Review on Changes in Shale Oil Property During CO2 Injection
Abstract
:1. Introduction
2. Research Methods of CO2 Injection
2.1. Advances in Physical Simulation Experiment Research Methods
2.2. Advances in Numerical Simulation Experimental Research Methods
3. Effect of CO2 on Crude Oil Property
3.1. CO2 Dissolved into the Crude Oil System
3.2. CO2 Extraction of Lightweight Components
4. Asphaltene Precipitation of CO2 Injection
4.1. Origin of Asphaltene Precipitation
4.2. Main Controlling Factors of Asphaltene Precipitation
4.2.1. Formation Temperature
4.2.2. Crude Oil Properties
4.2.3. Injection Pressure
4.2.4. Injection Rate
4.3. Hazards of Asphaltene Precipitation
5. Conclusions
- (1)
- Physical simulation based on formation conditions, as well as numerical simulation across spatial scales, can improve the accuracy of physical simulation experimental data and provide a solid foundation for numerical simulation research on molecular reaction mechanisms and long-term large-scale oilfield production. At the same time, the growth of numerical modeling necessitates a significant number of both experimental and field data for feedback in order to anticipate more correctly, avoid potential difficulties, and increase the efficiency of CO2 displacement.
- (2)
- When CO2 enters the formation, it dissolves in crude oil, causing increased crude oil volume, decreased viscosity, increased oil–water flow ratio, and decreased oil–water interfacial tension. With increasing pressure, light hydrocarbons may be removed to form a miscible displacement zone, which aids in crude oil recovery and increases oil displacement efficiency. The temperature and pressure conditions of the interaction between CO2 and crude oil mainly affect the solubility and reactivity degree of CO2, and choosing the proper displacement settings is beneficial to crude oil recovery.
- (3)
- When CO2 is dissolved in crude oil, CO2 molecules occupy the surface space of asphaltene molecular clusters, and the colloid on the surface of asphaltene molecular clusters decreases, causing collisions between asphaltene particles and further association to form larger molecular clusters, resulting in asphalt flocculation and deposition. Asphaltene precipitation is influenced by both internal and external influences. Internal influences include formation temperature and crude oil properties, whereas external influences include CO2 injection pressure and injection rate. Asphaltene precipitation will cause formation clogging, permeability decrease, and wettability inversion on the rock surface, affecting the CO2 displacement work. The measures to deal with asphaltene precipitation include chemical inhibitor injection technology, adjustment of production parameters, solvent deasphalting and asphaltene precipitation removal.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, M.Q.; He, M.Q.; Li, T.T.; Huang, X.; Li, X.; Wu, K. Study on Fracture Propagation Behavior and Mechanical Properties of CO2 Fracturing in Shale Reservoirs. In Proceedings of the 2nd International Conference on Advances in Rock Mechanics—TuniRock 2022, Hamammet, Tunisia, 25–27 March 2022. [Google Scholar]
- Hui, G.; Chen, Z.X.; Schultz, R.; Chen, S.N.; Song, Z.J.; Zhang, Z.C.; Song, Y.L.; Wang, H.; Wang, M.M.; Gu, F. Intricate unconventional fracture networks provide fluid diffusion pathways to reactivate pre-existing faults in unconventional reservoirs. Energy 2023, 282, 128803. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, S.C.; Zou, Y.S.; Ma, X.F.; Xiong, D.; Liu, L.; Yang, P.; Zhu, D.Y. Experimental Study on CO2 Fracturing of Continental Shale with Dense Laminas. In Proceedings of the 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, CO, USA, 23–26 June 2024. [Google Scholar] [CrossRef]
- Hamdi, Z.; Cheong, W.C.; Bataee, M.; Partoon, B. Gas Hydrate-Assisted CO2 Storage in Subsurface Systems. In Proceedings of the SPE Symposium and Exhibition—Production Enhancement and Cost Optimisation, Kuala Lumpur, Malaysia, 3–4 September 2024. [Google Scholar] [CrossRef]
- Wang, X.Z.; Yang, H.; Wang, W.; Yao, Z.J.; Liu, Y. Technology and practice of CO2 flooding and storage in low-permeability tight reservoirs. Petroleum Geol. Recovery Effic. 2023, 30, 27–35. [Google Scholar] [CrossRef]
- Zou, C.N.; Wu, S.T.; Yang, Z.; Pan, S.X.; Wang, G.F.; Jiang, X.H.; Guan, M.D.; Yu, C.; Yu, Z.; Shen, Y. Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy. Pet. Explor. Dev. 2023, 50, 190–205. [Google Scholar] [CrossRef]
- Li, H.B.; Yang, Z.M.; Li, R.S.; Zhou, T.Y.; Guo, H.K.; Liu, X.W.; Meng, H. Mechanism of CO2 enhanced oil recovery in shale reservoirs. Pet. Sci. 2021, 18, 1788–1796. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. A review of recent developments in CO2 mobility control in enhanced oil recovery. Petroleum 2022, 8, 291–317. [Google Scholar] [CrossRef]
