Promoting or Hindering: The Impact of ESG Rating Differences on Energy Enterprises’ Green Transformation—A Causal Test from Double Machine-Learning Algorithms
Abstract
:1. Introduction
2. Theoretical Analysis and Hypothesis Formulation
3. Research Design
3.1. Sample Selection and Data Sources
3.2. Variable Quantification
3.2.1. ESG Rating Divergence
3.2.2. Corporate Green Transformation
3.2.3. Board Structure
3.2.4. Capital Market Attention
3.3. Control Variables
3.4. Construction of the Econometric Model
4. Empirical Analysis
4.1. Analysis of Main Effects and Moderating Effects
4.2. Robustness Checks
4.3. Mechanism Analysis
4.4. Further Research
5. Discussion
6. Conclusions
7. Research Limitations
- (1)
- The study focuses on Chinese listed energy companies, which may limit the generalizability of the findings to other regions or industries. Future research could consider cross-country comparisons or other sectors.
- (2)
- The proxy variable for green transformation efficiency may not capture all dimensions of corporate sustainability performance. Incorporating alternative metrics could enhance robustness.
- (3)
- Although the use of double machine learning mitigates endogeneity, potential biases from unobserved variables cannot be entirely ruled out.
- (4)
- The data spans from 2007 to 2022. Future studies could explore more recent data to assess the evolving dynamics of ESG performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
(1) Z1ML | (2) T1ML | (3) T2ML | (4) T3ML | (5) T4ML | |
---|---|---|---|---|---|
ESGdif | 0.013 *** | ||||
(0.001) | |||||
ESGdif6:Indrcrat2 | 0.001 *** | ||||
(0) | |||||
ESGdif6:Feldrcrat | 0.002 *** | ||||
(0) | |||||
ESGdif6:LrgHldRt | 0.001 *** | ||||
(0) | |||||
ESGdif6:gaze | 0.001 *** | ||||
(0) |
(1) Z1ML | (2) T1ML | (3) T2ML | (4) T3ML | (5) T4ML | |
---|---|---|---|---|---|
ESGdif | 0.116 *** | ||||
(0.023) | |||||
ESGdif6:Indrcrat2 | 0.003 *** | ||||
(0.001) | |||||
ESGdif6:Feldrcrat | 0.002 * | ||||
(0.001) | |||||
ESGdif6:LrgHldRt | 0.002 *** | ||||
(0) | |||||
ESGdif6:gaze | 0.005 *** | ||||
(0.001) |
(1) Z1ML | (2) T1ML | (3) T2ML | (4) T3ML | (5) T4ML | |
---|---|---|---|---|---|
ESGdif | 0.005 *** | ||||
(0.001) | |||||
ESGdif6:Indrcrat2 | 0.001 *** | ||||
(0.000) | |||||
ESGdif6:Feldrcrat | 0.001 *** | ||||
(0) | |||||
ESGdif6:LrgHldRt | 0.001 *** | ||||
(0) | |||||
ESGdif6:gaze | 0.003 *** | ||||
(0.001) |
(1) Z1ML | (2) T1ML | (3) T2ML | (4) T3ML | (5) T4ML | |
---|---|---|---|---|---|
ESGdif | 0.013 *** | ||||
(0.001) | |||||
ESGdif6:Indrcrat2 | 0.001 *** | ||||
(0) | |||||
ESGdif6:Feldrcrat | 0 *** | ||||
(0) | |||||
ESGdif6:LrgHldRt | 0.002 *** | ||||
(0) | |||||
ESGdif6:gaze | 0.001 *** | ||||
(0) |
(1) Z1ML | (2) T1ML | (3) T2ML | (4) T3ML | (5) T4ML | |
---|---|---|---|---|---|
ESGdif | 0.019 ** | ||||
(0.009) | |||||
ESGdif6:Indrcrat2 | 0.001 *** | ||||
(0) | |||||
ESGdif6:Feldrcrat | 0 *** | ||||
(0) | |||||
ESGdif6:LrgHldRt | 0 *** | ||||
(0) | |||||
ESGdif6:gaze | 0.001 *** | ||||
(0) |
References
- Singh, R.L.; Singh, P.K. Global environmental problems. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Singapore, 2017; pp. 13–41. [Google Scholar]
- Gazzola, P.; Del Campo, A.G.; Onyango, V. Going green vs going smart for sustainable development: Quo vadis? J. Clean. Prod. 2019, 214, 881–892. [Google Scholar] [CrossRef]
