Price Behavior and Market Integration in European Union Electricity Markets: A VECM Analysis
Abstract
:1. Introduction
2. Methodology and Data Collection
2.1. Dynamic Time Warping (DTW)
- -
- is the Silhouette score for point ;
- -
- is the average distance between point and all other points in the same cluster (cohesiveness);
- -
- is the smallest average distance between point and all points in any other cluster (separation).
2.2. Johansen Cointegration Test
2.3. Vector Error Correction Model (VECM)
- -
- represents the vector of first differences in the time series at time ;
- -
- is the error correction term, where captures the long-term equilibrium relationships between the variables;
- -
- represents the short-term dynamics, with being the short-term adjustment coefficients;
- -
- is the vector of constants (intercepts);
- -
- is the vector of error terms (shocks).
2.4. Block VECM Between Clusters/Blocks
- -
- represents the vector of first differences in the block-level time series at time ;
- -
- is the error correction term, where captures the long-term equilibrium relationships between the blocks;
- -
- represents the short-term dynamics between the blocks, with being the short-term adjustment coefficients;
- -
- is the vector of constants (intercepts);
- -
- is the vector of error terms (shocks).
2.5. Data Description
3. Results and Discussion
3.1. Dynamic Time Warping (DTW) Clustering Approach
3.2. Johansen Cointegration Test
3.3. Vector Error Correction Model (VECM)
3.3.1. Vector Error Correction Model (VECM) for Block 1
3.3.2. Vector Error Correction Model (VECM) for Block 2
3.3.3. Vector Error Correction Model (VECM) for Block 3
3.3.4. Vector Error Correction Model (VECM) for Block 4
3.3.5. Vector Error Correction Model (VECM) for Block 5
3.3.6. Vector Error Correction Model (VECM) for Block 6
3.3.7. Vector Error Correction Model (VECM) for Block 7
3.4. Block VECM Between Clusters/Blocks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Escribano, G.; González-Enríquez, C.; Lázaro-Touza, L.; Paredes-Gázquez, J. An energy union without interconnections? Public acceptance of cross-border interconnectors in four European countries. Energy 2023, 266, 126385. [Google Scholar] [CrossRef]
- ENTSO-E. Market Report 2024; ENTSO-E: Brussels, Belgium, 2024; Available online: https://ee-public-nc-downloads.azureedge.net/strapi-test-assets/strapi-assets/entso_e_market_report_2024_240628_14b2aab71f.pdf (accessed on 16 November 2024).
- IEA. World Energy Outlook 2024; IEA: Paris, France, 2024; Available online: https://www.iea.org/reports/world-energy-outlook-2024 (accessed on 16 November 2024).
- Newbery, D.; Pollitt, M.G.; Ritz, R.A.; Strielkowski, W. Market design for a high-renewables European electricity system. Renew. Sustain. Energy Rev. 2018, 91, 695–707. [Google Scholar] [CrossRef]
- Pereira, J.P.; Pesquita, V.; Rodrigues, P.M.M.; Rua, A. Market integration and the persistence of electricity prices. Empir. Econ. 2018, 57, 1495–1514. [Google Scholar] [CrossRef]
- Ciferri, D.; D’Errico, M.C.; Polinori, P. Integration and convergence in European electricity markets. Econ. Politica 2020, 37, 463–492. [Google Scholar] [CrossRef]
- European Commission. State of the Energy Union Report 2024; Energy: Brussels, Belgium, 2024; Available online: https://energy.ec.europa.eu/publications/state-energy-union-report-2024_en (accessed on 16 November 2024).
- Stanciu, C.; Mitu, N.E. Financial levers and carbon emissions: Analysing the debt-emission nexus in the European Union. Appl. Econ. 2024, 1–20. [Google Scholar] [CrossRef]
- European Parliament. Fact Sheets on the European Union—Internal Energy Market. 2024. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/45/internal-energy-market (accessed on 16 November 2024).
