Assessing the Sustainability of Energy-Related Nanomaterial Synthesis: Emphasizing the Need for Energy-Efficient Nanomaterial Preparation Techniques
Abstract
:1. Introduction
2. Energy Application of Nanomaterials—Brief Overview
2.1. Nanomaterials in Energy Production
2.2. Nanomaterials in Energy Distribution
2.3. Nanomaterials for Energy Storage
2.4. Nanomaterials for Energy Conservation
3. Techniques That Are Used for the Preparation of Energy Related Nanomaterials
Energy-Saving Alternative Technique: Green Synthesis
4. Future Perspectives and Recommendations
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Gilbert, G. World Population: A Reference Handbook; ABC-CLIO: Santa Barbara, CA, USA, 2005. [Google Scholar]
- Yu, X.; Ladewig, S.; Bao, S.; Toline, C.A.; Whitmire, S.; Chow, A.T. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 2018, 613–614, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Armaroli, N.; Balzani, V. Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Smil, V. Energy at the Crossroads: Global Perspectives and Uncertainties; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Dudley, B. BP Statistical Review of World Energy 2016; Bplc. Edit.: London, UK, 2016. [Google Scholar]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 2354–2376. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Shameli, K.; Bin Ahmad, M.; Jazayeri, S.D.; Sedaghat, S.; Shabanzadeh, P.; Jahangirian, H.; Mahdavi, M.; Abdollahi, Y. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method. Int. J. Mol. Sci. 2012, 13, 6639–6650. [Google Scholar] [CrossRef] [PubMed]
- Zargar, M.; Hamid, A.A.; Bakar, F.A.; Shamsudin, M.N.; Shameli, K.; Jahanshiri, F.; Farahani, F. Green Synthesis Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo, L. Molecules 2011, 16, 6667–6676. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; Al-Amiery, A.A.A.; Kadhum, A.A.H.; Mohamad, A.B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63. [Google Scholar] [CrossRef]
- Osiak, M.; Geaney, H.; Armstrong, E.; O’Dwyer, C. Structuring materials for lithium-ion batteries: Advancements in nanomaterial structure, composition, and defined assembly on cell performance. J. Mater. Chem. A 2014, 2, 9433. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Z.; Sun, M.; Wu, Y.; Xu, P.; Qian, X.; Li, C.; Ding, Y.; Ma, C. Enhanced thermal energy storage of nitrate salts by silica nanoparticles for concentrating solar power. Int. J. Energy Res. 2021, 45, 5248–5262. [Google Scholar] [CrossRef]
- Guidelli, E.J.; Ramos, A.P.; Zaniquelli, M.E.D.; Baffa, O. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 82, 140–145. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Yunus, W.M.Z.W.; Rustaiyan, A.; Ibrahim, N.A.; Zargar, M.; Abdollahi, Y. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int. J. Nanomed. 2010, 5, 875–887. [Google Scholar] [CrossRef]
- Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward Greener Nanosynthesis. Chem. Rev. 2007, 107, 2228–2269. [Google Scholar] [CrossRef]
- Donaldson, K.; Stone, V. Nanoscience fact versus fiction. Commun. ACM 2004, 47, 113–115. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, R.M.; Zafar, F.; Singh, P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 2012, 67, 91–94. [Google Scholar] [CrossRef]
- Aswathy Aromal, S.; Philip, D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 1–5. [Google Scholar] [CrossRef]
- Ahamed, M.; Majeed Khan, M.A.; Siddiqui, M.K.J.; AlSalhi, M.S.; Alrokayan, S.A. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Phys. E Low-Dimens. Syst. Nanostructures 2011, 43, 1266–1271. [Google Scholar] [CrossRef]
- Mohan Kumar, K.; Mandal, B.K.; Siva Kumar, K.; Sreedhara Reddy, P.; Sreedhar, B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 102, 128–133. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, X.; Jin, Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater. Chem. Phys. 2008, 108, 421–424. [Google Scholar] [CrossRef]
- Hutchison, J.E. Greener Nanoscience: A Proactive Approach to Advancing Applications and Reducing Implications of Nanotechnology. ACS Nano 2008, 2, 395–402. [Google Scholar] [CrossRef]
- Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1461–1465. [Google Scholar] [CrossRef]
- Aromal, S.A.; Vidhu, V.K.; Philip, D. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 85, 99–104. [Google Scholar] [CrossRef]
- Mao, G.; Liu, X.; Du, H.; Zuo, J.; Wang, L. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renew Sustain Energy Rev 2015, 48, 276–286. [Google Scholar] [CrossRef]
- Harper, T. Energy And Nanotechnologies: A Rational Market Based Analysis; Nano-Energie Impulsveranstal-Tung, Industrial Park Hanau-Wolf-Gang: 2007.