- Zhou, Y.; Hao, F.; Meng, W.; Fu, J. Scenario analysis of energy-based low-carbon development in China. J. Environ. Sci. 2014, 26, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Lyu, P.; Ye, L.; Zhou, Y.W. Green innovation transformation, economic sustainability and energy consumption during China’s new normal stage. J. Clean. Prod. 2020, 273, 123044. [Google Scholar] [CrossRef]
- Huang, M.T.; Zhai, P.M. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Adv. Clim. Chang. Res. 2021, 12, 281–286. [Google Scholar] [CrossRef]
- Plotkin, J.; Levchenko, N.; Shyshkanova, G.; Levchenko, S. Development of Energy Enterprises in the Context of Green Transformation. J. Eng. Sci. 2023, 10, G22–G33. [Google Scholar] [CrossRef]
- Kozar, Ł.J.; Sulich, A. Energy Sector’s Green Transformation towards Sustainable Development: A Review and Future Directions. Sustainability 2023, 15, 11628. [Google Scholar] [CrossRef]
- Latapí Agudelo, M.A.; Johannsdottir, L.; Davidsdottir, B. Drivers that motivate energy companies to be responsible. A systematic literature review of Corporate Social Responsibility in the energy sector. J. Clean. Prod. 2020, 247, 119094. [Google Scholar] [CrossRef]
- Baratta, A.; Cimino, A.; Longo, F.; Solina, V.; Verteramo, S. The Impact of ESG Practices in Industry with a Focus on Carbon Emissions: Insights and Future Perspectives. Sustainability 2023, 15, 6685. [Google Scholar] [CrossRef]
- UN Global Compact. Who Cares Wins: Connecting Financial Markets to a Changing World; The Global Compact: New York, NY, USA, 2004. [Google Scholar]
- Sibarani, S. ESG (Environmental, Social, and Governance) Implementation to Strengthen Business Sustainability Pt. Migas–North Field. Eur. J. Bus. Manag. Res. 2023, 8, 147–150. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, H.; Zhong, M. Do ESG Ratings of Chinese Firms Converge or Diverge? A Comparative Analysis Based on Multiple Domestic and International Ratings. Sustainability 2023, 15, 12573. [Google Scholar] [CrossRef]
- Yi, Z.; Li, H. Environmental, Social and Governance Investing Assessment under Incomplete Information by the Power Aggregation Model on Probabilistic Linguistic Terms. IEEE Access 2021, 9, 120442–120450. [Google Scholar] [CrossRef]
- Billio, M.; Costola, M.; Hristova, I.; Latino, C.; Pelizzon, L. Inside the ESG ratings: (Dis)agreement and performance. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 1426–1445. [Google Scholar] [CrossRef]
- Zhang, L. ESG Rating Divergence: Beauty Is in the Eye of the Beholder. J. Index Investig. 2021, 12, 53–63. [Google Scholar] [CrossRef]
- Jacobs, B.I.; Levy, K.N. The Challenge of Disparities in ESG Ratings. J. Impact ESG Investig. 2022, 2, 107–111. [Google Scholar] [CrossRef]
- Kiesel, F.; Lücke, F. ESG in credit ratings and the impact on financial markets. Financ. Mark. Inst. Instrum. 2019, 28, 263–290. [Google Scholar] [CrossRef]
- Zumente, I.; Lāce, N. Esg rating—Necessity for the investor or the company? Sustainability 2021, 13, 8940. [Google Scholar] [CrossRef]
- Chininga, E.; Alhassan, A.L.; Zeka, B. ESG ratings and corporate financial performance in South Africa. J. Account. Emerg. Econ. 2024, 14, 692–713. [Google Scholar] [CrossRef]