- DGEG. Intern. Energy Mark. 2024. Available online: https://www.dgeg.gov.pt/en/transversal-areas/international-affairs/european-union/internal-energy-market/ (accessed on 16 November 2024).
- Sikorska-Pastuszka, M.; Papież, M. Dynamic volatility connectedness in the European electricity market. Energy Econ. 2023, 127 Pt A, 107045. [Google Scholar] [CrossRef]
- European Commission. Communication on The European Green Deal; European Commission: Brussels, Belgium, 2019; Available online: https://commission.europa.eu/document/daef3e5c-a456-4fbb-a067-8f1cbe8d9c78_en (accessed on 16 November 2024).
- Jevnaker, T. Differentiated integration in EU energy market policy. In The Routledge Handbook of Differentiation in the European Union, 1st ed.; Leruth, B., Gänzle, S., Trondal, J., Eds.; Routledge: London, UK, 2022; pp. 289–309. [Google Scholar] [CrossRef]
- Do, H.X.; Nepal, R.; Pham, S.D.; Jamasb, T. Electricity market crisis in Europe and cross border price effects: A quantile return connectedness analysis. Energy Econ. 2024, 135, 107633. [Google Scholar] [CrossRef]
- Cremona, E. Power in Unity: Doubling Electricity Interconnection Can Boost Europe’s Green Transition and Strengthen Security of Supply. Ember, June 2023. Available online: https://ember-energy.org/app/uploads/2023/06/Policy-Brief-Breaking-Borders-Interconnection-In-Europe.pdf (accessed on 16 November 2024).
- Zachmann, G.; Batlle, C.; Beaude, F.; Maurer, C.; Morawiecka, M.; Roques, F. Unity in Power, Power in Unity: Why the EU Needs More Integrated Electricity Markets. Bruegel, February 2024. Available online: https://www.bruegel.org/policy-brief/unity-power-power-unity-why-eu-needs-more-integrated-electricity-markets (accessed on 16 November 2024).
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Heimeshoff, U. Integration der europäischen Energiemärkte: Zielerreichung und Herausforderungen. List. Forum. 2019, 45, 121–146. [Google Scholar] [CrossRef]
- Bunn, D.W.; Gianfreda, A. Integration and shock transmissions across European electricity forward markets. Energy Econ. 2010, 32, 278–291. [Google Scholar] [CrossRef]
- Brik, H.; Ouakdi, J.E. Interplay of Volatility and Geopolitical Tensions in Clean Energy Markets: A Comprehensive GARCH-LSTM Forecasting Approach. Int. J. Energy Econ. Policy 2024, 14, 92–107. [Google Scholar] [CrossRef]
- Paientko, T.; Amakude, S. Interconnected Markets: Unveiling Volatility Spillovers in Commodities and Energy Markets through BEKK-GARCH Modelling. Analytics 2024, 3, 194–220. [Google Scholar] [CrossRef]
- Tehrani, S.; Juan, J.; Caro, E. Electricity Spot Price Modeling and Forecasting in European Markets. Energies 2022, 15, 5980. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, C.; Nokleby, M.; Miller, C.J. Improving short-term electricity price forecasting using day-ahead LMP with ARIMA models. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Park, M.-J.; Yang, H.-S. Comparative Study of Time Series Analysis Algorithms Suitable for Short-Term Forecasting in Implementing Demand Response Based on AMI. Sensors 2024, 24, 7205. [Google Scholar] [CrossRef]