- Mirzayi, B.; Vafaie-Sefti, M.; Mousavi-Dehghani, S.A.; Fasih, M.; Mansoori, G.A. The effects of asphaltene deposition on unconsolidated porous media properties during miscible natural gas flooding. Petrol. Sci. Technol. 2008, 26, 231–243. [Google Scholar] [CrossRef]
- Mohamed, M.; Jocin, A.; Mashhad, F. The impact of asphaltene deposition on fluid flow in sandstone. Petrol. Sci. Eng. 2019, 174, 676–681. [Google Scholar] [CrossRef]
- Wu, R.N. The Study on Asphaltene Precipitation and Reservoir Physical Properties Damage During CO2 Injection in Tight Oil Reservoirs. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2019. [Google Scholar] [CrossRef]
- Tan, Y.S.; Li, Q.; Chen, B.W.; Xu, L.; Yu, T.; Cao, X.M. Experimental investigation of SiO2 nanoparticle–assisted CO2 flooding in carbonate saline aquifers. Energy 2024, 305, 132275. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, G.L.; Tang, M.; Wu, J.; Yang, X.; Zhu, M.; Xie, Z.Z. Experimental study on CO2 flooding characteristics in low-permeability fractured reservoirs. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 11637–11649. [Google Scholar] [CrossRef]
- Zhao, F.L.; Hao, H.D.; Wang, Z.X.; Hou, J.R.; Fu, Z.F.; Li, W.F.; Wang, P.; Zhang, M.; Lu, G.Y.; Lv, G.Z. Performance Improvement of CO2-EOR By Production Control in a Heterogeneous 3D Model: Experimental and Numerical Simulation. In Proceedings of the Carbon Management Technology Conference, Houston, TX, USA, 17–20 July 2017. [Google Scholar] [CrossRef]
- de Araujo, I.S.; Gomaa, I.; Heidari, Z. Molecular Dynamics Simulation of CO2 Flooding into Mineral Nanopores in the Presence of Residual Oil. In Proceedings of the SPWLA 65th Annual Logging Symposium, Rio de Janeiro, Brazil, 18–22 May 2024. [Google Scholar]
- Hu, J.; He, Y.F.; Ling, D.; Wang, H.M.; Li, H.M.; Li, S.L. Experimental Study on Measuring Asphaltene Precipitation Volume in Carbon Dioxide Flooding Reservoir. Chem. Eng. Mach. 2001, 38, 155–156, 231. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, F.J.; Fan, F.; Zhang, L.F.; Yao, E.D. Study on the Influence of CO2 Finger-Channeling Flooding on Oil Displacement Efficiency and Anti-channeling Method. In Proceedings of the ARMA-CUPB Geothermal International Conference, Beijing, China, 5–8 August 2019. [Google Scholar]
- Zhang, G.Y.; Li, D.; Ja, G.H.; Deng, C.M.; Jia, Z.Z. Laboratory test on CO2 injection displacement in long cores of Huabei oilfield. Pet. Geol. Eng. 2022, 36, 77–81. [Google Scholar] [CrossRef]
- Jin, X.Q.; Chao, C.; Edlmann, K.; Fan, X.F. Understanding the interplay of capillary and viscous forces in CO2 core flooding experiments. J. Hydrol. 2022, 606, 127411. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Wang, X.W.; Kang, Y.L.; Guo, C.B.; He, Q.C.; Li, C. Characterization of Stages of CO2-EOR Process in Low-Permeability Oil Reservoirs Based on Core Flooding Experiments. Energies 2024, 17, 5469. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Zhang, S.C.; Zou, Y.S.; Zhang, X.H.; Zhu, D.Y.; Liu, S.K.; Yang, P.; Liu, L. Evaluation of Gas Flooding Effect in Mahu Tight Sandstone Reservoir. In Proceedings of the 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, CO, USA, 23–26 June 2024. [Google Scholar] [CrossRef]
- Yu, Y.; Beddoe, C.; Xue, Z.Q.; Chakhmakhchev, A.; Hamling, J.; Smith, S.; Bethany, K. Experimental Evaluation of Enhanced Tight Oil Recovery Performance by Microbubble CO2 and Microbubble Rich Gas in North Dakota Plays. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, TX, USA, 20–22 June 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Su, Y.; Li, L.; Hao, Y.; Wang, W.; Liu, J.; Gao, X.; Zhao, A.; Wang, K. Microscopic remaining oil initiation mechanism and formation damage of CO2 injection after waterflooding in deep reservoirs. Energy 2022, 248, 123649. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Q.; Li, X.; Tsau, J.S.; Barati, R.; Negahban, S. Experimental and Mechanism Study of CO2 and Bakken Oil Interactions at Equilibrium and Non-Equilibrium Conditions. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 22–24 July 2019. [Google Scholar] [CrossRef]
- Stalkup, F.I. Displacement Behavior of the Condensing/Vaporizing Gas Drive Process. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 27–30 September 1987. [Google Scholar] [CrossRef]
- Christiansen, R.L.; Haines, H.K. Rapid Measurement of Minimum Miscibility Pressure with the Rising-Bubble Apparatus. SPE Reserv. Eng. 1987, 2, 523–527. [Google Scholar] [CrossRef]
- Cui, M.L.; Wang, R.; Lv, C.Y.; Tang, Y.Q. Research on microscopic oil displacement mechanism of CO2 EOR in extra-high water cut reservoirs. J. Pet. Sci. Eng. 2017, 154, 315–321. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.S.; Li, W.H.; Yuan, G.W.; Du, C.F. Feasibility Study on Applying CO2-flooding Micro-visualization Technology in Ultra-low Permeability Reservoirs: A Case Study in Ordos Basin. Geoscience 2019, 33, 911–918. [Google Scholar] [CrossRef]
- Song, Y.C.; Zhao, C.Z.; Chen, M.K.; Chi, Y.; Zhang, Y.; Zhao, J.F. Pore-scale visualization study on CO2 displacement of brine in micromodels with circular and square cross sections. Int. J. Greenh. Gas Control 2020, 95, 102958. [Google Scholar] [CrossRef]