- Drempetic, S.; Klein, C.; Zwergel, B. The Influence of Firm Size on the ESG Score: Corporate Sustainability Ratings Under Review. J. Bus. Ethics 2020, 167, 333–360. [Google Scholar] [CrossRef]
- Gao, S.; Meng, F.; Wang, W.; Chen, W. Does ESG always improve corporate performance? Evidence from firm life cycle perspective. Front. Environ. Sci. 2023, 11, 1105077. [Google Scholar] [CrossRef]
- Kim, S.; Li, Z. Understanding the impact of esg practices in corporate finance. Sustainability 2021, 13, 3746. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L. On the Mechanics of sustainability: ESG Rating and company performance. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Zhang, K.; Md Kassim, A.A.; Guo, Y. Research on Corporate Sustainability from an ESG Perspective. Front. Bus. Econ. Manag. 2023, 8, 185–191. [Google Scholar] [CrossRef]
- Clément, A.; Robinot, É.; Trespeuch, L. Improving ESG Scores with Sustainability Concepts. Sustainability 2022, 14, 13154. [Google Scholar] [CrossRef]
- Amir, A.Z.; Serafeim, G. Why and how investors use ESG information: Evidence from a global survey. Financ. Anal. J. 2018, 74, 87–103. [Google Scholar] [CrossRef]
- Akgun, O.T.; Mudge, T.J.; Townsend, B. How Company Size Bias in ESG Scores Impacts the Small Cap Investor. J. Impact ESG Investig. 2021, 1, 31–44. [Google Scholar] [CrossRef]
- Que, X. Optimization path of corporate ESG performance and compensation performance management under carbon neutral target. Appl. Math. Nonlinear Sci. 2023, 9, 1–14. [Google Scholar] [CrossRef]
- Gregory, R.P. The influence of firm size on ESG score controlling for ratings agency and industrial sector. J. Sustain. Financ. Investig. 2024, 14, 86–99. [Google Scholar] [CrossRef]
- De Souza, R.; Casisi, M.; Micheli, D.; Reini, M. A review of small–medium combined heat and power (CHP) technologies and their role within the 100% renewable energy systems scenario. Energies 2021, 14, 5338. [Google Scholar] [CrossRef]
- Henriques, J.; Catarino, J. Motivating towards energy efficiency in small and medium enterprises. J. Clean. Prod. 2016, 139, 42–50. [Google Scholar] [CrossRef]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.J.; Olabi, A.G. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2021, 766, 144505. [Google Scholar] [CrossRef]
- Christensen, D.M.; Serafeim, G.; Sikochi, A. Why is Corporate Virtue in the Eye of The Beholder? The Case of ESG Ratings. Account. Rev. 2022, 97, 147–175. [Google Scholar] [CrossRef]
- Widyawati, L. Measurement concerns and agreement of environmental social governance ratings. Account. Financ. 2021, 61, 1589–1623. [Google Scholar] [CrossRef]
- Capizzi, V.; Gioia, E.; Giudici, G.; Tenca, F. The divergence of ESG ratings: An analysis of Italian listed companies. J. Financ. Manag. Mark. Inst. 2021, 9, 2150006. [Google Scholar] [CrossRef]
- Berg, F.; Kölbel, J.F.; Rigobon, R. Aggregate Confusion: The Divergence of ESG Ratings*. Rev. Financ. 2022, 26, 1315–1344. [Google Scholar] [CrossRef]
- Hughes, A.; Urban, M.A.; Wójcik, D. Alternative esg ratings: How technological innovation is reshaping sustainable investment. Sustainability 2021, 13, 3551. [Google Scholar] [CrossRef]
- Avramov, D.; Cheng, S.; Lioui, A.; Tarelli, A. Sustainable investing with ESG rating uncertainty. J. Financ. Econ. 2022, 145, 642–664. [Google Scholar] [CrossRef]