- Sharma, M.; Mathur, M. Stock Market Integration using VECM: Evidence from Largest Economies. IOSR J. Bus. Manag. 2019, 21, 47–57. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. Econ. J. 2009, 119, 158–171. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econ. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Rehman, M.U.; Naeem, M.A.; Ahmad, N.; Vo, X.V. Global energy markets connectedness: Evidence from time–frequency domain. Environ. Sci. Pollut. Res. 2023, 30, 34319–34337. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Tang, R.; Zhang, X. A new multilayer network for measuring interconnectedness among the energy firms. Energy Econ. 2023, 124, 106880. [Google Scholar] [CrossRef]
- Antonakakis, N.; Chatziantoniou, I.; Gabauer, D. Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions. J. Risk Financ. Manag. 2020, 13, 84. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press: Oxford, UK, 1995. [Google Scholar] [CrossRef]
- Menéndez Medina, A.; Heredia Álvaro, J.A. Using Generative Pre-Trained Transformers (GPT) for Electricity Price Trend Forecasting in the Spanish Market. Energies 2024, 17, 2338. [Google Scholar] [CrossRef]
- Lu, X.; Qiu, J.; Yang, Y.; Zhang, C.; Lin, J.; An, S. Large Language Model-Based Bidding Behavior Agent and Market Sentiment Agent-Assisted Electricity Price Prediction. IEEE Trans. Energy Mark. Policy Regul. 2024, 1–13. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Y.; Wu, Y.; Cao, Y.; Li, Z.; Peng, Y.; Qiao, X.; Xu, Y.; Yu, Q.; Yang, X.; et al. Optimal Operation of Energy Hub: An Integrated Model Combined Distributionally Robust Optimization Method with Stackelberg Game. IEEE Trans. Sustain. Energy 2023, 14, 1835–1848. [Google Scholar] [CrossRef]
- Lei, X.; Yu, H.; Yu, B.; Shao, Z.; Jian, L. Bridging electricity market and carbon emission market through electric vehicles: Optimal bidding strategy for distribution system operators to explore economic feasibility in China’s low-carbon transitions. Sustain. Cities Soc. 2023, 94, 104557. [Google Scholar] [CrossRef]
- Lei, X.; Yu, H.; Shao, Z.; Jian, L. Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China’s uncertain electricity markets. Energy 2023, 283, 128354. [Google Scholar] [CrossRef]
- IEA. Countries & Regions. IEA. Available online: https://www.iea.org/countries (accessed on 24 January 2025).
- SEM Committee. Annual Report. 2020. Available online: https://www.semcommittee.com/files/semcommittee/media-files/SEM-21-008%20SEM%20Annual%20Report%20October%202019%20-%20September%202020.pdf (accessed on 24 January 2025).
- Nord Pool. History. Available online: https://www.nordpoolgroup.com/en/About-us/History/ (accessed on 24 January 2025).
- Nordic Energy Regulators. NordREG Annual Report 2023. 2023. Available online: https://www.nordicenergyregulators.org/wp-content/uploads/2024/01/NordREG_Annual_Report_2023-lagupplost.pdf (accessed on 24 January 2025).
- Eurostat. Data on Electricity Imports and Market Dynamics in Luxembourg. Europa.eu. 2023. Available online: https://ec.europa.eu/eurostat/cache/infographs/energy_trade/entrade.html?geo=LU&year=2023&language=EN&trade=imp&siec=E7000&filter=all&fuel=electricity&unit=GWH&defaultUnit=GWH&detail=1&chart= (accessed on 24 January 2025).