- Tang, Y.; Hou, C.; He, Y.; Tang, J.; Wang, Y.; Qin, J. Microscopic Flow Characteristics of Immiscible CO2 Flooding and CO2 Foam Flooding After Water Flooding in Fractured Porous Media: A Visual Investigation. Transp. Porous Med. 2023, 149, 117–145. [Google Scholar] [CrossRef]
- Wang, C.W.; Su, Y.L.; Wang, W.D.; Li, L.; Hao, Y.M.; Zhu, H.W. Microscopic Visualization Experiment of High Temperature and High-Pressure CO2-C2H6/DME Displacement in Tight Reservoirs. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 22–25 April 2024. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Li, L.; Su, Y.L.; Zhang, X.; Liu, J.H.; Zhou, X.M.; Luo, W.T. Microscopic mechanism of CO, flooding in low permeability heavy oil reservoir. In Proceedings of the 2022 International Field Exploration and Development Conference, Xi’an, China, 16 November 2022. [Google Scholar]
- Yongmao, H.; Zenggui, W.; Binshan, J.; Yueming, C.; Xiangjie, L.; Petro, X. Laboratory Investigation of CO2 Flooding. In Proceedings of the Nigeria Annual International Conference and Exhibition, Abuja, Nigeria, 2–4 August 2004. [Google Scholar] [CrossRef]
- Zhang, M.L.; Wang, L.; Cui, Q.; Hu, Y.N.; He, S.Q. Experimental study on reservoir physical property change of carbon dioxide flooding. World Pet. Ind. 2023, 30, 90–96. [Google Scholar] [CrossRef]
- Tsau, J.S.; Bui, L.H.; Willhite, G.P. Swelling/Extraction Test of a Small Sample Size for Phase Behavior Study. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar] [CrossRef]
- Wei, B.; Gao, H.; Pu, W.; Zhao, F.; Li, Y.; Jin, F.; Sun, L.; Li, K. Interactions and phase behaviors between oleic phase and CO2 from swelling to miscibility in CO2-based enhanced oil recovery (EOR) process: A comprehensive visualization study. J. Mol. Liq. 2017, 232, 277–284. [Google Scholar] [CrossRef]
- Al-Otaibi, F.M.; Al-Mutairi, S.M.; Kokal, S.L.; Funk, J.J.; Al-Qahtani, J.F. Best Practices for Conducting CO2-EOR Lab Study. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012. SPE 151126. [Google Scholar]
- Kokal, S.; Sanni, M.; Alhashboul, A. Design and Implementation of the First CO2-EOR Demonstration Project in Saudi Arabia. In Proceedings of the SPE Annual TechnicalConference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016. [Google Scholar] [CrossRef]
- Alcorn, Z.P.; Fernø, M.A.; Graue, A. Upscaling CO2 Foam for EOR as CCUS from On- To Offshore. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2020. [Google Scholar] [CrossRef]
- Shi, J.Q. Molecular Simulation Studies of Supercritical CO2 Swelling Oil and Reducing Oil/Water Interfacial Tension. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2015. [Google Scholar]
- Yang, S.Y.; Lian, L.M.; Yang, Y.Z.; Ma, D.S.; Tang, J.; Su, X.F. Molecular Dynamics Simulation of Miscible Process in CO2 and Crude Oil System. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 7–10 November 2016. [Google Scholar] [CrossRef]
- Kazemi, M.; Takbiri-Borujeni, A.; Hansel, J.R.; Valera, M. Enhanced Oil Recovery of Shale Oil: A Molecular Simulation Study. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 22–24 July 2019. [Google Scholar] [CrossRef]
- Zhong, Y.L.; Liu, B.; Du, H.J.; You, Y.P.; Ding, G. Study on Supercritical Carbon Dioxide Oil Flooding Mechanism. J. Shengli Coll. China Univ. Pet. 2022, 36, 54–59. [Google Scholar]
- Wang, C. Displacement Mechanism of Shale Oil by Supercritical Carbon Dioxide from Molecular Dynamics Simulations. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2017. [Google Scholar]
- Teng, G.L. Study on Mechanism of Supercritical Carbon Dioxide Enhancing Heavy Oil Recovery. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2021. [Google Scholar]
- Dong, X.H.; Chen, Z.L.; Chen, Z.X.; Wang, J.; Wu, K.L.; Li, R.; Li, L. Vapor-Liquid Equilibria and Diffusion of CO2/n-Decane Mixture in the Nanopores of Shale Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, Virtual, 26–29 October 2020. [Google Scholar] [CrossRef]
- Coskuner, Y.; Yin, X.L.; Erdal, O. Effects of Molecular Level Forces on the Diffusivity Characteristics of Hydrocarbons in Shale Reservoirs. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, TX, USA, 26–28 July 2021. [Google Scholar] [CrossRef]
- Ramez, N.; Jeppe, G.; Sameer, A.B.; Reda, A.; Fadi, A.; Nicholas, B.; Nabil, A.B. Comprehensive Piloting Strategy to De-Risk First CO2 EOR Development in Sultanate of Oman. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 12 February 2024. [Google Scholar] [CrossRef]
- Alfarge, D.; Wei, M.; Bai, B. Mechanistic Study for the Applicability of CO2-EOR in Unconventional Liquids Rich Reservoirs. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 14–18 April 2018. [Google Scholar]
- Zhou, X.Z. Investigation of the Asphaltene Deposition Distribution in CO2 Flooding of Low Permeability Reservoir. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2017. [Google Scholar]