- Wang, L.; Teles, M.P.R.; Arabkoohsar, A.; Yu, H.; Ismail, K.A.R.; Mahian, O.; Wongwises, S. A holistic and state-of-the-art review of nanotechnology in solar cells. Sustain. Energy Technol. Assess. 2022, 54, 102864. [Google Scholar] [CrossRef]
- Takabayashi, S.; Nakamura, R.; Nakato, Y. A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photochem. Photobiol. A Chem. 2004, 166, 107–113. [Google Scholar] [CrossRef]
- Pelemiš, S.; Hut, I. Nanotechnology materials for solar energy conversion. Contemp. Mater. 2013, 4, 145–151. [Google Scholar] [CrossRef]
- Alamri, H.R.; Rezk, H.; Abd-Elbary, H.; Ziedan, H.A.; Elnozahy, A. Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial. Coatings 2020, 10, 503. [Google Scholar] [CrossRef]
- Girginov, C.A.; Kanazirski, I.A.; Ilcheva, V.G. Electrolytic coloring of porous aluminum oxide films in CoSO4 Solution. Bulg. Chem. Commun. 2013, 45, 52–56. [Google Scholar]
- Shaffei, M.F.; Hussein, H.S.; Awad Abouelata, A.M.; Osman, R.M.; Mohammed, M.S. Effect of sealing on characteristics of nano-porous aluminum oxide as black selective coatings. Clean. Eng. Technol. 2021, 4, 100156. [Google Scholar] [CrossRef]
- Ali, M.; Wang, X.; Haroon, U.; Chaudhary, H.J.; Kamal, A.; Ali, Q.; Saleem, M.H.; Usman, K.; Alatawi, A.; Ali, S.; et al. Antifungal activity of Zinc nitrate derived nano Zno fungicide synthesized from Trachyspermum ammi to control fruit rot disease of grapefruit. Ecotoxicol. Environ. Saf. 2022, 233, 113311. [Google Scholar] [CrossRef]
- Hussein, A.K. Applications of nanotechnology to improve the performance of solar collectors—Recent advances and overview. Renew. Sustain. Energy Rev. 2016, 62, 767–792. [Google Scholar] [CrossRef]
- Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 2012, 39, 293–298. [Google Scholar] [CrossRef]
- Cho, D.-H.; Lee, W.-J.; Park, S.-W.; Wi, J.-H.; Han, W.S.; Kim, J.; Cho, M.H.; Kim, D.; Chung, Y.D. Non-toxically enhanced sulfur reaction for formation of chalcogenide thin films using a thermal cracker. J. Mater. Chem. A 2014, 2, 14593–14599. [Google Scholar] [CrossRef]
- Wu, J.J.; Lee, G.-J. Advanced Nanomaterials for Water Splitting and Hydrogen Generation. In Nanomaterials for Green Energy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 145–167. [Google Scholar] [CrossRef]
- Lai, W.H.; Su, Y.H.; Teoh, L.G.; Hon, M.H. Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiol. A Chem. 2008, 195, 307–313. [Google Scholar] [CrossRef]
- Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Use of Highly-Ordered TiO 2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Lett. 2006, 6, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.K.; Akhtar, M.S.; Ameen, S.; Srivastava, P.; Singh, G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 2015, 632, 321–325. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.P.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science (80-) 2016, 354, 206–209. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. NREL Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed on 2 June 2023).
- Han, J.; Yin, X.; Nan, H.; Zhou, Y.; Yao, Z.; Li, J.; Oron, D.; Lin, H. Enhancing the Performance of Perovskite Solar Cells by Hybridizing SnS Quantum Dots with CH3NH3PbI3. Small 2017, 13, 1700953. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, G.; Sun, X.; Cai, M.; Ruthkosky, M. Highly Stable and Active Pt/Nb-TiO 2 Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells. J. Nanotechnol. 2012, 2012, 389505. [Google Scholar] [CrossRef]
- Basily, I.K.; Shafik, A.L.; Sarhan, A.A.; Mohamed, M.B. Nanotechnology Role for the Production of Clean Fuel E-85 and Petrochemical Raw Materials. J. Nanotechnol. 2012, 2012, 439531. [Google Scholar] [CrossRef]
- Matsuda, T.; Moritomo, Y. Two-Electron Reaction without Structural Phase Transition in Nanoporous Cathode Material. J. Nanotechnol. 2012, 2012, 568147. [Google Scholar] [CrossRef]
- Chiou, J.Y.Z.; Wang, C.-H.; Yang, S.-Y.; Bi, J.-L.; Shen, C.-C.; Wang, C.-B. Reforming of Ethanol to Produce Hydrogen over PtRuMg/ZrO2 Catalyst. J. Nanotechnol. 2012, 2012, 573287. [Google Scholar] [CrossRef]
- Luther, W.; Eickenbusch, H.; Kaiser, O.S.; Brand, L. Application of Nanotechnologies in the Energy Sector; Hessen Trade & Invest. GmbH: Wiesbaden, Germany, 2015. [Google Scholar]
- Das, N.; Takata, Y.; Kohno, M.; Harish, S. Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit. Int. J. Heat. Mass. Transf. 2017, 113, 423–431. [Google Scholar] [CrossRef]
- Hussein, H.S.; Shaarawy, H.H.; Hussien, N.H.; Abdel kader, E.; Hawash, S.I. Synthesis of nano graphene for saving energy in water desalination. Clean. Eng. Technol. 2021, 4, 100162. [Google Scholar] [CrossRef]
- Liu, C.; Burghaus, U.; Besenbacher, F.; Wang, Z.L. Preparation and Characterization of Nanomaterials for Sustainable Energy Production. ACS Nano 2010, 4, 5517–5526. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.P.; Webb, C.J.; Fanourgakis, G.S.; Froudakis, G.E.; Trikalitis, P.N.; Hirscher, M. Concepts for improving hydrogen storage in nanoporous materials. Int. J. Hydrogen Energy 2019, 44, 7768–7779. [Google Scholar] [CrossRef]
