Estimation of Working Error of Electricity Meter Using Artificial Neural Network (ANN)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Comprehensive Maximum Error (CME)
2.2. Artificial Neural Network
2.3. Using the ANN Model to Estimate CME
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Ministry of Trade of Republic of Türkiye. European Green Deal. Available online: https://trade.gov.tr/exports/green-action-plan (accessed on 28 January 2025).
- Republic of Turkey Energy Market Regulatory Authority. Electricity Market Sector Report 2023; Republic of Türkiye Energy Market Regulatory Authority, Strategy Development Department: Ankara, Türkiye, 2024. Available online: https://www.epdk.gov.tr/Detay/Icerik/1-1271/electricityreports (accessed on 28 January 2025).
- OIML R46-1/-2; Edition 2012(E) Active Electrical Energy Meters. Organisation Internationale de Metrologie Legale (OIML): Bucharest, Romania, 2012.
- Tasci, M.; Duzkaya, H. Investigation of the effect of variable parameters on comprehensive maximum error of active electricity meters by test results. In Proceedings of the 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), Oshawa, ON, Canada, 29 August–1 September 2023; pp. 73–78. [Google Scholar]
- TS-EN 50470-1; 2007-Electricity Metering Equipment (a.c.)—Part 1: General Requirements, Tests and Test Conditions—Metering Equipment (Class Indexes A, B, and C). Turkish Standard Institution: Ankara, Türkiye, 2007.
- Diahovchenko, I.; Volokhin, V.; Kurochkina, V.; Špes, M.; Kosterec, M. Effect of harmonic distortion on electric energy meters of different metrological principles. Front. Energy 2019, 13, 377–385. [Google Scholar] [CrossRef]
- Carstens, H.; Xia, X.; Yadavalli, S. Measurement uncertainty in energy monitoring: Present state of the art. Renew. Sustain. Energy Rev. 2018, 82, 2791–2805. [Google Scholar] [CrossRef]
- Apse-Apsitis, P.; Vitols, K.; Grinfogels, E.; Senfelds, A.; Avotins, A. Electricity meter sensitivity and precision measurements and research on influencing factors for the meter measurements. IEEE Electromagn. Compat. Mag. 2018, 7, 48–52. [Google Scholar] [CrossRef]
- Masnicki, R. Some remarks on the accuracy of energy meters. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Avancini, D.B.; Rodrigues, J.J.P.C.; Martins, S.G.B.; Rabelo, R.A.L.; Al-Muthadi, J.; Solic, P. Energy meters evolution in smart grids: A review. J. Clean. Prod. 2019, 217, 702–715. [Google Scholar] [CrossRef]
- Shah, A.L.; Mesbah, W.; Al-Awami, A.T. An algorithm for accurate detection and correction of technical and nontechnical losses using smart metering. IEEE Trans. Instrum. Meas. 2020, 69, 8809–8820. [Google Scholar] [CrossRef]
- Kampik, M.; Skórkowski, A.; Pecyna, M.; Sowula, K. The influence of subsequent harmonics of the load current on errors of electronic energy meters. Energies 2024, 17, 1003. [Google Scholar] [CrossRef]
- Xiong, S.; Zhang, J.; Zhang, B.; Sun, G.; Chen, Z.; Qi, J.; Sun, Y. Effects of environmental and electrical factors on metering error and consistency of smart electricity meters. Appl. Sci. 2021, 11, 11457. [Google Scholar] [CrossRef]
- Synder, A.F.; Myers, G. Modern Electricity Meter Safety, Accuracy and Performance Testing; EnerNex LLC: Knoxville, TN, USA, 2016; pp. 6–7. [Google Scholar]
- Directive 2014/32/EU of the European Parliament and of the Council of 26 February 2014 on the Harmonisation of the Laws of the Member States Relating to the Making Available on the Market of Measuring Instruments (Recast). Off. J. Eur. Union 2014, L96, 149–250.