Stage Name | Period of Implementation | Description |
---|---|---|
The First Energy Package | between 1996 and 1998 | It introduced the first directives in the energy sector aimed at harmonizing and liberalizing the European Union (EU) internal energy market, creating a more competitive, consumer-centric, and non-discriminatory EU energy market with market-based supply prices. |
The Second Energy Package | 2003 | It allowed industrial and household consumers to select their own energy suppliers from a broader range of competitors. |
The Third Energy Package | 2009 | It established rules for the unbundling of energy supply and production from transmission networks, introduced new requirements for independent regulatory authorities, created a European Agency for the Cooperation of Energy Regulators (ACER), European Network of Transmission System Operators for Electricity (ENTSO-E) and for Gas (ENTSOG), and enhanced consumer rights in retail markets. |
The Fourth Energy Package—“Clean Energy for All Europeans” | 2019 | It introduced new electricity market rules to meet the needs of consumers for secure, sustainable, competitive, and affordable energy while attracting investments, providing consumer incentives, and setting subsidy thresholds to ensure that power plants are eligible to receive subsidies as part of capacity mechanisms. It also required the preparation of risk mitigation plans for electricity crises and enhanced ACER’s competences for cross-border cooperation. |
The Fifth Energy Package—“Delivering on the European Green Deal” or “Fit For 55” | between 2021 and 2024 | Its goal is to align the EU’s energy objectives with Europe’s new climate ambitions for 2030 and 2050. The package sets a roadmap to achieve a sustainable EU economy by transforming climate and environmental challenges into opportunities, promoting resource efficiency, advancing toward a clean and circular economy, and ensuring a fair and inclusive transition for all. |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 | Cluster 9 |
---|---|---|---|---|---|---|---|---|
Austria Czechia Germany Luxembourg Slovakia | Belgium France Netherlands | Bulgaria Croatia Hungary Romania Slovenia | Denmark | Estonia Latvia Lithuania | Finland | Greece Italy Poland | Portugal Spain | Sweden |
Block 1 | Block 2 | Block 3 | Block 4 | Block 5 | Block 6 | Block 7 |
---|---|---|---|---|---|---|
Austria Czechia Germany Slovakia | Belgium France Netherlands | Bulgaria Croatia Hungary Romania Slovenia | Denmark Finland Sweden | Estonia Latvia Lithuania | Greece Italy Poland | Portugal Spain |
CointEq1 | CointEq2 | CointEq3 | CointEq4 | |
---|---|---|---|---|
Austria (−1) | 1.000 | −0.423 (0.029) | 1.038 (0.072) | 3.054 (0.218) |
Czechia (−1) | −2.367 (0.082) | 1.000 | −2.457 (0.088) | −7.229 (0.227) |
Germany (−1) | 0.963 (0.045) | −0.407 (0.019) | 1.000 | 2.942 (0.146) |