- Nikitin, A.; Li, X.; Zhang, Z.; Ogasawara, H.; Dai, H.; Nilsson, A. Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C−H Bonds. Nano Lett. 2008, 8, 162–167. [Google Scholar] [CrossRef]
- Girishkumar, G.; Rettker, M.; Underhile, R.; Binz, D.; Vinodgopal, K.; McGinn, P.; Kamat, P. Single-Wall Carbon Nanotube-Based Proton Exchange Membrane Assembly for Hydrogen Fuel Cells. Langmuir 2005, 21, 8487–8494. [Google Scholar] [CrossRef]
- Oriňáková, R.; Oriňák, A. Recent applications of carbon nanotubes in hydrogen production and storage. Fuel 2011, 90, 3123–3140. [Google Scholar] [CrossRef]
- Amin, R.S.; Abdel Hameed, R.M.; El-Khatib, K.M.; Elsayed Youssef, M. Electrocatalytic activity of nanostructured Ni and Pd–Ni on Vulcan XC-72R carbon black for methanol oxidation in alkaline medium. Int. J. Hydrogen Energy 2014, 39, 2026–2041. [Google Scholar] [CrossRef]
- Khater, D.Z.; Amin, R.S.; Fetohi, A.E.; El-Khatib, K.M.; Mahmoud, M. Bifunctional manganese oxide–silver nanocomposites anchored on graphitic mesoporous carbon to promote oxygen reduction and inhibit cathodic biofilm growth for long-term operation of microbial fuel cells fed with sewage. Sustain. Energy Fuels 2022, 6, 430–439. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, H.; Deng, L.; Amin, R.S.; Yu, D.; Fetohi, A.E.; Maximov, M.Y.; Li, L.; El-Khatib, K.M.; Peng, S. Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting. Inorg. Chem. Front. 2022, 9, 662–669. [Google Scholar] [CrossRef]
- Peña, A.; Puerta, J.; Guerrero, A.; Cañizales, E.; Brito, J.L. Catalytic Chemical Vapor Deposition Synthesis of Carbon Aerogels of High-Surface Area and Porosity. J. Nanotechnol. 2012, 2012, 708626. [Google Scholar] [CrossRef]
- Zuliani, F.; Bernasconi, L.; Baerends, E.J. Titanium as a Potential Addition for High-Capacity Hydrogen Storage Medium. J. Nanotechnol. 2012, 2012, 831872. [Google Scholar] [CrossRef]
- Jung, Y.; Li, X.; Rajan, N.K.; Taylor, A.D.; Reed, M.A. Record High Efficiency Single-Walled Carbon Nanotube/Silicon p–n Junction Solar Cells. Nano Lett. 2013, 13, 95–99. [Google Scholar] [CrossRef]
- Wang, F.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 2015, 6, 6305. [Google Scholar] [CrossRef] [PubMed]
- Nierengarten, J.-F. Chemical modification of C60 for materials science applications. New J. Chem. 2004, 28, 1177. [Google Scholar] [CrossRef]
- Kim, S.; Yim, J.; Wang, X.; Bradley, D.D.C.; Lee, S.; DeMello, J.C. Spin- and Spray-Deposited Single-Walled Carbon-Nanotube Electrodes for Organic Solar Cells. Adv. Funct. Mater. 2010, 20, 2310–2316. [Google Scholar] [CrossRef]
- Kymakis, E.; Stylianakis, M.M.; Spyropoulos, G.D.; Stratakis, E.; Koudoumas, E.; Fotakis, C. Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 96, 298–301. [Google Scholar] [CrossRef]
- Yoo, Y.-E.; Park, J.; Kim, W. Understanding and controlling the rest potential of carbon nanotube-based supercapacitors for energy density enhancement. Appl. Surf. Sci. 2018, 433, 765–771. [Google Scholar] [CrossRef]
- Zhou, Y.; Ghaffari, M.; Lin, M.; Parsons, E.M.; Liu, Y.; Wardle, B.L.; Zhang, Q.M. High volumetric electrochemical performance of ultra-high density aligned carbon nanotube supercapacitors with controlled nanomorphology. Electrochim. Acta 2013, 111, 608–613. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, M.; Yang, C.; Wang, W.; Bao, H.; Wang, G. Enhancing the Energy Density of Asymmetric Stretchable Supercapacitor Based on Wrinkled CNT@MnO2 Cathode and CNT@polypyrrole Anode. ACS Appl. Mater. Interfaces 2015, 7, 15303–15313. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Li, T.; Dang, A.; Zhao, T.; Li, H.; Lv, H. Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J. Power Sources 2016, 306, 602–610. [Google Scholar] [CrossRef]
- Chen, C.; Cao, J.; Wang, X.; Lu, Q.; Han, M.; Wang, Q.; Dai, H.; Niu, Z.; Chen, J.; Xie, S. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy 2017, 42, 187–194. [Google Scholar] [CrossRef]
- Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J.H.; Lee, S.; Kim, D.H. Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices. Adv. Funct. Mater. 2017, 27, 1704353. [Google Scholar] [CrossRef]
- Gu, T.; Wei, B. High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms. J. Mater. Chem. A 2016, 4, 12289–12295. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.S.; Qian, M.; He, X.N.; Redepenning, J.; Goodman, P.; Li, H.M.; Jiang, L.; Lu, Y.F. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 2013, 51, 52–58. [Google Scholar] [CrossRef]
- Gupta, S.P.; Kakade, B.A.; Sathe, B.R.; Qiao, Q.; Late, D.J.; Walke, P.S. Thermally Driven High-Rate Intercalated Pseudocapacitance of Flower-like Architecture of Ultrathin Few Layered δ-MnO2 Nanosheets on Carbon Nano-Onions. ACS Appl. Energy Mater. 2020, 3, 11398–11409. [Google Scholar] [CrossRef]