- Pedram, M.; Adrian, J.; Eric, O. Impact of in-situ gas liberation for enhanced oil recovery and CO2 storage in liquid-rich shale reservoirs. Energy Sources 2020, 46, 16124–16144. [Google Scholar] [CrossRef]
- Lliguizaca, J.R.; Landa-Marbán, D.; Gasda, S.E.; Sandve, T.H.; Alcorn, Z.P. Data-Driven Predictions of CO2 EOR Numerical Studies Using Machine Learning in an Open-Source Framework. In Proceedings of the SPE Norway Subsurface Conference, Bergen, Norway, 17 April 2024. [Google Scholar] [CrossRef]
- Li, S.S. Numerical Simulation Study of CO2-EOR in Tight Reservoirs. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2023. [Google Scholar]
- Tong, S.Q.; Sun, W.J. Improve the accuracy of numerical simulation of carbon dioxide flooding and dynamic miscible evaluation method. West-China Explor. Eng. 2019, 31, 52–5459. [Google Scholar]
- Ahammad, M.J.; Rahman, M.A.; Alam, J.M. A Streamline Based Lagrangain Method to Investigate Two-Phase Flow in Hydrocarbon Recovery. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 12 February 2024. [Google Scholar] [CrossRef]
- Zhou, Y.T. Research on Several Problems in Numerical Simulation of CO2 Flooding in Low Permeability. Master’s Thesis, University of Science and Technology of China, Hefei, China, 2020. [Google Scholar]
- Huang, T.; Yang, H.J.; Liao, G.Z.; Zeng, F.H. Optimization of CO2 Flooding Strategy to Enhance Heavy Oil Recovery. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada, 9–11 June 2015. [Google Scholar] [CrossRef]
- Hao, H.D.; Hou, J.R.; Zhao, F.L.; Huang, H.D.; Wang, Z.X.; Liu, H.Z. Feasibility Study of Gas-EOR Using CO2 and N2 Mixture in a Heavy Oil Reservoir: Experiments and Pilot Test. In Proceedings of the Carbon Management Technology Conference, Houston, TX, USA, 15–18 July 2019. [Google Scholar] [CrossRef]
- Li, B.F.; Ye, J.Q.; Li, Z.M.; Ji, Y.M.; Liu, W. Phase interaction of CO2-oil-water system and its effect on interfacial tension at high temperature and high pressure. Acta Pet. Sin. 2016, 37, 1265–1272, 1301. [Google Scholar] [CrossRef]
- Qian, K.; Yang, S.L.; Dou, H.E.; Wang, Q.; Huang, Y.; Wan, T.; Zhang, Y.X. Interaction of the CO2-oil system and displacement mechanisms during CO2 flooding. Pet. Sci. Bull. 2019, 4, 69–82. [Google Scholar] [CrossRef]
- Zuo, M.; Chen, H.; Xu, C.; Stephenraj, I.R.; Qi, X.; Yu, H.; Liu, X.Y. Study on Dynamic Variation Characteristics of Reservoir Fluid Phase Behavior During CO2 Injection in CO2 Based Enhanced Oil Recovery Process. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Bangkok, Thailand, 9–10 August 2022. [Google Scholar] [CrossRef]
- Ali, K.; Farshid, T.; Christine, C. Experimental Measurement of CO2 Solubility in heavy Oil and Its Diffusion Coefficient calculation at both Static and Dynamic Conditions. In Proceedings of the SPE Heavy Oil Conference-Canada, Calgary, AB, Canada, 11–13 June 2013. [Google Scholar] [CrossRef]
- Ariza-Quiroga, C.; Aristizabal, J.D.; Martinez Vertel, J.J.; Cundar, C.; Delgadillo, C.; Trujillo-Portillo, M.L.; Sandoval, J.; Maya, G.A.; Osorio, R. Effect of Phase Behavior and Mass Transfer Mechanisms on Crude Oil Recovery and CO2 Storage in a CO2 Injection Process in Colombian Reservoirs. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Port of Spain, Trinidad and Tobago, 14–15 June 2023. [Google Scholar] [CrossRef]
- Zhang, J.F.; Pan, Z.J.; Liu, K.Y.; Burke, N. Molecular Simulation of CO2 Solubility and Its Effect on Octane Swelling. Energy Fuels 2013, 27, 2741–2747. [Google Scholar] [CrossRef]
- Wang, L. Molecular Simulation of Oil Detachment and Erosion Mechanism by Supercritical Carbon Dioxide. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2014. [Google Scholar]
- Han, H.S.; Li, S.; Chen, X.L.; Qin, J.S.; Zeng, B.Q. Main control factors of carbon dioxide on swelling effect of crude hydrocarbon components. Acta Pet. Sin. 2016, 37, 392–398. [Google Scholar] [CrossRef]
- Chen, P.; Kalam, M.Z.; Al Kindi, S.A.; Abolhag, Y.H.; Shtepani, E. Maximize EOR Potential by Optimizing Miscible CO2 Injection Parameters in Carbonate Reservoirs. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018. [Google Scholar] [CrossRef]
- Zou, J.; Liao, X.; Zhao, X.; Chen, Z.; Zhang, Z. An Experimental Study of the Dynamic Mass Transfer Process During Carbonated Water Injection. In Proceedings of the International Petroleum Technology Conference, Beijing, China, 26–28 March 2019. [Google Scholar] [CrossRef]
- Fakher, S.; Elgahawy, Y.; Hesham, A. Oil Swelling Measurement Techniques: Conventional Methods and Novel Pressure-Based Method. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Virtual, 20–22 July 2020. [Google Scholar] [CrossRef]
- Ali, A.; Bahman, Z. Molecular Dynamics Simulations Study on the Shear Viscosity, Density, and Equilibrium Interfacial Tensions of CO2 + Brines and Brines + CO2 + n-Decane Systems. J. Phys. Chem. B 2021, 125, 2707–2718. [Google Scholar] [CrossRef]