Slovakia (−1) | 0.328 (0.067) | −0.138 (0.024) | 0.340 (0.072) | 1.000 |
C | 0.378 | −0.160 | 0.392 | 1.154 |
D (Austria) | D (Czechia) | D (Germany) | D (Slovakia) | |
---|---|---|---|---|
Error Correction Term | −0.191 *** (0.029) | 0.095 *** (0.029) | −0.365 *** (0.038) | −0.017 (0.026) |
D (Austria (−1)) | −0.278 *** (0.046) | 0.034 (0.047) | 0.237 *** (0.06) | 0.046 (0.042) |
D (Czechia (−1)) | 0.009 (0.061) | −0.102 * (0.061) | −0.208 *** (0.080) | 0.170 *** (0.055) |
D (Germany (−1)) | 0.103 *** (0.032) | −0.036 (0.033) | −0.187 *** (0.043) | 0.030 (0.030) |
D (Slovakia (−1)) | −0.089 * (0.048) | −0.138 *** (0.048) | −0.104 * (0.063) | −0.474 *** (0.043) |
C | 0.001 (0.009) | 0.001 (0.009) | 0.001 (0.012) | 0.001 (0.008) |
CointEq1 | CointEq2 | CointEq3 | |
---|---|---|---|
Belgium (−1) | 1.000 | −3.660 (0.114) | −1.374 (0.036) |
France (−1) | −0.273 (0.020) | 1.000 | 0.375 (0.033) |
The Netherlands (−1) | −0.728 (0.023) | 2.664 (0.123) | 1.000 |
C | 0.017 | −0.062 | −0.023 |
D (Belgium) | D (France) | D (The Netherlands) | |
---|---|---|---|
Error Correction Term | −0.875 *** (0.051) | −0.390 *** (0.050) | −0.200 *** (0.042) |
D (Belgium (−1)) | 0.023 (0.045) | 0.234 *** (0.043) | 0.089 ** (0.037) |
D (France (−1)) | 0.078 ** (0.037) | −0.248 *** (0.035) | 0.156 *** (0.030) |
D (The Netherlands (−1)) | −0.305 *** (0.046) | −0.200 *** (0.043) | −0.500 *** (0.038) |
C | −0.001 (0.009) | −0.001 (0.008) | 0.001 (0.007) |
CointEq1 | CointEq2 | CointEq3 | CointEq4 | CointEq5 | |
---|---|---|---|---|---|
Bulgaria (−1) | 1.000 | −24.098 (0.312) | 29.467 (0.381) | −0.975 (0.012) | 45.565 (0.589) |
Croatia (−1) | −0.041 (0.039) | 1.000 | −1.228 (1.077) | 0.040 (0.038) | −1.891 (1.515) |
Hungary (−1) | 0.034 (0.053) | −0.818 (1.195) | 1.000 | −0.033 (0.040) | 1.546 (2.115) |
Romania (−1) | −1.025 (0.030) | 24.706 (0.760) | −30.210 (0.728) | 1.000 | −46.715 (1.424) |
Slovenia (−1) | 0.022 (0.040) | −0.529 (0.818) | 0.647 (1.029) | −0.021 (0.038) | 1.000 |
C | 0.088 | −2.125 | 2.599 | −0.086 | 4.018 |
D (Bulgaria) | D (Croatia) | D (Hungary) | D (Romania) | D (Slovenia) | |
---|---|---|---|---|---|
Error Correction Term | −0.811 *** (0.011) | 0.235 *** (0.021) | 0.240 *** (0.018) | 0.284 *** (0.018) | 0.242 *** (0.021) |
D (Bulgaria (−1)) | −0.036 *** (0.011) | −0.135 *** (0.022) | −0.130 *** (0.019) | −0.144 *** (0.019) | −0.157 *** (0.022) |
D (Croatia (−1)) | −0.083 *** (0.018) | −0.444 *** (0.037) | 0.034 (0.032) | −0.001 (0.032) | −0.011 (0.036) |
D (Hungary (−1)) | −0.106 *** (0.030) | −0.170 *** (0.060) | −0.589 *** (0.052) | −0.241 *** (0.052) | −0.110 * (0.059) |
D (Romania (−1)) | −0.635 *** (0.022) | 0.235 *** (0.044) | 0.222 *** (0.038) | −0.061 (0.038) | 0.153 *** (0.043) |
D (Slovenia (−1)) | 0.072 *** (0.022) | 0.325 *** (0.043) | 0.301 *** (0.037) | 0.353 *** (0.038) | −0.098 ** (0.043) |