- Mohapatra, D.; Dhakal, G.; Sayed, M.S.; Subramanya, B.; Shim, J.-J.; Parida, S. Sulfur Doping: Unique Strategy To Improve the Supercapacitive Performance of Carbon Nano-onions. ACS Appl. Mater. Interfaces 2019, 11, 8040–8050. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, G.; Mohapatra, D.; Tamang, T.L.; Lee, M.; Lee, Y.R.; Shim, J.-J. Redox-additive electrolyte–driven enhancement of the electrochemical energy storage performance of asymmetric Co3O4//carbon nano-onions supercapacitors. Energy 2021, 218, 119436. [Google Scholar] [CrossRef]
- He, N.; Yildiz, O.; Pan, Q.; Zhu, J.; Zhang, X.; Bradford, P.D.; Gao, W. Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors. J. Power Sources 2017, 343, 492–501. [Google Scholar] [CrossRef]
- Lee, S.; Yeo, J.-S.; Ji, Y.; Cho, C.; Kim, D.-Y.; Na, S.-I.; Lee, B.H.; Lee, T. Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnology 2012, 23, 344013. [Google Scholar] [CrossRef]
- Zhang, C.; Du, H.; Ma, K.; Yuan, Z. Ultrahigh-Rate Supercapacitor Based on Carbon Nano-Onion/Graphene Hybrid Structure toward Compact Alternating Current Filter. Adv. Energy Mater. 2020, 10, 2002132. [Google Scholar] [CrossRef]
- Qi, D.; Liu, Z.; Liu, Y.; Leow, W.R.; Zhu, B.; Yang, H.; Yu, J.; Wang, W.; Wang, H.; Yin, S.; et al. Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. Adv. Mater. 2015, 27, 5559–5566. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhao, L.; Wang, Q.; Ma, Y.; Zhang, D. A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film. Nanoscale 2018, 10, 22329–22334. [Google Scholar] [CrossRef]
- Stylianakis, M.M.; Stratakis, E.; Koudoumas, E.; Kymakis, E.; Anastasiadis, S.H. Organic Bulk Heterojunction Photovoltaic Devices Based on Polythiophene–Graphene Composites. ACS Appl. Mater. Interfaces 2012, 4, 4864–4870. [Google Scholar] [CrossRef]
- Liscio, A.; Veronese, G.P.; Treossi, E.; Suriano, F.; Rossella, F.; Bellani, V.; Rizzoli, R.; Samorì, P.; Palermo, V. Charge transport in graphene–polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization. J. Mater. Chem. 2011, 21, 2924. [Google Scholar] [CrossRef]
- Kim, K.; Bae, S.H.; Toh, C.T.; Kim, H.; Cho, J.H.; Whang, D.; Lee, T.W.; Özyilmaz, B.; Ahn, J.H. Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization. ACS Appl. Mater. Interfaces 2014, 6, 3299–3304. [Google Scholar] [CrossRef]
- Bernardi, M.; Lohrman, J.; Kumar, P.V.; Kirkeminde, A.; Ferralis, N.; Grossman, J.C.; Ren, S. Nanocarbon-Based Photovoltaics. ACS Nano 2012, 6, 8896–8903. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, J.; Wang, X.; Xue, M.; Chen, G.F. Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes. Adv. Funct. Mater. 2015, 25, 4601–4606. [Google Scholar] [CrossRef]
- Sharma, S.; Patyal, V.; Sudhakara, P.; Singh, J.; Petru, M.; Ilyas, R.A. Mechanical, morphological, and fracture-deformation behavior of MWCNTs-reinforced (Al–Cu–Mg–T351) alloy cast nanocomposites fabricated by optimized mechanical milling and powder metallurgy techniques. Nanotechnol. Rev. 2021, 11, 65–85. [Google Scholar] [CrossRef]
- Asamoah, B.O.; Amoani, J.; Roussey, M.; Peiponen, K.-E. Laser beam scattering for the detection of flat, curved, smooth, and rough microplastics in water. Opt. Rev. 2020, 27, 217–224. [Google Scholar] [CrossRef]
- Chodun, R.; Dypa, M.; Wicher, B.; Nowakowska-Langier, K.; Okrasa, S.; Minikayev, R.; Zdunek, K. The sputtering of titanium magnetron target with increased temperature in reactive atmosphere by gas injection magnetron sputtering technique. Appl. Surf. Sci. 2022, 574, 151597. [Google Scholar] [CrossRef]
- Hussein, H.S. The state of the art of nanomaterials and its applications in energy saving. Bull. Natl. Res. Cent. 2023, 47, 7. [Google Scholar] [CrossRef]
- Wang, H.; Sun, W.; Liu, Y.; Ma, H.; Li, T.; Lin, K.A.; Yin, K.; Luo, S. Large-scale chemical vapor deposition synthesis of graphene nanoribbions/carbon nanotubes composite for enhanced membrane capacitive deionization. J. Electroanal. Chem. 2022, 904, 115907. [Google Scholar] [CrossRef]
- Gan, Y.X.; Jayatissa, A.H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 2020, 2020, 1–3. [Google Scholar] [CrossRef]
- Khan, S.A.; Zahera, M.; Khan, I.A.; Khan, M.S.; Azam, A.; Arshad, M.; Syed, A.; Nasif, O.; Elgorban, A.M. Photocatalytic degradation of methyl orange by cadmium oxide nanoparticles synthesized by the sol-gel method. Optik 2022, 251, 168401. [Google Scholar] [CrossRef]
- Alsammarraie, F.K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf. B Biointerfaces 2018, 171, 398–405. [Google Scholar] [CrossRef]
- Ahmed, S.; Saifullah Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016, 38, 545–560. [Google Scholar] [CrossRef]
- Devi, H.S.; Boda, M.A.; Shah, M.A.; Parveen, S.; Wani, A.H. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green. Process Synth. 2019, 8, 38–45. [Google Scholar] [CrossRef]
- Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Megharaj, M.; Chen, Z.; Naidu, R. Chlorococcum sp. MM11—A novel phyco-nanofactory for the synthesis of iron nanoparticles. J. Appl. Phycol. 2015, 27, 1861–1869. [Google Scholar] [CrossRef]
- Arsiya, F.; Sayadi, M.H.; Sobhani, S. Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater. Lett. 2017, 186, 113–115. [Google Scholar] [CrossRef]
- Álvarez-Chimal, R.; Ángel Arenas-Alatorre, J. Green synthesis of nanoparticles: A biological approach. In Green Chemistry for Environmental Sustainability—Prevention-Assurance-Sustainability (P-A-S) Approach; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Devi, N.; Ghosh, S.; Perla, V.K.; Pal, T.; Mallick, K. Laboratory based synthesis of the pure form of gananite (BiF3) nanoparticles: A potential material for electrochemical supercapacitor application. New J. Chem. 2019, 43, 18369–18376. [Google Scholar] [CrossRef]
- Chahardoli, A.; Karimi, N.; Fattahi, A. Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy. Adv. Powder Technol. 2018, 29, 202–210. [Google Scholar] [CrossRef]
- Leili, M.; Fazlzadeh, M.; Bhatnagar, A. Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environ. Technol. 2018, 39, 1158–1172. [Google Scholar] [CrossRef] [PubMed]
- Thovhogi, N.; Park, E.; Manikandan, E.; Maaza, M.; Gurib-Fakim, A. Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract. J. Alloys Compd. 2016, 655, 314–320. [Google Scholar] [CrossRef]
- Thovhogi, N.; Diallo, A.; Gurib-Fakim, A.; Maaza, M. Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: Main physical properties. J. Alloys Compd. 2015, 647, 392–396. [Google Scholar] [CrossRef]
- Sone, B.T.; Diallo, A.; Fuku, X.G.; Gurib-Fakim, A.; Maaza, M. Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics. Arab. J. Chem. 2020, 13, 160–170. [Google Scholar] [CrossRef]
- Ehrampoush, M.H.; Miria, M.; Salmani, M.H.; Mahvi, A.H. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J. Environ. Health Sci. Eng. 2015, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Can, M. Green gold nanoparticles from plant-derived materials: An overview of the reaction synthesis types, conditions, and applications. Rev. Chem. Eng. 2020, 36, 859–877. [Google Scholar] [CrossRef]
- Kataria, N.; Garg, V.K. Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism. Chemosphere 2018, 208, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Mohammad Sajadi, S. Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles. J. Colloid. Interface Sci. 2016, 462, 243–251. [Google Scholar] [CrossRef]
- Abuzeid, H.M.; Julien, C.M.; Zhu, L.; Hashem, A.M. Green Synthesis of Nanoparticles and Their Energy Storage, Environmental, and Biomedical Applications. Crystals 2023, 13, 1576. [Google Scholar] [CrossRef]
- Larrañaga-Tapia, M.; Betancourt-Tovar, B.; Videa, M.; Antunes-Ricardo, M.; Cholula-Díaz, J.L. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Adv. 2024, 6, 51–71. [Google Scholar] [CrossRef]
- Ruidíaz-Martínez, M.; Álvarez, M.A.; López-Ramón, M.V.; Cruz-Quesada, G.; Rivera-Utrilla, J.; Sánchez-Polo, M. Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts 2020, 10, 520. [Google Scholar] [CrossRef]
- Mondal, P.; Anweshan, A.; Purkait, M.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere 2020, 259, 127509. [Google Scholar] [CrossRef]
- Ani, P.C.; Nzereogu, P.U.; Agbogu, A.C.; Ezema, F.I.; Nwanya, A.C. Cellulose from waste materials for electrochemical energy storage applications: A review. Appl. Surf. Sci. Adv. 2022, 11, 100298. [Google Scholar] [CrossRef]
- Piermatti, O. Green Synthesis of Pd Nanoparticles for Sustainable and Environmentally Benign Processes. Catalysts 2021, 11, 1258. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N. Nanocatalyst: As Green Catalyst. In Handbook of Greener Synthesis of Nanomaterials and Compounds; Elsevier: Amsterdam, The Netherlands, 2021; pp. 445–458. [Google Scholar] [CrossRef]
- Kawamoto, M.; He, P.; Ito, Y. Green Processing of Carbon Nanomaterials. Adv. Mater. 2017, 29, 1602423. [Google Scholar] [CrossRef]
- Osman, A.I.; Zhang, Y.; Farghali, M.; Rashwan, A.K.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Mohamed, I.M.; Badr, M.M.; Ihara, I.; Rooney, D.W.; et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ. Chem. Lett. 2024, 22, 841–887. [Google Scholar] [CrossRef]
- Nasiri, J.; Rahimi, M.; Hamezadeh, Z.; Motamedi, E.; Naghavi, M.R. Fulfillment of green chemistry for synthesis of silver nanoparticles using root and leaf extracts of Ferula persica: Solid-state route vs. solution-phase method. J. Clean. Prod. 2018, 192, 514–530. [Google Scholar] [CrossRef]
- González-Ballesteros, N.; Prado-López, S.; Rodríguez-González, J.B.; Lastra, M.; Rodríguez-Argüelles, M.C. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids Surf. B Biointerfaces 2017, 153, 190–198. [Google Scholar] [CrossRef]
- Khatami, M.; Sharifi, I.; Nobre, M.A.L.; Zafarnia, N.; Aflatoonian, M.R. Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green. Chem. Lett. Rev. 2018, 11, 125–134. [Google Scholar] [CrossRef]