- Kim, R.; Koo, B. The impact of ESG rating disagreement on corporate value. J. Deriv. Quant. Stud. 2023, 31, 219–241. [Google Scholar] [CrossRef]
- Schumacher, K. Environmental, Social, and Governance (ESG) Factors and Green Productivity: The Impacts of Greenwashing and Competence Greenwashing on Sustainable Finance and ESG Investing. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Cohen, B.; Winn, M.I. Market imperfections, opportunity and sustainable entrepreneurship. J. Bus. Ventur. 2007, 22, 29–49. [Google Scholar] [CrossRef]
- Gilberto Gomes, S.; Fabio Henrique, P. ESG (Environmental, Social and Governance) in construction civil: Concept that can contribute to the sector. Ann. Civ. Environ. Eng. 2022, 6, 064–065. [Google Scholar] [CrossRef]
- Epstein, M.J.; Buhovac, A.R.; Elkington, J.; Leonard, H.B.D. Making sustainability work: Best practices in managing and measuring corporate social, environmental and economic impacts. In Making Sustainability Work: Best Practices in Managing and Measuring Corporate Social, Environmental and Economic Impacts; Taylor and Francis: Abingdon, UK, 2017. [Google Scholar] [CrossRef]
- Friede, G.; Busch, T.; Bassen, A. ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. J. Sustain. Financ. Investig. 2015, 5, 210–233. [Google Scholar] [CrossRef]
- Asni, N.; Agustia, D. Does corporate governance induce green innovation? An emerging market evidence. Corp. Gov. 2022, 22, 1375–1389. [Google Scholar] [CrossRef]
- Utami, P.; Gandakusuma, I. Sustainability’s influence on energy firm performance: An ESG perspective. J. Apl. Akunt. 2023, 8, 207–221. [Google Scholar] [CrossRef]
- Clement, R.W. The lessons from stakeholder theory for U.S. business leaders. Bus. Horiz. 2005, 48, 255–264. [Google Scholar] [CrossRef]
- Markovich, K.A.; Alekseevna, E.A.; Alekseevna, C.D. Ecological, Social and Governance Impact on the Company’s Performance: Information Technology Sector Insight. Procedia Comput. Sci. 2022, 214, 1065–1072. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef]
- Alsayegh, M.F.; Rahman, R.A.; Homayoun, S. Corporate economic, environmental, and social sustainability performance transformation through ESG disclosure. Sustainability 2020, 12, 3910. [Google Scholar] [CrossRef]
- Sharma, S.; Ruud, A. On the path to sustainability: Integrating social dimensions into the research and practice of environmental management. Bus. Strategy Environ. 2003, 12, 205–214. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, R. Esg performance and stock price volatility in public health crisis: Evidence from COVID-19 pandemic. Int. J. Environ. Res. Public Health 2022, 19, 202. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Pan, H.; Feng, Y.; Du, S. How do ESG practices create value for businesses? Research review and prospects. Sustain. Account. Manag. Policy J. 2023, 15, 1155–1177. [Google Scholar] [CrossRef]
- Kang, S. Experienced Independent Directors. SSRN Electron. J. 2013. [Google Scholar] [CrossRef]
- Yu, E.P.-y.; Van Luu, B. International variations in ESG disclosure—Do cross-listed companies care more? Int. Rev. Financ. Anal. 2021, 75, 101731. [Google Scholar] [CrossRef]
- Tibiletti, V.; Marchini, P.L.; Furlotti, K.; Medioli, A. Does corporate governance matter in corporate social responsibility disclosure? Evidence from Italy in the “era of sustainability”. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 896–907. [Google Scholar] [CrossRef]