- Kang, Y.L.; Zhang, L.; Luo, J.; Guo, Y.C.; Cheng, S.Y.; Wu, D.; Li, K.F.; Guo, S.Q. Molecular dynamics simulation of CO2 dissolution-diffusion in multi-component crude oil. Front. Environ. Sci. 2023, 11, 1243854. [Google Scholar] [CrossRef]
- Liu, B.; Shi, J.; Sun, B.; Shen, Y.; Zhang, J.; Chen, X.; Wang, M. Molecular dynamics simulation on volume swelling of CO2-alkane system. Fuel 2015, 143, 194–201. [Google Scholar] [CrossRef]
- Wei, G.Q. Study on Effective Viscosity of CO2 Dissolved Crude Oil and Crude Oil-water Mixture Systems. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2018. [Google Scholar] [CrossRef]
- Frauenfeld, T.W.; Kissel, G.; Zhou, S. PVT and Viscosity Measurements for Lloydminster-Aberfeldy and Cold Lake Blended Oil Systems. In Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Calgary, AB, Canada, 4–7 November 2002. [Google Scholar] [CrossRef]
- Wang, F.S.; Mou, Z.B.; Liu, P.C.; Zhang, S.F.; Wang, C.; Li, X.L. Experiment and numerical simulation on mechanism of CO2 assisted mining in super heavy oil reservoirs. Pet. Geol. Recovery Effic. 2017, 24, 86–91. [Google Scholar] [CrossRef]
- Farzaneh, S.A.; Seyyed, S.M.; Sohrabi, M. Enhanced Heavy Oil Recovery by Liquid CO2 Injection under Different Injection Strategies. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016. [Google Scholar] [CrossRef]
- Fakher, S.; Elgahawy, Y.; Abdelaal, H.; Imqam, A. Laboratory Studies on Immiscible CO2 Injection: AData Analysis Screening Criteria. In Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium, Virtual, 26 June–1 July 2020. [Google Scholar]
- Han, W. Research on the Effect of CO2 Huff and Puff of Fractured Horizontal Wells in Tight Oil Reservoirs. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2018. [Google Scholar] [CrossRef]
- Wang, S.L.; Sun, B.C.; Wang, L.; Li, Z.R.; Yang, J. Study and Application of the Stimulation Mechanism of CO2 Huff and Puff. Drill. Prod. Technol. 2004, 27, 91–94. [Google Scholar] [CrossRef]
- Wang, Y.H. Evaluation of CO2 Huff-n-Puff Experiments on Jimusar Shale Oil. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2020. [Google Scholar] [CrossRef]
- Lu, X.W.; Lu, P.L. Mechanism and application status of enhancing oil recovery by CO2 immiscible flooding. Pet. Geol. Eng. 2007, 2, 58–61. [Google Scholar]
- Asghari, K.; Araghi, M.M.; Ahmadloo, F.; Nakutnyy, P. Utilization of CO2 for Improving the Performance of Waterflooding in Heavy Oil Recovery. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 16–18 June 2009. [Google Scholar] [CrossRef]
- Liu, Y. Study on Oil Recovery of CO2 Flooding in Low Permeability Fractured Reservoir. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2018. [Google Scholar] [CrossRef]
- Yekeen, N.; Padmanabhan, E.; Abdulelah, H.; Irfan, S.A.; Okunade, O.A.; Khan, J.A.; Negash, B.M. CO2/brine interfacial tension and rock wettability at reservoir conditions: A critical review of previous studies and case study of black shale from Malaysian formation. J. Pet. Sci. Eng. 2021, 196, 107673. [Google Scholar] [CrossRef]
- Beaton, M.L.; Mashhadi, N.; Dominato, K.R.; Maguire, T.J.; Rupert, K.D.; Mundle, S.O.C. Monitoring CO2 injection and retention in steam-assisted gravity drainage (SAGD) operations. J. Pet. Sci. Eng. 2022, 218, 111050. [Google Scholar] [CrossRef]
- Dai, M. Application of Molecular Simulations to CO2-EOR: Phase-Equilibria and Interfacial Phenomena. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 15–17 November 2011. [Google Scholar] [CrossRef]
- Wang, H.T.; Wang, R.; Lun, Z.M.; Lv, C.Y.; Luo, M.; Zhao, C.P.; Pan, W.Y. Interfacial Tension and Oil Displacement Efficiency between CO2 and Crude Oil under High Temperature and High Pressure. Sci. Technol. Eng. 2017, 17, 38–42. [Google Scholar]
- Drexler, S.; Elton, L.C.; Ana, C.J.; Leandro, A.C.; Paulo, C. Effect of CO2 Injection on the Interfacial Tension for a Brazilian Pre-Salt Field. In Proceedings of the Offshore Technology Conference Brasil, Rio de Janeiro, Brazil, 29–31 October 2019. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Q.; Wang, S.; Feng, D.; Wu, K.; Dong, X.; Chen, S.; Chen, Z. Effects of Nanoscale Pore Confinement on CO2 Displacement. In Proceedings of the Unconventional Resources Technology Conference, San Antonio, TX, USA, 1–3 August 2016. [Google Scholar]
- Zuo, M.S.; Chen, H.; Qi, X.Y.; Liu, X.L.; Xu, C.H.; Yu, H.Z.; Brahim, M.S.; Wu, Y.; Liu, H.P. Effects of CO2 injection volume and formation of in-situ new phase on oil phase behavior during CO2 injection for enhanced oil recovery (EOR) in tight oil reservoirs. Chem. Eng. J. 2023, 452, 139454. [Google Scholar] [CrossRef]
- Zhao, J.; An, X.; Qiao, S. The extraction effect of CO2 injection on the flow properties of crude oil. Pet. Sci. Technol. 2019, 37, 710–717. [Google Scholar] [CrossRef]
- Alshuaibi, M.; Farzaneh, S.A.; Sohrabi, M. An experimental and simulation investigation on the effect of different gas mixtures on performance of miscible CO2 injection in HPHT Abu Dhabi reservoir. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. [Google Scholar] [CrossRef]