- Ali, I.; AL-Othman, Z.A.; Alwarthan, A. Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 2016, 221, 1168–1174. [Google Scholar] [CrossRef]
- Yirsaw, B.D.; Megharaj, M.; Chen, Z.; Naidu, R. Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology. Environ. Technol. Innov. 2016, 5, 136–147. [Google Scholar] [CrossRef]
- Poguberović, S.S.; Krčmar, D.M.; Maletić, S.P.; Kónya, Z.; Pilipović, D.D.T.; Kerkez, D.V.; Rončević, S.D. Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol. Eng. 2016, 90, 42–49. [Google Scholar] [CrossRef]
- El-Kassas, H.Y.; Aly-Eldeen, M.A.; Gharib, S.M. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Ocean. Sin. 2016, 35, 89–98. [Google Scholar] [CrossRef]
- Nix, I.D.; Idelevich, E.A.; Schlattmann, A.; Sparbier, K.; Kostrzewa, M.; Becker, K. MALDI-TOF Mass Spectrometry-Based Optochin Susceptibility Testing for Differentiation of Streptococcus pneumoniae from other Streptococcus mitis Group Streptococci. Microorganisms 2021, 9, 2010. [Google Scholar] [CrossRef]
- Althaus, H.-J.; Chudacoff, M.; Hischier, R.; Jungbluth, N.; Osses, M.; Primas, A. Life Cycle Inventories of Chemicals; CDROM, No. Final Report Ecoinvent 2000 No. 8; EMPA Dübendorf, Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2004. [Google Scholar]
- FEA Federal Environmental Agency. Large Volume Solid Inorganic Chemcials, Titanium Dioxide, Final Report; Institute for Environmental Technique and Management: Dübendorf, Switzerland, 2001. [Google Scholar]
- Osterwalder, N.; Capello, C.; Hungerbühler, K.; Stark, W.J. Energy Consumption During Nanoparticle Production: How Economic is Dry Synthesis? J. Nanoparticle Res. 2006, 8, 1–9. [Google Scholar] [CrossRef]
- Fauchais, P.; Vardelle, A.; Dussoubs, B. Quo Vadis Thermal Spraying? J. Therm. Spray. Technol. 2001, 10, 44–66. [Google Scholar] [CrossRef]
- Pai, D.Z.; Ostrikov, K.; Kumar, S.; Lacoste, D.A.; Levchenko, I.; Laux, C.O. Energy efficiency in nanoscale synthesis using nanosecond plasmas. Sci. Rep. 2013, 3, 1221. [Google Scholar] [CrossRef]
- Chen, C.-K.; Perry, W.L.; Xu, H.; Jiang, Y.; Phillips, J. Plasma torch production of macroscopic carbon nanotube structures. Carbon 2003, 41, 2555–2560. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of nanoparticles by spark discharge. J. Nanoparticle Res. 2009, 11, 315–332. [Google Scholar] [CrossRef]
- Mariotti, D.; Sankaran, R.M. Microplasmas for nanomaterials synthesis. J. Phys. D Appl. Phys. 2010, 43, 323001. [Google Scholar] [CrossRef]
- Nozaki, T.; Sasaki, K.; Ogino, T.; Asahi, D.; Okazaki, K. Microplasma synthesis of tunable photoluminescent silicon nanocrystals. Nanotechnology 2007, 18, 235603. [Google Scholar] [CrossRef]
- Shimizu, Y.; Bose, A.C.; Mariotti, D.; Sasaki, T.; Kirihara, K.; Suzuki, T.; Terashima, K.; Koshizaki, N. Reactive Evaporation of Metal Wire and Microdeposition of Metal Oxide Using Atmospheric Pressure Reactive Microplasma Jet. Jpn. J. Appl. Phys. 2006, 45, 8228. [Google Scholar] [CrossRef]
- Dearden, J.C. In silico prediction of drug toxicity. J. Comput. Aided Mol. Des. 2003, 17, 119–127. [Google Scholar] [CrossRef]
- Voutchkova, A.M.; Ferris, L.A.; Zimmerman, J.B.; Anastas, P.T. Toward molecular design for hazard reduction—Fundamental relationships between chemical properties and toxicity. Tetrahedron 2010, 66, 1031–1039. [Google Scholar] [CrossRef]
- Li, C.-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev. 2006, 35, 68–82. [Google Scholar] [CrossRef]
- Hyde, J.R.; Licence, P.; Carter, D.; Poliakoff, M. Continuous catalytic reactions in supercritical fluids. Appl. Catal. A Gen. 2001, 222, 119–131. [Google Scholar] [CrossRef]
- István, T. Horváth6, Anastas PT. Introduction: Green Chemistry. Chem. Rev. 2007, 107, 2167–2168. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Xia, B.; He, F.; Li, L. Preparation of Bimetallic Nanoparticles Using a Facile Green Synthesis Method and Their Application. Langmuir 2013, 29, 4901–4907. [Google Scholar] [CrossRef] [PubMed]
- Gallezot, P. Process options for converting renewable feedstocks to bioproducts. Green. Chem. 2007, 9, 295. [Google Scholar] [CrossRef]
- Gandini, A. Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules 2008, 41, 9491–9504. [Google Scholar] [CrossRef]
- Meier, M.A.R.; Metzger, J.O.; Schubert, U.S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007, 36, 1788. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biological production of functional chemicals from renewable resources. Can. J. Chem. 2008, 86, 548–555. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Anastas, P.T.; Zimmerman, J.B. Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environ. Sci. Technol. 2003, 37, 94A–101A. [Google Scholar] [CrossRef]
- Potara, M.; Maniu, D.; Astilean, S. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Nanotechnology 2009, 20, 315602. [Google Scholar] [CrossRef] [PubMed]