- Ma, J.; Teng, Z.; Tang, Q.; Qiu, W.; Yang, Y. Measurement error assessment for smart electricity meters under extreme natural environmental stresses. IEEE Trans. Ind. Inform. 2022, 18, 3905–3914. [Google Scholar] [CrossRef]
- TS-EN 50470-3; 2022-Electricity Metering Equipment—Part 3: Particular Requirements—Static Meters for AC Active Energy (Class Indexes A, B and C). Turkish Standard Institution: Ankara, Türkiye, 2022.
- Zhang, J.; Luo, D.; Zhang, Q.; Zhang, B.; Zhu, L.; Wen, H. Evaluation of comprehensive maximum error of power energy meter based on OIML recommendation R46. In Proceedings of the 13th World Congress on Intelligent Control and Automation (WCICA), Changsha, China, 4–8 July 2018; pp. 1031–1036. [Google Scholar]
- Zhang, W.; Ma, J.; Duan, J.; Li, N.; Yi, K.; Teng, Z. Performance evaluation for smart electricity meters using machine learning. In Proceedings of the 2nd International Conference on Electronics, Communications and Information Technology (CECIT), Sanya, China, 27–29 December 2021; pp. 830–834. [Google Scholar]
- Kurban, A.O. Analysis of shafts surface pressures using neural network. Ind. Lubr. Tribol. 2004, 56, 217–225. [Google Scholar] [CrossRef]
- Dongare, A.D.; Kharde, R.R.; Kachare, A.D. Introduction to artificial neural network. Int. J. Eng. Innov. Technol. (IJEIT) 2012, 2, 189–194. [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H. Neural Network Design, 2nd ed.; Martin Hagan: Stillwater, OK, USA, 2014; pp. 12/1–50. [Google Scholar]
- Heaton, J. Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks; Heaton Research Inc.: Chesterfield, MO, USA, 2015; pp. 113–132. ISBN 978-1505714340. [Google Scholar]
- Cho, V.A. Comparison of three different approaches to tourist arrival forecasting. Tour. Manag. 2003, 24, 323–330. [Google Scholar] [CrossRef]
- Karayiannis, N.; Venetsanopoulos, A.N. Artificial Neural Networks: Learning Algorithms, Performance Evaluation, and Applications, 1st ed.; Springer Science & Business Media: New York, NY, USA, 2013; pp. 219–257. ISBN 978-0-7923-9297-2. [Google Scholar]
- Gomolka, Z. Backpropagation algorithm with fractional derivatives. ITM Web Conf. 2018, 21, 1–10. [Google Scholar] [CrossRef]
- Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 1, pp. 586–591. [Google Scholar]
- Santra, A.K.; Chakraborty, N.; Sen, S. Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network. Int. J. Therm. Sci. 2009, 48, 1311–1318. [Google Scholar] [CrossRef]
- Falhmann, S.E. An Empirical Study of Learning Speed in Backpropagation Networks; CMU: Pittsburgh, PA, USA, 1989; pp. 1–17. [Google Scholar]
- Aquino, I.; Perez, C.; Chavez, J.K.; Oporto, S. Daily load forecasting using quick propagation neural network with a special holiday encoding. In Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August 2007; pp. 1935–1940. [Google Scholar]
- Kurani, A.; Doshi, P.; Vakharia, A.; Shah, M. A Comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Ann. Data Sci. 2023, 10, 183–208. [Google Scholar] [CrossRef]
