sun: Its future. Science 1968, 162, 857–861. [Google Scholar] [CrossRef]
- Glaser, P.E. Method and Apparatus for Converting Solar Radiation to Electrical Power. U.S. Patent US 3781647, 24 December 1973. [Google Scholar]
- Glaser, P.E.; Maynard, O.E.; Mackovciak, J.J.R.; Ralph, E.I. Feasibility Study of a Satellite Solar Power Station; NASA CR-2357, ADL-C-74830; NASA Lewis Research Center: Cleveland, OH, USA, 1974. Available online: https://ntrs.nasa.gov/citations/19750015611 (accessed on 30 August 2025).
- U.S. Department of Energy (DOE); NASA. Satellite Power System Concept Development and Evaluation Program July 1977–August 1980; DOE/ET-0034; U.S. Department of Energy (DOE): Washington, DC, USA, 1978. Available online: https://space.nss.org/satellite-power-system-concept-development-and-evaluation-program/ (accessed on 23 August 2025).
- U.S. Department of Energy (DOE); NASA. Satellite Power System Concept Development and Evaluation Program Reference System Report; DOE/ER-0023; U.S. Department of Energy (DOE): Washington, DC, USA, 1978. Available online: https://space.nss.org/satellite-power-system-concept-development-and-evaluation-program/ (accessed on 23 August 2025).
- Mankins, J.C. Testimony of John Mankins Before House Science Committee Hearings on Solar Power Satellites. 2000. Available online: https://space.nss.org/testimony-of-john-mankins-before-house-science-committee-hearings-on-solar-power-satellites/ (accessed on 23 August 2025).
- Dietz, R.H.; Arndt, G.D.; Seyl, J.W.; Leopold, L.; Kelley, J.S. Satellite Power System: Concept Development and Evaluation Program: Volume 3, Power Transmission and Reception Technical Summary and Assessment; Report No. S-507; U.S. Department of Energy (DOE); NASA: Washington, DC, USA, 1981. Available online: https://ntrs.nasa.gov/citations/19810019084 (accessed on 23 August 2025).
- Mankins, J.C. A fresh look at space solar power: New architectures, concepts and technologies. Acta Astronaut. 1997, 41, 347–359. [Google Scholar] [CrossRef]
- Worden, S.P. Pete Worden on the Space Show. 2009. Available online: https://www.thespaceshow.com/show/23-mar-2009/broadcast-1127-special-edition (accessed on 23 August 2025).
- Cabinet Office, Government of Japan. Basic Plan for Space Policy. 2009. Available online: https://www8.cao.go.jp/space/english/index-e.html (accessed on 23 August 2025).
- China Proposes Space Collaboration with India. 2012. Available online: https://timesofindia.indiatimes.com/india/china-proposes-space-collaboration-with-india/articleshow/17066537.cms (accessed on 23 August 2025).
- Hou, X. Multi-Rotary Joints SPS – 2015 SunSat Design Competition. First Place Winner: China Academy of Space Technology (CAST). 2015. Available online: https://youtu.be/XhgJwnpYRGc?si=bbIKgoUwyjkneirW (accessed on 23 August 2025).
- Hou, X.; Li, M.; Niu, L.; Zhou, L.; Chen, Y.; Cheng, Z.; Ji, H. SunSat Design Competition 2014–2015 First Place Winner–Team CAST: Multi-Rotary Joints SPS. Online J. Space Commun. 2021, 11, 4. [Google Scholar]
- Tarantola, A. Scientists Make Strides in Beaming Solar Power from Space. 2015. Available online: https://www.engadget.com/2015-03-12-scientists-make-strides-in-beaming-solar-power-from-space.html (accessed on 23 August 2025).
- Japan Space Scientists Make Wireless Energy Breakthrough. 2015. Available online: https://phys.org/news/2015-03-japan-space-scientists-wireless-energy.html (accessed on 23 August 2025).