- Christina, K.; Subbiah, K.; Arulraj, P.; Krishnan, S.K.; Sathishkumar, P. A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan, lignin and cellulose—A review. Int. J. Biol. Macromol. 2024, 257 Pt 2, 128550. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Qian, W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerfaces 2008, 62, 136–142. [Google Scholar] [CrossRef]
- Troupis, A.; Hiskia, A.; Papaconstantinou, E. Synthesis of Metal Nanoparticles by Using Polyoxometalates as Photocatalysts and Stabilizers. Angew. Chem. Int. Ed. 2002, 41, 1911. [Google Scholar] [CrossRef]
- Boethling, R.S.; Sommer, E.; DiFiore, D. Designing Small Molecules for Biodegradability. Chem. Rev. 2007, 107, 2207–2227. [Google Scholar] [CrossRef] [PubMed]
- Kora, A.J.; Beedu, S.R.; Jayaraman, A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett. 2012, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Candelaria, S.L.; Shao, Y.; Zhou, W.; Li, X.; Xiao, J.; Zhang, J.G.; Wang, Y.; Liu, J.; Li, J.; Cao, G. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195–220. [Google Scholar] [CrossRef]
- Spanggaard, H.; Krebs, F.C. A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 2004, 83, 125–146. [Google Scholar] [CrossRef]
- Thompson, B.C.; Fréchet, J.M.J. Polymer–Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2008, 47, 58–77. [Google Scholar] [CrossRef]
- Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J.S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 2009, 3, 297–302. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Pasquier, A.D.; Unalan, H.E.; Kanwal, A.; Miller, S.; Chhowalla, M. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 2005, 87, 203511. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Min, D.-H. Durable Large-Area Thin Films of Graphene/Carbon Nanotube Double Layers as a Transparent Electrode. Langmuir 2009, 25, 11302–11306. [Google Scholar] [CrossRef]
- Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green. Chem. 2006, 8, 417. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Q.; Shi, G. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113. [Google Scholar] [CrossRef]
- Vivekchand, S.R.C.; Rout, C.S.; Subrahmanyam, K.S.; Govindaraj, A.; Rao, C.N.R. Graphene-based electrochemical supercapacitors. J. Chem. Sci. 2008, 120, 9–13. [Google Scholar] [CrossRef]
- Subrahmanyam, K.S.; Vivekchand, S.R.C.; Govindaraj, A.; Rao, C.N.R. A study of graphenes prepared by different methods: Characterization, properties and solubilization. J. Mater. Chem. 2008, 18, 1517. [Google Scholar] [CrossRef]
- Frackowiak, E.; Béguin, F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 2002, 40, 1775–1787. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef]
- Wu, Y.P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources 2003, 114, 228–236. [Google Scholar] [CrossRef]
- Landi, B.J.; Ganter, M.J.; Cress, C.D.; DiLeo, R.A.; Raffaelle, R.P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications; Noyes Publications: Park Ridge, NJ, USA, 1993; pp. 1–399. [Google Scholar]
- Silva, S.R.R. Properties of Amorphous Carbon; INSPEC: London, UK, 2003. [Google Scholar]
- Hu, B.; Wang, S.-B.; Wang, K.; Zhang, M.; Yu, S.-H. Microwave-Assisted Rapid Facile “Green” Synthesis of Uniform Silver Nanoparticles: Self-Assembly into Multilayered Films and Their Optical Properties. J. Phys. Chem. C 2008, 112, 11169–11174. [Google Scholar] [CrossRef]
- Ostrikov, K.K. Control of energy and matter at nanoscales: Challenges and opportunities for plasma nanoscience in a sustainability age. J. Phys. D Appl. Phys. 2011, 44, 174003. [Google Scholar] [CrossRef]
- Ostrikov, K. Colloquium: Reactive plasmas as a versatile nanofabrication tool. Rev. Mod. Phys. 2005, 77, 489–511. [Google Scholar] [CrossRef]
- Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Saini, D.; Gunture Kaushik, J.; Aggarwal, R.; Tripathi, K.M.; Sonkar, S.K. Carbon Nanomaterials Derived from Black Carbon Soot: A Review of Materials and Applications. ACS Appl. Nano Mater. 2021, 4, 12825–12844. [Google Scholar] [CrossRef]
- Uttaravalli, A.N.; Dinda, S.; Kakara, V.R.; Rao, A.V.R.; Daida, T.; Gidla, B.R. Sustainable use of recycled soot (carbon black) for the cleaner production of value-added products: A compendium. Chem. Eng. J. Adv. 2022, 11, 100324. [Google Scholar] [CrossRef]
- Chun, S.; Muthu, M.; Gansukh, E.; Thalappil, P.; Gopal, J. The ethanopharmacological aspect of carbon nanodots in turmeric smoke. Sci. Rep. 2016, 6, 35586. [Google Scholar] [CrossRef] [PubMed]
- Gopal, J.; Muthu, M.; Chun, S. Autochthonous self-assembly of nature’s nanomaterials: Green, parsimonious and antibacterial carbon nanofilms on glass. Phys. Chem. Chem. Phys. 2016, 18, 18670–18677. [Google Scholar] [CrossRef]
- Sivanesan, I.; Muthu, M.; Gopal, J.; Tasneem, S.; Kim, D.-H.; Oh, J.-W. A Fumigation-Based Surface Sterilization Approach for Plant Tissue Culture. Int. J. Environ. Res. Public Health 2021, 18, 2282. [Google Scholar] [CrossRef] [PubMed]