- Jaiswal, S.; Wath, M.G.; Ballal, M.S. Modeling the measurement error of energy meter using NARX model. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Taipei, Taiwan, 23–26 May 2016; pp. 1–6. [Google Scholar]
- Stevanović, S.; Dashti, H.; Milosević, M.; Al-Yakoob, S.; Stevanović, D. Comparison of ANN and XGBoost surrogate models trained on small numbers of building energy simulations. PLoS ONE 2024, 19, e0312573. [Google Scholar] [CrossRef]
- Akhtar, S.; Shahzad, S.; Zaheer, A.; Ullah, H.S.; Kilic, H.; Gono, R.; Jasinski, M.; Leonowicz, Z. Short-term load forecasting models: A review of challenges, progress, and the road ahead. Energies 2023, 16, 4060. [Google Scholar] [CrossRef]
- Chanal, A.; Gulia, P.; Gill, N.S.; Chatterjee, J.M. Performance analysis of an optimized ANN model to predict the stability of smart grid. Complexity 2022, 2022, 7319010. [Google Scholar]
- Tan, M.; Hu, C.; Cheni, J.; Wang, L.; Li, Z. Multi-node load forecasting based on multi-task learning with modal feature extraction. Eng. Appl. Artif. Intell. 2022, 112, 104856. [Google Scholar] [CrossRef]
- Feng, C.; Shao, L.; Wang, J.; Zhang, Y.; Wen, F. Short-term load forecasting of distribution transformer supply zones based on federated model-agnostic meta learning. IEEE Trans. Power Syst. 2025, 40, 31–45. [Google Scholar] [CrossRef]
- Tahani, M.; Vakili, M.; Khosrojerdi, S. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int. Commun. Heat Mass Transf. 2016, 76, 358–365. [Google Scholar] [CrossRef]
- Mouloodi, S.; Rahmanpanah, H.; Gohery, S.; Burvill, C.; Dives, H.M.S. Feedforward backpropagation artificial neural networks for predicting mechanical responses in complex nonlinear structures: A study on a long bone. J. Mech. Behav. Biomed. Mater. 2022, 128, 105079. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, L.; Belkin, M. Loss landscapes and optimization in over-parameterized non-linear systems and neural networks. Appl. Comput. Harmon. Anal. 2022, 59, 85–116. [Google Scholar] [CrossRef]
- Wilamowski, B.M.; Yu, H. Improved computation for Levenberg–Marquardt training. IEEE Trans. Neural Netw. 2010, 21, 930–937. [Google Scholar] [CrossRef]
- Yan, Z.; Zhong, S.; Lin, L.; Cui, Z. Adaptive Levenberg–Marquardt algorithm: A New Optimization Strategy for Levenberg–Marquardt neural networks. Mathematics 2021, 9, 2176. [Google Scholar] [CrossRef]
- Revanesh, M.; Gundal, S.S.; Arunkumar, J.R.; Josephson, P.J.; Suhasini, S.; Devi, T.K. Artificial neural networks-based improved Levenberg–Marquardt neural network for energy efficiency and anomaly detection in WSN. Wirel. Netw. 2024, 30, 5613–5628. [Google Scholar] [CrossRef]
- Rokonuzzaman, M.; Rahman, S.; Hannan, M.; Mishu, M.K.; Tan, W.-S.; Rahman, K.S.; Pasupuleti, J.; Amin, N. Levenberg-Marquardt algorithm-based solar PV energy integrated internet of home energy management system. Appl. Energy 2025, 378, 124407. [Google Scholar] [CrossRef]