- Giannarakis, G.; Andronikidis, A.; Sariannidis, N. Determinants of environmental disclosure: Investigating new and conventional corporate governance characteristics. Ann. Oper. Res. 2020, 294, 87–105. [Google Scholar] [CrossRef]
- Disli, M.; Yilmaz, M.K.; Mohamed, F.F.M. Board characteristics and sustainability performance: Empirical evidence from emerging markets. Sustain. Account. Manag. Policy J. 2022, 13, 929–952. [Google Scholar] [CrossRef]
- Iren, P. Gender diversity of boardrooms and firm financial performance. Risk Gov. Control Financ. Mark. Inst. 2016, 6, 28–33. [Google Scholar] [CrossRef]
- Attah-Boakye, R.; Adams, K.; Kimani, D.; Ullah, S. The impact of board gender diversity and national culture on corporate innovation: A multi-country analysis of multinational corporations operating in emerging economies. Technol. Forecast. Soc. Chang. 2020, 161, 120247. [Google Scholar] [CrossRef]
- Wicker, P.; Feiler, S.; Breuer, C. Board gender diversity, critical masses, and organizational problems of non-profit sport clubs. Eur. Sport Manag. Q. 2020, 22, 251–271. [Google Scholar] [CrossRef]
- Tamimi, N.; Sebastianelli, R. Transparency among S&P 500 companies: An analysis of ESG disclosure scores. Manag. Decis. 2017, 55, 1660–1680. [Google Scholar] [CrossRef]
- Ng, Y.K. Individual irrationality and social welfare. Soc. Choice Welf. 1989, 6, 87–101. [Google Scholar] [CrossRef]
- Que, J.; Zhang, X. Money chasing hot industries? Investor attention and valuation of venture capital backed firms. J. Corp. Financ. 2021, 68, 101949. [Google Scholar] [CrossRef]
- Cordeiro, J.J.; Tewari, M. Firm Characteristics, Industry Context, and Investor Reactions to Environmental CSR: A Stakeholder Theory Approach. J. Bus. Ethics 2015, 130, 833–849. [Google Scholar] [CrossRef]
- Beatty, R.P.; Ritter, J.R. Investment banking, reputation, and the underpricing of initial public offerings. J. Financ. Econ. 1986, 15, 213–232. [Google Scholar] [CrossRef]
- Stiglitz, J.E. Credit Markets and the Control of Capital. J. Money Credit. Bank. 1985, 17, 133–152. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, Y.; Hu, S.; Sun, M.; Zhang, C. How does digitalization affect the green transformation of enterprises registered in China’s resource-based cities? Further analysis on the mechanism and heterogeneity. J. Environ. Manag. 2024, 365, 121560. [Google Scholar] [CrossRef]
- Stoian, A.; Iorgulescu, F. Sustainable Capital Market. In Financing Sustainable Development: Key Challenges and Prospects; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef]
- McSharry, P.E.; Smith, L.A.; Tarassenko, L. Comparison of Predictability of Epileptic Seizures by a Linear and a Nonlinear Method. IEEE Trans. Biomed. Eng. 2003, 50, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Risuleo, R.S.; Bottegal, G.; Hjalmarsson, H. Identification of Linear Models from Quantized Data: A Midpoint-Projection Approach. IEEE Trans. Autom. Control 2020, 65, 2801–2813. [Google Scholar] [CrossRef]
- Salvioni, D.M.; Gennari, F. Corporate Governance, Sustainability and Capital Markets Orientation. Int. J. Manag. Sustain. 2014, 3, 469–483. [Google Scholar] [CrossRef]