- Balaji, N.; Natrayan, L.; Kaliappan, S.; Patil, P.P.; Sivakumar, N.S. Annealed peanut shell biochar as potential reinforcement for aloe vera fiber-epoxy biocomposite: Mechanical, thermal conductivity, and dielectric properties. Biomass Convers. Biorefinery 2024, 14, 4155–4163. [Google Scholar] [CrossRef]
- Kishore, S.C.; Perumal, S.; Atchudan, R.; Edison, T.N.J.I.; Sundramoorthy, A.K.; Alagan, M.; Sangaraju, S.; Lee, Y.R. Eco-Friendly Synthesis of Functionalized Carbon Nanodots from Cashew Nut Skin Waste for Bioimaging. Catalysts 2023, 13, 547. [Google Scholar] [CrossRef]
- Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. J. Phys. Chem. C 2009, 113, 18546–18551. [Google Scholar] [CrossRef]
Carbon Material | Composite | Energy Application | Reference |
---|---|---|---|
Carbon and its derivatives | |||
Carbon nanotubes (CNT) | p-CNT/n-Si structure | Hybrid solar cells | [63] |
CNT | MoOx coating onto the CNT film | Hybrid solar cells | [64] |
SWCNT and MWCNT | indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate) (PEDOT:PSS). | Organic Photovoltaic devices | [65,66,67] |
CNT | PEI-SWNT EDLCs (Polyethyleneimine) | Super capacitors | [68] |
Aligned carbon nanotubes (A-CNTs) | - | Super capacitors | [69] |
CNT | Polypyrole | Super capacitors | [70] |
CNT | PEI-SWNT EDLCs (Polyethyleneimine) | Super capacitors | [68] |
CNTs | MnO2 nanoflake | Super capacitors | [71] |
SWCNT | TiO2 | Super capacitors | [72] |
CNT | RuO2 | Super capacitors | [73] |
CNT | Fe2O3 | Super capacitors | [74] |
Carbon nano-onions | Etched | Super capacitors | [75] |
Carbon nano onions | δ-MnO2 Nanosheets | Super capacitors | [76] |
Carbon nano-onions | Sulfur-doped | Super capacitors | [77] |
Carbon nano-onions | Co3O4 doped | [78] | |
CNTs | Carbon coating | Super capacitors | [79] |
Carbon nano-onions | Etched | Super capacitors | [75] |
Carbon nano onions | δ-MnO2 Nanosheets | Super capacitors | [76] |
Graphene and its derivatives | |||
Graphene | P3HT:PCBM | Organic solar cells | [80] |
Graphene | Carbon nano-onions | Super capacitors | [81] |
Graphene Microribbons | - | Stretchable micro-super capacitors | [82] |
Graphene nanosheets | polyaniline (PANI) nanowires | Super capacitors | [83] |
GO | phenyl isothiocyanate (PITC) | Organic solar cells | [84] |
GO | P3HT | Organic solar cells | [84,85] |
GO | poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate) (PEDOT:PSS) and P(VDF-TrFE) polymers | Organic solar cells | [86] |
Reduced GO | CNTs and a fullerene electron acceptor (PC71BM) | Organic solar cells | [87] |
Reduced GO | Ag | Super capacitors | [88] |
Nanomaterial | Processing Involved in the Nanomaterial Production/Synthesis Method | Total Energy Requirement | References |
---|---|---|---|
Titanium | Electric Energy | 2.2–5 GJ/t | [129] |
Steam | 10.4–23.1 GJ/t | ||
Gas | 9.6–16.1 GJ/t | ||
Coal | 5–8 GJ/t | ||
- | 5 (kg CO2 emission/kg Titanium) | [130] | |
Titanium | Electric Energy | 2.3 GJ/t | [131] |
Steam | 9.3 GJ/t | ||
Gas | 7 GJ/t | ||
Coal | - | ||
- | 4 (kg CO2 emission/kg Titanium) | [130] | |
Zr | Plasma | 40 kg CO2 emission/kg ZrO2 | [132] |
ZrCl4 | hydrolysis | 5 kg CO2 emission/kg ZrO2 | |
Zr-octanoate | - | 20 kg CO2 emission/kg ZrO2) | |
Zr-pentanoate | - | 14 kg CO2 emission/kg ZrO2 | |
Zr-isopropoxide | - | 9 kg CO2 emission/kg ZrO2 | |
ZrO2 | nano-milling | 35 kg CO2 emission/kg ZrO2 | |
Zirconium oxide | Gas | 26.8 MJ/Kg | [133] |
Carbon nanotubes | Thermal furnace | 1.2 × 108 eV # | [134] |
Carbon nanotubes | MW torch | 7.2 × 103 eV # | [135] |
Carbon nanotubes | DC arc | 5 × 104 eV # | [23] |
Graphene | MW torch | 1 × 103 eV # | [136] |
Au nanoparticles | Microsecond spark | 1.5 × 103 eV # | [136] |
Si nanocrystals | Microplasma | 6 × 105 eV # | [137,138] |
WO3 nanoparticles | Microplasma | 1.4 × 103 eV # | [139] |
MoO3 nanosheets | Microplasma | 4.2 × 104 eV # | [137] |
MoO3 nanoflakes/nanowalls | NRP spark | 7.5 × 101 eV # | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, N.; Muthu, M.; Hakami, O.; Gopal, J. Assessing the Sustainability of Energy-Related Nanomaterial Synthesis: Emphasizing the Need for Energy-Efficient Nanomaterial Preparation Techniques. Energies 2025, 18, 523. https://doi.org/10.3390/en18030523
Hasan N, Muthu M, Hakami O, Gopal J. Assessing the Sustainability of Energy-Related Nanomaterial Synthesis: Emphasizing the Need for Energy-Efficient Nanomaterial Preparation Techniques. Energies. 2025; 18(3):523. https://doi.org/10.3390/en18030523
Chicago/Turabian StyleHasan, Nazim, Manikandan Muthu, Othman Hakami, and Judy Gopal. 2025. "Assessing the Sustainability of Energy-Related Nanomaterial Synthesis: Emphasizing the Need for Energy-Efficient Nanomaterial Preparation Techniques" Energies 18, no. 3: 523. https://doi.org/10.3390/en18030523
APA StyleHasan, N., Muthu, M., Hakami, O., & Gopal, J. (2025). Assessing the Sustainability of Energy-Related Nanomaterial Synthesis: Emphasizing the Need for Energy-Efficient Nanomaterial Preparation Techniques. Energies, 18(3), 523. https://doi.org/10.3390/en18030523