- Heaton, J. Introduction to Neural Networks with Java, 2nd ed.; Heaton Research Inc.: Chesterfield, MO, USA, 2007; pp. 77–106. [Google Scholar]
- Xu, Y.; Fenerci, A.; Øiseth, O.; Moan, T. Efficient prediction of wind and wave induced long-term extreme load effects of floating suspension bridges using artificial neural networks and support vector machines. Ocean Eng. 2020, 217, 107888. [Google Scholar] [CrossRef]
- Cuhadar, M.A. Comparative study on modelling and forecasting tourism revenues: The case of Turkey. Adv. Hosp. Tour. Res. (AHTR) 2020, 8, 235–255. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Motamedi, S.; Petković, D.; Hashim, R.; Gocic, M. Extreme learning machine based prediction of daily dew point temperature. Comput. Electron. Agric. 2015, 117, 214–225. [Google Scholar] [CrossRef]
- Afzal, S.; Ziapour, B.M.; Shakri, A.; Shakibi, H.; Sobhani, B. Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms. Energy 2023, 282, 128446. [Google Scholar] [CrossRef]
- Dellosa, J.T.; Palconit, E.C. Artificial Intelligence (AI) in renewable energy systems: A condensed review of its applications and techniques. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021. [Google Scholar]
- Yaghoubi, E.; Yaghoubi, E.; Khamees, A.; Vakili, A.H. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering. Neural Comput. Appl. 2024, 36, 12655–12699. [Google Scholar] [CrossRef]
- Patil, V.J.; Khadake, S.B.; Tamboli, D.A.; Mallad, H.M.; Takpere, S.M.; Sawant, V.A. A comprehensive analysis of artificial intelligence integration in electrical engineering. In Proceedings of the 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), Lalitpur, Nepal, 18–19 January 2024. [Google Scholar]
- Dunford, R.; Su, Q.; Tamang, E. The Pareto principle. Plymouth Stud. Sci. 2014, 7, 140–148. [Google Scholar]
- Chen, L.; Huang, Y.; Lu, T.; Dang, S.; Kong, Z. Metering equipment running error estimation model based on genetic optimized LM algorithm. J. Comput. Methods Sci. Eng. 2022, 22, 197–205. [Google Scholar] [CrossRef]
- Sumarmad, K.A.A.; Sulaiman, N.; Wahab, N.I.A.; Hizam, H. Microgrid energy management system based on fuzzy logic and monitoring platform for data analysis. Energies 2022, 15, 4125. [Google Scholar] [CrossRef]
- Savacool, B.K.; Hook, A.; Sareen, S.; Geels, F.W. Global sustainability, innovation and governance dynamics of national smart electricity meter transitions. Glob. Environ. Change 2021, 68, 102272. [Google Scholar] [CrossRef]
Number of Neurons | R2 | RMSE | cov | MAPE |
---|---|---|---|---|
1 | 0.7953 | 0.1341 | 28.2884 | 0.2313 |
2 | −0.0077 | 0.2976 | 62.7696 | 0.3562 |
3 | 0.3333 | 0.2420 | 51.0577 | 0.2826 |
4 | −0.0077 | 0.2976 | 62.7696 | 0.3562 |
5 | 0.3500 | 0.2390 | 50.4123 | 0.2647 |
6 | −0.0077 | 0.2976 | 62.7696 | 0.3562 |
7 | 0.3422 | 0.2404 | 50.7157 | 0.2797 |
8 | 0.3636 | 0.2365 | 49.8825 | 0.2599 |
9 | 0.3469 | 0.2396 | 50.5325 | 0.2698 |