- Fan, P.W.; Zhu, W.Y.; Lin, J.S.; Gao, C.; Wang, S.T. Factors and regularity of supercritical CO2 extraction of heavy oil impact. Sci. Technol. Eng. 2017, 17, 31–36. [Google Scholar] [CrossRef]
- Zhang, X.L. The Compositions of Supercritical CO2 Extraction Products and the Occurrence State of Retained Oil in Organic-rich Shales. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2018. [Google Scholar] [CrossRef]
- Qin, J.S.; Zhang, K.; Chen, X.L. Mechanism of the CO2 flooding as reservoirs containing high water. Acta Pet. Sin. 2010, 31, 797–800. [Google Scholar]
- Xianhong, T.; Kuiqian, M.; Shichao, C.; Xiaofeng, T.; Nan, L.; Shiqiang, P.; Na, L.; Wei, Z.; Lijun, Z.; Chen, H. Study on Dynamic Phase Behavior of Oil and Gas System during CO2 Flooding. In Proceedings of the Carbon Management Technology Conference, Houston, TX, USA, 15–19 July 2019. [Google Scholar] [CrossRef]
- Chen, H.; Li, B.; Zhang, X.; Wang, Q.; Wang, X.; Yang, S. Effect of gas contamination and well depth on pressure interval of CO2 near-miscible flooding. J. Pet. Sci. Eng. 2019, 176, 43–50. [Google Scholar] [CrossRef]
- Li, M.T.; Shan, W.W.; Liu, X.G.; Shang, G.H. Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide. Acta Pet. Sin. 2006, 27, 80–83. [Google Scholar] [CrossRef]
- Qi, G.X. Effect of CO2 extraction on minimum miscibility pressure. Petroleum Reserv. Eval. Dev. 2019, 9, 51–55, 60. [Google Scholar] [CrossRef]
- Hirschberg, A.; de Jone, L.N.G.; Schipper, B.A.; Meijer, J.G. Influence of temperature and pressure on asphaltene flocculation. SPE J. 1984, 24, 283–293. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Voutsas, E.C.; Yakoumis, I.Y.; Tassios, D.P. An equation of state for associating fluids. Ind. Eng. Chem. Res. 1996, 35, 4310–4318. [Google Scholar] [CrossRef]
- Victorov, A.I.; Firoozabadi, A. Thermodynamic micellization model of asphaltene precipitation from petroleum fluids. AIChE J. 1996, 42, 1753–1764. [Google Scholar] [CrossRef]
- Rassamdana, H.; Dabir, B.; Nematy, M.; Farhani, M.; Sahimi, M. Asphalt flocculation and deposition: I. The onset of precipitation. AIChE J. 1996, 42, 10–22. [Google Scholar] [CrossRef]
- Pfeiffer, J.P.; Saal RN, J. Asphaltic bitumen as colloid system. J. Phys. Chem. 1940, 44, 139–149. [Google Scholar] [CrossRef]
- Nghiem, L.X.; Kohse, B.F.; Ali SM, F.; Doan, Q. Asphaltene Precipitation: Phase Behaviour Modelling and Compositional Simulation. In Proceedings of the SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan, 25–26 April 2000. [Google Scholar] [CrossRef]
- Soleymanzadeh, A.; Yousefi, M.; Kord, S.; Mohammadzadeh, O. A view on methods of determining onset of asphaltene precipitation. J. Pet. Explor. Prod. Technol. 2019, 9, 1375–1396. [Google Scholar] [CrossRef]
- Yang, H.X. Study on the Viscosity Reduction Mechanism of Heavy Oil under the Impacts of Carbon Dioxide. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2021. [Google Scholar]
- Punase, A.; Prakoso, A.; Hascakir, B. The Polarity of Crude Oil Fractions Affects the Asphaltenes Stability. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 23 May 2016. [Google Scholar] [CrossRef]
- Ortiz, R.; Perez, C.; Sánchez, O.; Aybar, U.; Tellez, F.; Mujica, L.; Aguilar, J.; Andrade, A.; Resendiz, T.; Camarillo, L.; et al. Asphaltene-Prevention Work Flow Enhances Oil Production in High-Temperature Fractured Carbonate Reservoirs. SPE Prod. Oper. 2017, 32, 476–490. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, F.; Hou, J.; Lu, G.; Zhang, M.; Wang, Z. Comparative Analysis of CO2, N2, and Gas Mixture Injection on Asphaltene Deposition Pressure in Reservoir Conditions. Energies 2018, 11, 2483. [Google Scholar] [CrossRef]
- Fakher, S.; Ahdaya, M.; Elturki, M.; Imqam, A.; Elgahawy, Y. The Effect of Unconventional Oil Reservoirs’ Nano Pore Size on the Stability of Asphaltene During Carbon Dioxide Injection. In Proceedings of the Carbon Management Technology Conference, Houston, TX, USA, 15–18 July 2019. [Google Scholar]
- Mullins, O.C.; Betancourt, S.S.; Cribbs, M.E.; Dubost, F.X.; Creek, J.L.; Andrews, A.B.; Venkataramanan, L. The Colloidal Structure of Crude Oil and the Structure of Oil Reservoirs. Energy Fuels 2008, 21, 2785–2794. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Huang, S.S.; Dong, M. Asphaltene Deposition During CO2 Flooding. SPE Prod. Facil. 1999, 14, 235–245. [Google Scholar] [CrossRef]
- Dong, Z.X.; Wang, J.; Liu, G.; Lin, M.Q.; Li, M.Y. Experimental study on asphaltene precipitation induced by CO2 flooding. Pet. Sci. 2014, 11, 174–180. [Google Scholar] [CrossRef]
- Tian, J.F.; Chen, Z.L. Adsorption and precipitation mechanism of petroleum asphaltene and its influence factors. Mar. Pet. Geol. 2005, 10, 37–42. [Google Scholar]
- Wu, G.S. Experimental Design and Data Processing; Metallurgical Industry Press: Beijing, China, 1997. [Google Scholar]