- Banks, E. External Governance Mechanisms: Systemic Accountability. In Corporate Governance; Palgrave Macmillan: London, UK, 2004. [Google Scholar]
- Salvioni, D.M.; Astori, R. Sustainable Development and Global Responsibility in Corporate Governance. Symphonya Emerg. Issues Manag. 2013, 1, 28–52. [Google Scholar] [CrossRef]
- Hegarty, W.H.; Hoffman, R.C. Who influences strategic decisions? Long Range Plan. 1987, 20, 76–85. [Google Scholar] [CrossRef]
- Gristo, P. President’s Page: Energy transition as an opportunity for Latin American geoscientists, companies, and the people. Lead. Edge 2023, 42, 234–235. [Google Scholar] [CrossRef]
- Cherepovitsyn, A.; Rutenko, E. Strategic Planning of Oil and Gas Companies: The Decarbonization Transition. Energies 2022, 15, 6163. [Google Scholar] [CrossRef]
- Watson, T.J. Ethical choice in managerial work: The scope for moral choices in an ethically irrational world. Hum. Relat. 2003, 56, 167–185. [Google Scholar] [CrossRef]
- Aich, S.; Thakur, A.; Nanda, D.; Tripathy, S.; Kim, H.C. Factors affecting esg towards impact on investment: A structural approach. Sustainability 2021, 13, 10868. [Google Scholar] [CrossRef]
- Acharya, V.V.; Myers, S.C.; Rajan, R.G. The Internal Governance of Firms. J. Financ. 2011, 66, 689–720. [Google Scholar] [CrossRef]
- Cheng, Q.; Lee, J.; Shevlin, T. Internal governance and real earnings management. Account. Rev. 2016, 91, 1051–1085. [Google Scholar] [CrossRef]
- Jaggi, B. Corporate Governance: Structure and Consequences. In Encyclopedia of Finance, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Miatishkin, G.; Mironenkova, A. Energy Efficiency Index of Industrial Energy Consumers for Achieving the Sustainable Development Goals. In Proceedings of the 2021 International Scientific and Technical Engine Conference, EC 2021, Samara, Russia, 23–25 June 2021. [Google Scholar] [CrossRef]
- Hu, W.; Wang, P.; Gooi, H.B. Toward optimal energy management of microgrids via robust two-stage optimization. IEEE Trans. Smart Grid 2018, 9, 1161–1174. [Google Scholar] [CrossRef]
- Dosanu, M.; Ciobanu, A.; Gheorghe, S. Exploring the Environmental, Social and Governance Measures in Real Estate—The Impact in Energy Management. In Proceedings of the 2023 11th International Conference on ENERGY and ENVIRONMENT, CIEM 2023, Bucharest, Romania, 26–27 October 2023. [Google Scholar] [CrossRef]
- Perotti, S.; Colicchia, C. Greening warehouses through energy efficiency and environmental impact reduction: A conceptual framework based on a systematic literature review. Int. J. Logist. Manag. 2023, 34, 199–234. [Google Scholar] [CrossRef]
(1) Z1LM | (2) Z1ML | (3) T1LM | (4) T1ML | (5) T2LM | (6) T2ML | (7) T3LM | (8) T3ML | (9) T4LM | (10) T4ML | |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | 0.359 ** | 0.384 ** | −0.337 ** | −0.351 ** | −0.340 ** | |||||
(0.113) | (0.119) | (0.114) | (0.118) | (0.113) | ||||||
ESGdif6 | 0.015 * | 0.021 *** | 0.017 *** | 0.001 ** | 0.027 *** | 0.001 *** | 0.019 *** | 0.002 *** | 0.016 *** | 0.011 *** |
(0.006) | (0.001) | (0.002) | (0) | (0.001) | (0.000) | (0.005) | (0.000) | (0.002) | (0.001) | |
size | 0.333 *** | 0.333 *** | 0.331 *** | 0.332 *** | 0.328 *** | |||||
(0.006) | (0.006) | (0.007) | (0.007) | (0.007) | ||||||
CR | −0.158 *** | −0.155 *** | −0.155 *** | −0.156 *** | −0.146 *** | |||||