10 | 0.3551 | 0.2381 | 50.2168 | 0.2606 |
11 | 0.3587 | 0.2374 | 50.0738 | 0.2607 |
12 | 0.3509 | 0.2388 | 50.3801 | 0.2692 |
13 | 0.3607 | 0.2370 | 49.9980 | 0.2606 |
14 | 0.3572 | 0.2377 | 50.1343 | 0.2624 |
15 | 0.3498 | 0.2390 | 50.4225 | 0.2715 |
16 | 0.1347 | 0.2758 | 58.1667 | 0.3895 |
17 | 0.3566 | 0.2378 | 50.1592 | 0.2642 |
18 | −0.0077 | 0.2976 | 62.7696 | 0.3562 |
19 | −0.0077 | 0.2976 | 62.7696 | 0.3562 |
20 | 0.3602 | 0.2371 | 50.0150 | 0.2628 |
21 | 0.3451 | 0.2399 | 50.6032 | 0.2666 |
22 | 0.3619 | 0.2368 | 49.9485 | 0.2563 |
23 | 0.3473 | 0.2395 | 50.5192 | 0.2740 |
24 | 0.3590 | 0.2373 | 50.0621 | 0.2630 |
25 | 0.3694 | 0.2354 | 49.6540 | 0.2564 |
26 | 0.3571 | 0.2377 | 50.1361 | 0.2628 |
27 | 0.3583 | 0.2375 | 50.0928 | 0.2623 |
28 | 0.3590 | 0.2373 | 50.0656 | 0.2611 |
Actual Value | Estimation Value | Error Value | Error Value (%) | Actual Value | Estimation Value | Error Value | Error Value (%) | Actual Value | Estimation Value | Error Value | Error Value (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
0.7606 | 0.8309 | −0.0703 | −9.24 | 0.5798 | 0.5886 | −0.0088 | −1.52 | 0.4787 | 0.4355 | 0.0432 | 9.03 |
0.0000 | 0.0063 | −0.0063 | 0.00 | 0.5426 | 0.5340 | 0.0086 | 1.58 | 0.2766 | 0.3056 | −0.0290 | −10.49 |
0.0000 | 0.0004 | −0.0004 | 0.00 | 0.4894 | 0.4826 | 0.0068 | 1.38 | 0.3191 | 0.3716 | −0.0525 | −16.43 |
0.8245 | 0.833 | −0.0085 | −1.03 | 0.5798 | 0.5501 | 0.0297 | 5.12 | 0.3670 | 0.4659 | −0.0989 | −26.94 |
0.9574 | 0.9503 | 0.0071 | 0.75 | 0.3883 | 0.3897 | −0.0014 | −0.36 | 0.2766 | 0.2918 | −0.0152 | −5.50 |
0.9149 | 0.8902 | 0.0247 | 2.70 | 0.0000 | 0.0001 | −0.0001 | 0.00 | 0.2819 | 0.2959 | −0.0140 | −4.96 |
0.9415 | 0.8665 | 0.0750 | 7.96 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.2500 | 0.2523 | −0.0023 | −0.92 |
1.0000 | 0.9618 | 0.0382 | 3.82 | 0.3936 | 0.3918 | 0.0018 | 0.46 | 0.2394 | 0.1948 | 0.0446 | 18.62 |
0.9043 | 0.9132 | −0.0089 | −0.99 | 0.5638 | 0.5773 | −0.0135 | −2.39 | 0.7500 | 0.5859 | 0.1641 | 21.88 |
0.9202 | 0.9203 | −0.0001 | −0.01 | 0.4574 | 0.4718 | −0.0144 | −3.14 | 0.0000 | 0.0000 | 0.0000 | 0.00 |
0.9894 | 0.9836 | 0.0058 | 0.58 | 0.3883 | 0.4233 | −0.0350 | −9.01 | 0.0000 | 0.0000 | 0.0000 | 0.00 |
0.9202 | 0.9451 | −0.0249 | −2.70 | 0.5798 | 0.5981 | −0.0183 | −3.16 | 0.4628 | 0.5788 | −0.1160 | −25.07 |
0.5745 | 0.6310 | −0.0565 | −9.84 | 0.4947 | 0.5047 | −0.0100 | −2.03 | 0.6064 | 0.5762 | 0.0302 | 4.98 |
0.0000 | 0.0031 | −0.0031 | 0.00 | 0.4894 | 0.5095 | −0.0201 | −4.12 | 0.4521 | 0.4789 | −0.0268 | −5.92 |
0.0000 | 0.0001 | −0.0001 | 0.00 | 0.5851 | 0.5160 | 0.0691 | 11.81 | 0.4096 | 0.4306 | −0.0210 | −5.13 |
0.7021 | 0.6346 | 0.0675 | 9.62 | 0.4894 | 0.5183 | −0.0289 | −5.91 | 0.5319 | 0.5055 | 0.0264 | 4.97 |
0.6649 | 0.7360 | −0.0711 | −10.69 | 0.3723 | 0.2076 | 0.1647 | 44.24 | 0.4362 | 0.3656 | 0.0706 | 16.18 |
0.7394 | 0.7339 | 0.0055 | 0.74 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.4574 | 0.5408 | −0.0834 | −18.22 |