- Li, R.T.; Liao, X.W.; Zou, J.D.; Zhang, H.; Zhou, X.Z.; Mu, L.Y.; Peng, D. Experimental and Numerical Studies on Asphaltene Deposition Distribution during CO2 Flooding in Ultra-Low Permeability Reservoirs. In Proceedings of the Carbon Management Technology Conference, Houston, TX, USA, 15–18 July 2019. [Google Scholar] [CrossRef]
- Wang, W.D.; Gong, H.J.; Sang, Q.; Gui, W.Y.; Lv, W. Static Experimental Study on the Effect of CO2 on Asphaltene Precipitation in Crude Oil. In Proceedings of the 2021 International Field Exploration and Development Conference, Qingdao, China, 16–18 September 2021. [Google Scholar]
- Fakher, S. Investigating Factors that May Impact the Success of Carbon Dioxide Enhanced Oil Recovery in Shale Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019. [Google Scholar] [CrossRef]
- He, Y.F.; Li, D.; Hu, J.; Guo, L.C. Study on the precipitation rules of petroleum asphaltene in carbon dioxide immiscible displacement reservoir. J. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 2011, 26, 28–32. [Google Scholar]
- Moqadam, M.S.; Firoozinia, H.; Kharrat, R.; Ghazanfari, M.H.; Alamatsaz, A.R. Effect of Pressure and CO2 Composition Changes on Distribution of Asphaltene Molecular Weight in Heavy Crude Oil. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 16–18 June 2009. [Google Scholar] [CrossRef]
- Darabi, H.; Abouie, A.; Sepehrnoori, K. Effect of Temperature Variations on Asphaltene Dynamics in Oil Reservoirs. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 23–26 May 2016. [Google Scholar] [CrossRef]
- Ali, M.; Dahraj, N.U.; Haider, S.A. Study of Asphaltene Precipitation during CO2 Injection in Light Oil Reservoirs. In Proceedings of the SPE/PAPG Pakistan Section Annual Technical Conference, Islamabad, Pakistan, 24–25 November 2015. [Google Scholar] [CrossRef]
- Ding, C.C. Research and Analysis of the Influencement of Carbon dioxide Flooding on Asphaltene Precipitation. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2013. [Google Scholar]
- Zhang, K. Research of Seepage Rule in Porous Media in CO2 Flooding Under the Influence of Asphaltene Deposition. Master’s Thesis, Changzhou University, Changzhou, China, 2015. [Google Scholar]
- Mahdavi, E.; Zebarjad, F.S.; Ayatollahi, S.; Taghikhani, V. Experimental investigation on the effect of Asphaltene types on the interfacial tension of CO2–hydrocarbon systems. Energy Fuels 2015, 29, 7941–7947. [Google Scholar] [CrossRef]
- Shoushtari, A.B.; Asadolahpour, S.R.; Madani, M. Thermodynamic investigation of asphaltene precipitation and deposition profile in wellbore: A case study. J. Mol. Liq. 2020, 320, 114468. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; He, M.Q.; Li, X.; Yang, W.P.; Lu, J. Asphaltene precipitation and reservoir damage characteristics of CO2 flooding in different microscopic structure types in tight light oil reservoirs. Fuel 2022, 312, 122943. [Google Scholar] [CrossRef]
- Li, L.; Wang, M.J.; Su, Y.L.; Gao, X.G.; Wang, W.D.; Tu, J.W.; Wang, X.H. Investigation of Asphaltene Precipitation and Reservoir Damage during CO2 Flooding in High-Pressure, High-Temperature Sandstone Oil Reservoirs. SPE J. 2024, 29, 4179–4193. [Google Scholar] [CrossRef]
- Gu, Z.H.; Zhang, C.; Li, P.F.; Li, Z.Y.; Wang, M.J.; Li, Z.M. CO2-Induced In-Situ Targeted Precipitation of Asphaltene in Heavy Oil Reservoirs: Balancing Formation Gas Channeling Regulation and Wellbore Asphaltene Blockage Prevention. SPE J. 2024, 29, 6138–6154. [Google Scholar] [CrossRef]
- Lei, H. Deposition Mechanisms and Reservoir Protection Countermeasures of a Low-Permeability Formation in CO2 Flooding Process. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2017. [Google Scholar]
- Syed, F.I.; Neghabhan, S.; Zolfaghari, A.; Dahaghi, A.K. Numerical Validation of Asphaltene Precipitation and Deposition during CO2 miscible flooding. Pet. Res. 2020, 5, 235–243. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Gao, H.; Zhao, J.; Gao, Y.; Dou, L. Microscopic Damage Mechanism of Asphaltene Deposition on Cores during CO2 Flooding. Xinjiang Pet. Geol. 2017, 38, 602–606. [Google Scholar] [CrossRef]
- Zekri, A.Y.; Shedid, S.A.; Reyadh, A.A. An Experimental Investigation of Interactions Between Supercritical CO2, Aspheltenic Crude Oil, and Reservoir Brine in Carbonate Cores. In Proceedings of the International Symposium on Oilfield Chemistry, Houston, TX, USA, 28 February–2 March 2007. [Google Scholar] [CrossRef]
- Hayashi, Y.; Hiroshi, O. Experimental Investigation of Asphaltene Induced Permeability Reduction. In Proceedings of the SPE EOR Conference at Oil & Gas West Asia, Muscat, Oman, 11–13 April 2010. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.L.; Bai, J.; Qian, K.; Li, J.J. Influence of CO flooding mode on oil displacement effect and reservoir damage in heterogeneous multi-layer reservoirs. Acta Pet. Sin. 2020, 41, 875–884, 902. [Google Scholar] [CrossRef]
- Qian, K.; Yang, S.L.; Huang, F.; Dou, H.E.; Wang, Q. Formation Damage and Wettability Change due to Asphaltene Precipitation during CO2 Injection in Low-permeability Reservoirs. Oilfield Chem. 2020, 37, 536–541. [Google Scholar]