(0.044) | (0.044) | (0.044) | (0.045) | (0.044) | ||||||
TAR | −0.013 * | −0.013 | −0.012 | −0.013 * | −0.011 | |||||
(0.007) | (0.007) | (0.007) | (0.007) | (0.007) | ||||||
RIA | −0.031 | −0.030 | −0.042 | −0.037 | −0.010 | |||||
(0.117) | (0.117) | (0.118) | (0.119) | (0.117) | ||||||
FAR | 0.102 | 0.100 | 0.083 | 0.096 | 0.112 | |||||
(0.121) | (0.121) | (0.122) | (0.123) | (0.121) | ||||||
CAR | 0.196 *** | 0.199 *** | 0.199 *** | 0.195 *** | 0.182 *** | |||||
(0.038) | (0.038) | (0.038) | (0.038) | (0.039) | ||||||
WCR | 0.301 *** | 0.298 *** | 0.299 *** | 0.299 *** | 0.299 *** | |||||
(0.050) | (0.051) | (0.051) | (0.051) | (0.050) | ||||||
RST | −0.177 *** | −0.176 *** | −0.178 *** | −0.175 *** | −0.186 *** | |||||
(0.048) | (0.048) | (0.048) | (0.049) | (0.048) | ||||||
TFR | 0.010 *** | 0.010 *** | 0.010 *** | 0.010 *** | 0.010 *** | |||||
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | ||||||
ERT | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||||
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | ||||||
Etaxrt | −0.000 | −0.000 | −0.000 | −0.000 | 0.000 | |||||
(0.003) | (0.003) | (0.003) | (0.003) | (0.003) | ||||||
Concurrent Position | −0.010 | −0.010 | −0.009 | −0.010 | −0.009 | |||||
(0.011) | (0.011) | (0.011) | (0.011) | (0.011) | ||||||
Indrcrat2 | 0.059 *** | |||||||||
(0.009) | ||||||||||
ESGdif6:Indrcrat2 | 0.067 *** | |||||||||
(0.006) | ||||||||||
Feldrcrat | 0.003 *** | |||||||||
(0.001) | ||||||||||
ESGdif6:Feldrcrat | 0.027 *** | |||||||||
(0.000) | ||||||||||
LrgHldRt | 0.009 *** | |||||||||
(0.000) | ||||||||||
ESGdif6:LrgHldRt | 0.0227 *** | |||||||||
(0.000) | ||||||||||
gaze | 0.001 *** | |||||||||
(0.000) | ||||||||||
ESGdif6:gaze | 0.039 *** | |||||||||
(0.001) | ||||||||||
R2 | 0.903 | 0.903 | 0.904 | 0.903 | 0.905 | |||||
Adj. R2 | 0.901 | 0.900 | 0.901 | 0.900 | 0.901 | |||||
Num. obs. | 1081 | 1081 | 1081 | 1081 | 1081 |
(1) Efflnincom | (2) Greinn | (3) Efflnincom | |
---|---|---|---|
(Intercept) | 3.168 *** | 24.216 *** | 3.168 *** |
(0.003) | (4.249) | (0.003) | |
size | 0.333 *** | 86.750 *** | 0.321 *** |
(0.006) | (7.964) | (0.007) | |
CR | −0.158 *** | −208.631 *** | −0.130 ** |
(0.044) | (54.126) | (0.044) | |
TAR | −0.013 * | −10.235 | −0.012 |
(0.007) | (8.297) | (0.007) | |
RIA | −0.031 | −189.589 | −0.005 |
(0.117) | (145.128) | (0.116) | |
FAR | 0.102 | −354.431 * | 0.149 |
(0.121) | (149.670) | (0.120) | |
CAR | 0.196 *** | −32.628 | 0.201 *** |
(0.038) | (47.232) | (0.038) | |
WCR | 0.301 *** | 47.771 | 0.295 *** |
(0.050) | (62.407) | (0.050) | |
RST | −0.177 *** | −98.288 | −0.164 *** |
(0.048) | (59.335) | (0.047) | |
TFR | 0.010 *** | 1.351 | 0.009 *** |
(0.001) | (1.092) | (0.001) | |
ERT | 0.000 | −0.088 | 0.000 |
(0.000) | (0.343) | (0.000) | |
Etaxrt | −0.000 | 0.443 | −0.000 |
(0.003) | (3.463) | (0.003) | |
ConcurrentPosition | −0.010 | 26.841 * | −0.014 |
(0.011) | (13.219) | (0.011) | |
ESGdif6 | 0.015 * | 4.662 *** | 0.015 * |
(0.006) | (0.483) | (0.006) | |
greinn | 0.002 *** | ||
(0.000) | |||
R2 | 0.903 | 0.256 | 0.906 |
Adj. R2 | 0.901 | 0.236 | 0.903 |
Num. obs. | 1081 | 1081 | 1081 |
(1) MeanAmret | (2) Efflnincom | (3) MeanAmret | |
---|---|---|---|
(Intercept) | 1.026 *** | 3.168 *** | 1.026 *** |
(0.150) | (0.003) | (0.150) | |