- Mitsubishi Heavy Industries, Ltd. MHI Successfully Completes Ground Demonstration Testing of Wireless Power Transmission Technology for SSPS. Press Information. 2015. Available online: https://www.mhi.com/news/1503121879.html (accessed on 23 August 2025).
- Vaessen, P. Wireless power transmission. Brief. Pap. 2009, 35, 4. [Google Scholar]
- Liu, M.; Liu, C.; Fuks, M.I.; Schamiloglu, E. Operation characteristics of 12-cavity relativistic magnetron with single-stepped cavities. IEEE Trans. Plasma Sci. 2014, 42, 3283–3287. [Google Scholar] [CrossRef]
- Kim, H.J.; Shin, J.U.; Choi, J.J. Particle-in-cell code simulations on a rising-sun magnetron oscillator. IEEE Trans. Plasma Sci. 2002, 30, 956–961. [Google Scholar] [CrossRef]
- Kim, J.-I.; Jeon, S.-G.; Jin, Y.-S.; Kim, G.-J.; Shon, C.-H. Three-dimensional particle-in-cell simulation of fast oscillation startup in strapped magnetron using electrically primed electrons. Jpn. J. Appl. Phys. 2007, 46, 6853. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, J.J. Three-dimensional particle-in-cell simulation study of a frequency tunable relativistic magnetron. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1045–1049. [Google Scholar] [CrossRef]
- Lin, M.-C.; Nieter, C.; Stoltz, P.H.; Smithe, D.N. Accurately and efficiently studying the RF structures using a conformal finite-difference time-domain particle-in-cell method. Open Plasma Phys. J. 2010, 3, 48–52. [Google Scholar] [CrossRef]
- Browning, J.; Fernandez-Gutierrez, S.; Lin, M.C.; Smithe, D.N.; Watrous, J. Phase control and fast start-up of a magnetron using modulation of an addressable faceted cathode. Appl. Phys. Lett. 2014, 104, 233507. [Google Scholar] [CrossRef]
- Fernandez-Gutierrez, S.; Browning, J.; Lin, M.-C.; Smithe, D.N.; Watrous, J. Simulation of a rising sun magnetron employing a faceted cathode with a continuous current source. J. Vac. Sci. Technol. B 2014, 32, 061205. [Google Scholar] [CrossRef]
- Fernandez-Gutierrez, S.; Browning, J.; Lin, M.-C.; Smithe, D.N.; Watrous, J. Phase-control of a rising sun magnetron using a modulated, addressable, current source. J. Vac. Sci. Technol. B 2015, 33, 031203. [Google Scholar] [CrossRef]
- Fernandez-Gutierrez, S.; Browning, J.; Lin, M.-C.; Smithe, D.N.; Watrous, J. Dynamic phase-control of a rising sun magnetron using modulated and continuous current. J. Appl. Phys. 2016, 119, 044501. [Google Scholar] [CrossRef]
- Guerrera, S.A.; Akinwande, A.I. Silicon field emitter arrays with current densities exceeding 100 A/cm2 at gate voltages below 75 V. IEEE Electron Device Lett. 2016, 37, 96–99. [Google Scholar] [CrossRef]
- Nieter, C.; Cary, J.R.; Werner, G.R.; Smithe, D.N.; Stoltz, P.H. Application of Dey–Mittra conformal boundary algorithm to 3D electromagnetic modeling. J. Comput. Phys. 2009, 228, 7902–7916. [Google Scholar] [CrossRef]
- Nieter, C.; Cary, J.R. VORPAL: A versatile plasma simulation code. J. Comput. Phys. 2004, 196, 448–473. [Google Scholar] [CrossRef]
- Saveliev, Y.M.; Kerr, B.A.; Harbour, M.I.; Douglas, S.C.; Sibbett, W. Operation of a relativistic rising-sun magnetron with cathodes of various diameters. IEEE Trans. Plasma Sci. 2002, 30, 938–946. [Google Scholar] [CrossRef]