- Liu, J.K.; Xu, X.; Hu, S.J.; Xue, W.; Xiao, B.; Li, J.J.; Yu, H.C. Impact of asphaltene deposition patterns on reservoir permeability. Pet. Geol. Oilfield Dev. Daqing 2023, 42, 91–98. [Google Scholar] [CrossRef]
- Li, L.; Gao, X.S.; Su, Y.L.; Wang, M.J.; Wang, W.D.; Tu, J.W.; Wang, X.H. Asphaltene Precipitation Characteristics and Reservoir Damage When Applying CO2 Injection in Deep Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 16–18 October 2023. [Google Scholar] [CrossRef]
- Ju, B.; Qiu, X.; Qin, J.; Chen, X.; Fan, T. Asphaltene deposition and Its Effect on Production Performances in the Development of Oil Field by CO2 Flooding: A Numerical simulation Assessment. In Proceedings of the SPE Europec featured at EAGE Conference and Exhibition, Barcelona, Spain, 14–17 June 2010. [Google Scholar]
- Taheri-Shakib, J.; Shekarifard, A.; Naderi, H. Experimental investigation of the asphaltene deposition in porous media: Accounting for the microwave and ultrasonic effects. J. Pet. Sci. Eng. 2018, 163, 453–462. [Google Scholar] [CrossRef]
- Alrashidi, H.; Afra, S.; Nasr-El-Din, H.A. Application of natural fatty acids as asphaltenes solvents with inhibition and dispersion effects: A mechanistic study. J. Pet. Sci. Eng. 2019, 172, 724–7300. [Google Scholar] [CrossRef]
- Madhi, M.; Kharrat, R.; Hamoule, T. Screening of inhibitors for remediation of asphaltene deposits: Experimental and modeling study. Petroleum 2018, 4, 168–177. [Google Scholar] [CrossRef]
- Karambeigi, M.A.; Nikazar, M.; Kharrat, R. Experimental evaluation of asphaltene inhibitors selection for standard and reservoir conditions. J. Pet. Sci. Eng. 2016, 137, 74–86. [Google Scholar] [CrossRef]
- Junior, L.C.; Ferreira, M.S.; Da, S.R. Inhibition of asphaltene precipitation in Brazilian crude oils using new oil soluble amphiphiles. J. Pet. Sci. Eng. 2006, 51, 26–36. [Google Scholar] [CrossRef]
- Bisweswar, G.; Nuhu, S.; Fawzi, B. Ionic liquid in stabilizing asphaltenes during miscible CO2 injection in high pressure oil reservoir. J. Pet. Sci. Eng. 2019, 180, 1046–1057. [Google Scholar] [CrossRef]
- Hu, G.J.; Li, J.B.; Zeng, G.M. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef]
- Alimohammadi, S.; Zendehboudi, S.; James, L. A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips. Fuel 2019, 252, 753–791. [Google Scholar] [CrossRef]
- Mahdi, Z.H.; Mohammad, A.A.; Reza, M.B. Solving asphaltene precipitation issue in vertical wells via redesigning of production facilities. Petroleum 2015, 1, 139–145. [Google Scholar] [CrossRef]
- Gharbi, K.; Benyounes, K.; Khodja, M. Removal and prevention of asphaltene deposition during oil production: A literature review. J. Pet. Sci. Eng. 2017, 158, 351–360. [Google Scholar] [CrossRef]
- Ovalles, C.; Rogel, E.; Alboudwarej, H.; Inouye, A.; Benson, I.P.; Vaca, P. Physical and Numerical Simulations of Subsurface Upgrading using Solvent Deasphalting in a Heavy Crude Oil Reservoir. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada, 9–11 June 2015. [Google Scholar] [CrossRef]
- Vallejos, C.; Vasquez, T.; Siachoque, G.; Layrisse, I. Process for the In Situ Upgrading of Heavy Hydrocarbons. U.S. Patent 6,405,799, 18 June 2002. [Google Scholar]
- Mansoori, G.A. Remediation of Asphaltene and other Heavy Organic Deposits in Oil Wells and in Pipelines. Socar Proc. 2010, 4, 12–23. [Google Scholar] [CrossRef]
- Trbovich, M.G.; King, G.E. Asphaltene Deposit Removal: Long-Lasting Treatment with a Co-Solvent. In Proceedings of the Society of Petroleum Engineers, Anaheim, CA, USA, 20–22 February 1991. [Google Scholar] [CrossRef]
- Alian, S.S.; Singh, K.; Saidu, M.A.; Ismail, M.Z.; Anwar, M.L. Organic Deposition: From Detection and Laboratory Analysis to Treatment and Removal. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 22–24 October 2013. [Google Scholar] [CrossRef]
- Abdulrazag, Y.Z.; Reyadh, E.M. Steam/bacteria to treatment of asphaltene deposition in carbonate rocks. J. Pet. Sci. Eng. 2003, 37, 123–133. [Google Scholar]
- Tutuncu, A.N.; Joha, R. An Experimental Study for Removal of Near-Wellbore Asphaltene Deposits Using Ultrasonics. In Proceedings of the 2008 SEG Annual Meeting, Las Vegas, NV, USA, 9–14 November 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, S.; Shen, Y.; Wang, C. Review on Changes in Shale Oil Property During CO2 Injection. Energies 2025, 18, 1264. https://doi.org/10.3390/en18051264
Li X, Wu S, Shen Y, Wang C. Review on Changes in Shale Oil Property During CO2 Injection. Energies. 2025; 18(5):1264. https://doi.org/10.3390/en18051264
Chicago/Turabian StyleLi, Xiang, Songtao Wu, Yue Shen, and Chanfei Wang. 2025. "Review on Changes in Shale Oil Property During CO2 Injection" Energies 18, no. 5: 1264. https://doi.org/10.3390/en18051264
APA StyleLi, X., Wu, S., Shen, Y., & Wang, C. (2025). Review on Changes in Shale Oil Property During CO2 Injection. Energies, 18(5), 1264. https://doi.org/10.3390/en18051264