0.7021 | 0.6937 | 0.0084 | 1.20 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.4681 | 0.4358 | 0.0323 | 6.90 |
0.7766 | 0.7827 | −0.0061 | −0.79 | 0.1330 | 0.2095 | −0.0765 | −57.54 | 0.4362 | 0.4738 | −0.0376 | −8.63 |
0.7606 | 0.7812 | −0.0206 | −2.70 | 0.2287 | 0.3918 | −0.1631 | −71.30 | 0.9894 | 0.8923 | 0.0971 | 9.81 |
0.7713 | 0.7503 | 0.0210 | 2.72 | 0.1330 | 0.1612 | −0.0282 | −21.22 | 0.0000 | 0.0000 | 0.0000 | 0.00 |
0.8457 | 0.8489 | −0.0032 | −0.37 | 0.1596 | 0.2279 | −0.0683 | −42.82 | 0.0000 | 0.0000 | 0.0000 | 0.00 |
0.7713 | 0.7879 | −0.0166 | −2.16 | 0.6596 | 0.4656 | 0.1940 | 29.41 | 0.8298 | 0.8895 | −0.0597 | −7.20 |
0.5000 | 0.4684 | 0.0316 | 6.32 | 0.4628 | 0.1922 | 0.2706 | 58.47 | 0.9149 | 0.8412 | 0.0737 | 8.05 |
0.0000 | 0.0008 | −0.0008 | 0.00 | 0.2128 | 0.2174 | −0.0046 | −2.18 | 0.7128 | 0.7995 | −0.0867 | −12.17 |
0.0000 | 0.0000 | 0.0000 | 0.00 | 0.3191 | 0.3698 | −0.0507 | −15.87 | 0.6702 | 0.8196 | −0.1494 | −22.29 |
0.4362 | 0.4700 | −0.0338 | −7.76 | 0.1755 | 0.1789 | −0.0034 | −1.92 | 0.7766 | 0.811 | −0.0344 | −4.43 |
0.4947 | 0.4444 | 0.0503 | 10.16 | 0.5798 | 0.4225 | 0.1573 | 27.13 | 0.8085 | 0.7244 | 0.0841 | 10.40 |
0.5904 | 0.5657 | 0.0247 | 4.19 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.7021 | 0.7913 | −0.0892 | −12.70 |
0.5266 | 0.4958 | 0.0308 | 5.85 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.6862 | 0.6637 | 0.0225 | 3.27 |
0.4574 | 0.4646 | −0.0072 | −1.56 | 0.3085 | 0.4212 | −0.1127 | −36.53 | 0.7074 | 0.7109 | −0.0035 | −0.49 |
Statistical Performance Measurement Method | Model Results with 12 Hidden Neurons, Used Logsig and Tansig Functions | Model Results with 22 Hidden Neurons, Used Logsig and Purelin Functions | Model Results with 22 Hidden Neurons, Used Logsig and Tansig Functions | Model Results with 25 Hidden Neurons, Used Logsig and Purelin Functions |
---|---|---|---|---|
R2 | 0.926119272 | 0.921556157 | 0.952682700 | 0.915302136 |
RMSE | 0.080575228 | 0.083026244 | 0.064483104 | 0.086272461 |
cov | 16.99651368 | 17.51353019 | 13.60204609 | 18.19828632 |
MAPE | 0.125829036 | 0.136487062 | 0.090484174 | 0.139312023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasci, M.; Duzkaya, H. Estimation of Working Error of Electricity Meter Using Artificial Neural Network (ANN). Energies 2025, 18, 1265. https://doi.org/10.3390/en18051265
Tasci M, Duzkaya H. Estimation of Working Error of Electricity Meter Using Artificial Neural Network (ANN). Energies. 2025; 18(5):1265. https://doi.org/10.3390/en18051265
Chicago/Turabian StyleTasci, Murat, and Hidir Duzkaya. 2025. "Estimation of Working Error of Electricity Meter Using Artificial Neural Network (ANN)" Energies 18, no. 5: 1265. https://doi.org/10.3390/en18051265
APA StyleTasci, M., & Duzkaya, H. (2025). Estimation of Working Error of Electricity Meter Using Artificial Neural Network (ANN). Energies, 18(5), 1265. https://doi.org/10.3390/en18051265