- Lau, Y.Y.; Luginsland, J.W.; Cartwright, K.L.; Simon, D.H.; Tang, W.; Hoff, B.W.; Gilgenbach, R.M. A re-examination of the Buneman–Hartree condition in a cylindrical smooth-bore relativistic magnetron. Phys. Plasmas 2010, 17, 033102. [Google Scholar] [CrossRef]
- Andreev, A.D.; Hendricks, K.J. Metamaterial-like cathodes in multicavity magnetrons. IEEE Trans. Plasma Sci. 2012, 40, 2267–2273. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Z.; Fuks, M.I.; Jiang, W.; Schamiloglu, E.; Liu, C. Investigation of the operating characteristics of a 12-cavity rising-sun relativistic magnetron with diffraction output using particle-in-cell simulations. Phys. Plasmas 2016, 23, 052104. [Google Scholar] [CrossRef]
- Liu, M.; Fuks, M.I.; Schamiloglu, E.; Liu, C. Frequency switching in a 12-cavity relativistic magnetron with axial extraction of radiation. IEEE Trans. Plasma Sci. 2012, 40, 1569–1574. [Google Scholar] [CrossRef]
- Li, L.; Aranganadin, K.; Hsu, H.-Y.; Lin, M.-C. Design and development of field emission based magnetron for industrial applications using conformal finite-difference time-domain particle-in-cell simulations. J. Vac. Sci. Technol. B 2020, 38, 023205. [Google Scholar] [CrossRef]
Microwave power transmission | Frequency of microwave | 5.8 GHz |
Efficiency | ∼54% | |
Diameter of transmitting antenna | 1000 m | |
Number of antenna modules | 128,000 | |
Transmitting power of an antenna module | 12.5 kW | |
Mass | 4000 t | |
Diameter of receiving antenna | 5 km |
Sub-System | Design | Development | Transportation (1000 USD/kg) | Construction | Operation and Maintenance | Close and Recycle | Total |
---|---|---|---|---|---|---|---|
SECC | 5 | 2000 | 2000 | 1200 | 200 | 200 | 5605 |
PTM | 5 | 2000 | 2500 | 1000 | 500 | 250 | 6255 |
MPT | 10 | 3600 | 4000 | 800 | 400 | 400 | 9210 |
Structure | 5 | 600 | 1200 | 550 | 50 | 120 | 2525 |
AOC | 5 | 500 | 100 | 200 | 2500 | 10 | 3315 |
TM | 5 | 150 | 150 | 0 | 150 | 15 | 470 |
ISRM | 10 | 250 | 50 | 100 | 250 | 5 | 665 |
Total | 45 | 9100 | 10,000 | 3850 | 4050 | 1000 | 28,045 |
Cavity Geometry Parameters | Dimensions |
---|---|
Cathode radius | 0.389 cm |
Anode radius | 0.872 cm |
Cavity1 radius | 3.890 cm |
Cavity2 radius | 2.334 cm |
Cavity angle | 10.0 degree |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranganadin, K.; Lin, M.-C. Design and Development of High-Power, High-Efficiency, and Low-Noise Microwave Sources for Wireless Power Transmission. Energies 2025, 18, 5451. https://doi.org/10.3390/en18205451
Aranganadin K, Lin M-C. Design and Development of High-Power, High-Efficiency, and Low-Noise Microwave Sources for Wireless Power Transmission. Energies. 2025; 18(20):5451. https://doi.org/10.3390/en18205451
Chicago/Turabian StyleAranganadin, Kaviya, and Ming-Chieh Lin. 2025. "Design and Development of High-Power, High-Efficiency, and Low-Noise Microwave Sources for Wireless Power Transmission" Energies 18, no. 20: 5451. https://doi.org/10.3390/en18205451
APA StyleAranganadin, K., & Lin, M.-C. (2025). Design and Development of High-Power, High-Efficiency, and Low-Noise Microwave Sources for Wireless Power Transmission. Energies, 18(20), 5451. https://doi.org/10.3390/en18205451