C | 0.001 (0.003) | −0.001 (0.006) | 0.001 (0.005) | 0.001 (0.005) | 0.001 (0.006) |
CointEq1 | CointEq2 | CointEq3 | |
---|---|---|---|
Denmark (−1) | 1.000 | −0.222 (0.039) | 0.328 (0.051) |
Finland (−1) | −4.501 (0.223) | 1.000 | −1.474 (0.047) |
Sweden (−1) | 3.054 (0.233) | −0.679 (0.038) | 1.000 |
C | 1.871 | −0.416 | 0.613 |
D (Denmark) | D (Finland) | D (Sweden) | |
---|---|---|---|
Error Correction Term | −0.007 (0.005) | 0.096 *** (0.006) | 0.020 *** (0.005) |
D (Denmark (−1)) | −0.185 *** (0.025) | 0.012 (0.029) | 0.150 *** (0.026) |
D (Finland (−1)) | −0.022 (0.026) | −0.155 *** (0.030) | −0.017 (0.027) |
D (Sweden (−1)) | 0.046 (0.033) | 0.148 *** (0.039) | −0.173 *** (0.034) |
C | 0.001 (0.011) | 0.001 (0.012) | −0.001 (0.011) |
CointEq1 | CointEq2 | CointEq3 | |
---|---|---|---|
Estonia (−1) | 1.000 | −0.208 (0.012) | 0.258 (0.016) |
Latvia (−1) | −4.815 (0.232) | 1.000 | −1.242 (0.015) |
Lithuania (−1) | 3.878 (0.231) | −0.805 (0.012) | 1.000 |
C | −0.249 | 0.052 | −0.064 |
D (Estonia) | D (Latvia) | D (Lithuania) | |
---|---|---|---|
Error Correction Term | −0.274 *** (0.045) | −0.068 (0.045) | −0.125 *** (0.045) |
D (Estonia (−1)) | 0.021 (0.067) | 0.139 ** (0.067) | 0.176 *** (0.067) |
D (Latvia (−1)) | −0.772 *** (0.249) | −0.567 ** (0.249) | −0.399 (0.249) |
D (Lithuania (−1)) | 0.598 *** (0.232) | 0.270 (0.232) | 0.071 (0.232) |
C | 0.001 (0.007) | 0.001 (0.007) | 0.001 (0.007) |
CointEq1 | CointEq2 | CointEq3 | |
---|---|---|---|
Greece (−1) | 1.000 | −0.206 (0.054) | 0.162 (0.075) |
Italy (−1) | −4.849 (0.249) | 1.000 | −0.786 (0.068) |
Poland (−1) | 6.171 (0.339) | −1.273 (0.066) | 1.000 |
C | −9.335 | 1.925 | −1.513 |
D (Greece) | D (Italy) | D (Poland) | |
---|---|---|---|
Error Correction Term | −0.010 *** (0.002) | −0.01 (0.002) | −0.047 *** (0.003) |
D (Greece (−1)) | −0.253 *** (0.023) | 0.020 (0.020) | 0.065 ** (0.031) |
D (Italy (−1)) | 0.170 *** (0.028) | −0.171 *** (0.024) | 0.007 (0.038) |
D (Poland (−1)) | 0.002 (0.017) | −0.006 (0.014) | −0.106 *** (0.022) |
C | 0.001 (0.003) | 0.001 (0.003) | 0.001 (0.004) |
CointEq1 | CointEq2 | |
---|---|---|
Portugal (−1) | 1.000 | −0.991 (0.002) |
Spain (−1) | −1.010 (0.002) | 1.000 |
C | 0.035 | −0.035 |
D (Portugal) | D (Spain) | |
---|---|---|
Error Correction Term | −0.391 (0.162) | 0.354 ** (0.160) |
D (Portugal (−1)) | 0.199 (0.129) | 0.260 ** (0.127) |
D (Spain (−1)) | −0.191 (0.130) | −0.238 (0.128) |
C | 0.001 (0.007) | 0.001 (0.007) |
CointEq1 | CointEq2 | CointEq3 | CointEq4 | CointEq5 | CointEq6 | CointEq7 | |
---|---|---|---|---|---|---|---|
Block 1 (−1) | 1.000 | −3.086 (0.102) | −2.889 (0.107) | 94.283 (3.589) | 449.823 (16.521) | −2.044 (0.077) | 8.676 (0.322) |
Block 2 (−1) | −0.324 (0.030) | 1.000 | 0.936 (0.098) | −30.555 (3.048) | −145.777 (15.248) | 0.663 (0.070) | −2.812 (0.261) |
Block 3 (−1) | −0.346 (0.050) | 1.068 (0.157) | 1.000 | −32.639 (4.748) | −155.721 (22.971) | 0.708 (0.077) | −3.004 (0.443) |