size | −0.384 | 0.333 *** | −1.686 * |
(0.281) | (0.006) | (0.727) | |
CR | 2.586 | −0.158 *** | 3.203 |
(1.911) | (0.044) | (1.932) | |
TAR | −0.196 | −0.013 * | −0.144 |
(0.293) | (0.007) | (0.293) | |
RIA | 7.126 | −0.031 | 7.246 |
(5.124) | (0.117) | (5.109) | |
FAR | 12.185 * | 0.102 | 11.787 * |
(5.284) | (0.121) | (5.272) | |
CAR | 2.052 | 0.196 *** | 1.283 |
(1.668) | (0.038) | (1.709) | |
WCR | −0.164 | 0.301 *** | −1.343 |
(2.203) | (0.050) | (2.279) | |
RST | 3.868 | −0.177 *** | 4.562 * |
(2.095) | (0.048) | (2.119) | |
TFR | 0.012 | 0.010 *** | −0.025 |
(0.039) | (0.001) | (0.043) | |
ERT | 0.000 | 0.000 | −0.001 |
(0.012) | (0.000) | (0.012) | |
Etaxrt | 0.089 | −0.000 | 0.090 |
(0.122) | (0.003) | (0.122) | |
ConcurrentPosition | 0.288 | −0.010 | 0.327 |
(0.467) | (0.011) | (0.466) | |
ESGdif6 | −0.116 *** | 0.015 * | −0.106 *** |
(0.064) | (0.006) | (0.065) | |
efflnincom | 3.915 *** | ||
(1.015) | |||
R2 | 0.037 | 0.903 | 0.045 |
Adj. R2 | 0.011 | 0.901 | 0.017 |
Num. obs. | 1081 | 1081 | 1081 |
(1) GRO | (2) Efflnincom | (3) GRO | |
---|---|---|---|
(Intercept) | 0.054 ** | 3.168 *** | 0.054 ** |
(0.021) | (0.003) | (0.021) | |
size | −0.068 | 0.333 *** | −0.258 * |
(0.039) | (0.006) | (0.101) | |
F011201A | 0.091 | −0.158 *** | 0.181 |
(0.265) | (0.044) | (0.268) | |
F010401A | −0.049 | −0.013 * | −0.041 |
(0.041) | (0.007) | (0.041) | |
F031001A | 0.270 | −0.031 | 0.287 |
(0.710) | (0.117) | (0.708) | |
F030901A | 1.367 | 0.102 | 1.309 |
(0.732) | (0.121) | (0.730) | |
F030801A | −0.293 | 0.196 *** | −0.404 |
(0.231) | (0.038) | (0.237) | |
F030101A | −0.543 | 0.301 *** | −0.714 * |
(0.305) | (0.050) | (0.316) | |
F030501A | 0.363 | −0.177 *** | 0.464 |
(0.290) | (0.048) | (0.293) | |
F041401B | 0.010 | 0.010 *** | 0.004 |
(0.005) | (0.001) | (0.006) | |
F040505C | 0.001 | 0.000 | 0.000 |
(0.002) | (0.000) | (0.002) | |
Etaxrt | −0.002 | −0.000 | −0.002 |
(0.017) | (0.003) | (0.017) | |
ConcurrentPosition | 0.026 | −0.010 | 0.031 |
(0.065) | (0.011) | (0.065) | |
ESGdif6 | 0.023 *** | 0.015 * | 0.024 *** |
(0.007) | (0.006) | (0.037) | |
efflnincom | 0.569 * | ||
(0.279) | |||
R2 | 0.075 | 0.903 | 0.084 |
Adj. R2 | 0.050 | 0.901 | 0.056 |
Num. obs. | 1081 | 1081 | 1081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Wang, Y.; Wang, Y. Promoting or Hindering: The Impact of ESG Rating Differences on Energy Enterprises’ Green Transformation—A Causal Test from Double Machine-Learning Algorithms. Energies 2025, 18, 464. https://doi.org/10.3390/en18030464
Wan J, Wang Y, Wang Y. Promoting or Hindering: The Impact of ESG Rating Differences on Energy Enterprises’ Green Transformation—A Causal Test from Double Machine-Learning Algorithms. Energies. 2025; 18(3):464. https://doi.org/10.3390/en18030464
Chicago/Turabian StyleWan, Jun, Yuejia Wang, and Yuan Wang. 2025. "Promoting or Hindering: The Impact of ESG Rating Differences on Energy Enterprises’ Green Transformation—A Causal Test from Double Machine-Learning Algorithms" Energies 18, no. 3: 464. https://doi.org/10.3390/en18030464
APA StyleWan, J., Wang, Y., & Wang, Y. (2025). Promoting or Hindering: The Impact of ESG Rating Differences on Energy Enterprises’ Green Transformation—A Causal Test from Double Machine-Learning Algorithms. Energies, 18(3), 464. https://doi.org/10.3390/en18030464