Block 4 (−1) | 0.011 (0.018) | −0.033 (0.052) | −0.031 (0.049) | 1.000 | 4.771 (7.199) | −0.022 (0.036) | 0.092 (0.152) |
Block 5 (−1) | 0.002 (0.033) | −0.007 (0.104) | −0.006 (0.097) | 0.210 (2.894) | 1.000 | −0.005 (0.067) | 0.019 (0.294) |
Block 6 (−1) | −0.489 (0.055) | 1.509 (0.172) | 1.413 (0.118) | 46.117 (5.254) | −220.024 (24.331) | 1.000 | −4.244 (0.484) |
Block 7 (−1) | 0.115 (0.016) | −0.356 (0.045) | −0.333 (0.048) | 10.867 (1.559) | 51.846 (7.465) | −0.236 (0.034) | 1.000 |
C | 0.345 | −1.066 | −0.998 | 32.566 | 155.373 | −0.706 | 2.997 |
D (B1) | D (B2) | D (B3) | D (B4) | D (B5) | D (B6) | D (B7) | |
---|---|---|---|---|---|---|---|
Error Correction Term | −0.741 *** (0.031) | −0.313 *** (0.029) | −0.079 *** (0.017) | −0.374 *** (0.039) | −0.280 *** (0.028) | −0.062 *** (0.011) | −0.182 *** (0.029) |
D (B1 (−1)) | 0.054 * (0.031) | 0.199 *** (0.028) | 0.068 *** (0.016) | 0.206 *** (0.038) | 0.170 *** (0.028) | 0.044 *** (0.010) | 0.114 *** (0.028) |
D (B2 (−1)) | 0.080 *** (0.032) | −0.266 *** (0.029) | 0.071 *** (0.017) | 0.098 *** (0.039) | 0.087 *** (0.029) | 0.042 *** (0.011) | −0.040 (0.029) |
D (B3 (−1)) | −0.303 *** (0.058) | −0.157 *** (0.053) | −0.433 *** (0.031) | −0.164 ** (0.072) | −0.079 (0.052) | −0.030 (0.020) | −0.151 *** (0.053) |
D (B4 (−1)) | 0.065 *** (0.021) | 0.041 ** (0.019) | 0.040 *** (0.011) | −0.089 *** (0.025) | 0.158 *** (0.019) | 0.046 *** (0.007) | 0.046 ** (0.019) |
D (B5 (−1)) | 0.010 (0.031) | 0.001 (0.028) | −0.014 (0.016) | 0.016 (0.038) | −0.320 *** (0.028) | −0.001 (0.010) | −0.010 (0.028) |
D (B6 (−1)) | −0.117 (0.088) | −0.166 ** (0.081) | 0.025 (0.047) | −0.476 *** (0.109) | −0.285 *** (0.080) | −0.338 *** (0.030) | −0.145 * (0.081) |
D (B7 (−1)) | 0.112 *** (0.023) | 0.158 *** (0.022) | 0.063 *** (0.013) | 0.068 ** (0.029) | 0.081 *** (0.021) | 0.036 *** (0.008) | 0.055 ** (0.022) |
C | 0.001 (0.007) | −0.001 (0.007) | 0.001 (0.004) | 0.001 (0.009) | 0.001 (0.007) | 0.001 (0.003) | 0.001 (0.007) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanciu, C.V.; Mitu, N.E. Price Behavior and Market Integration in European Union Electricity Markets: A VECM Analysis. Energies 2025, 18, 770. https://doi.org/10.3390/en18040770
Stanciu CV, Mitu NE. Price Behavior and Market Integration in European Union Electricity Markets: A VECM Analysis. Energies. 2025; 18(4):770. https://doi.org/10.3390/en18040770
Chicago/Turabian StyleStanciu, Cristian Valeriu, and Narcis Eduard Mitu. 2025. "Price Behavior and Market Integration in European Union Electricity Markets: A VECM Analysis" Energies 18, no. 4: 770. https://doi.org/10.3390/en18040770
APA StyleStanciu, C. V., & Mitu, N. E. (2025). Price Behavior and Market Integration in European Union Electricity Markets: A VECM Analysis. Energies, 18(4), 770. https://doi.org/10.3390/en18040770