A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations
Abstract
:1. Introduction
2. Literature Review
3. Electricity Markets and Ancillary Services
3.1. Wholesale Electricity Markets
3.2. Ancillary Services and Reserve Requirements
- FCR: Activated automatically within seconds to stabilize frequency deviations;
- aFRR: Restore frequency to nominal levels and release FCR for subsequent use;
- mFRR: Address longer-term imbalances through manual activation.
3.3. Iberian Reserve Markets
Static Reserve Procurement
- R: secondary control reserve;
- a and b: empiric coefficients, a = 10 MW and b = 150 MW;
- : maximum anticipated consumer load.
4. Dynamic Procurement of Secondary Power
4.1. Methodology Implementation
- Alquimodelia (https://github.com/alquimodelia, accessed on 9 March 2025): A Keras-based model builder package to create the necessary models with each different arch and variable;
- Alquitable (https://github.com/alquimodelia/alquitable, accessed on 9 March 2025): A Keras-based workshop package to create custom callbacks, loss functions, data generators;
- MuadDib (https://github.com/alquimodelia/MuadDib, accessed on 9 March 2025): A machine learning framework that uses Alquimodelia to test and choose the best models on given conditions automatically.
4.2. Metrics
- Model metrics, where we just use the usual regression metrics, adding a metric for how much the model missed in allocating for the validation period;
- Comparative metrics, where we assert percentage gains over the current allocation method.
4.2.1. Model Metrics
4.2.2. Model/Benchmark Comparative Metrics
5. Case Study
5.1. Data Sources and Preprocessing
5.1.1. Training Data
5.1.2. Validation Data
5.2. Results
5.3. Discussion and Shortcomings
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
aFRR | automatic Frequency Restoration Reserve |
AllocM | missing allocation |
AllocS | surplus allocation |
CNN | convolutional neural network |
DA | Day-Ahead |
DAM | day-ahead markets |
ENTSO-E | European Network of Transmission System Operators for Electricity |
ESIOS | Sistema de Información del Operador del Sistema |
FCNN | Fully Connected Neural Network |
FCR | Frequency Containment Reserve |
GELU | Gaussian Error Linear Unit |
IDM | intraday markets |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
mFRR | manual Frequency Restoration Reserve |
MIBEL | Iberian Market of Electricity |
MSE | Mean Squared Error |
MSLE | Mean Squared Logarithmic Error |
OMIE | Operador del Mercado Ibérico de Energía—Pólo Espanhol, S.A |
OMIP | Operador do Mercado Ibérico de Energia Português |
PPG | Performance Percentage Gain |
PPGM | Performance Percentage Gain Missing |
PPGS | Performance Percentage Gain Surplus |
PV | solar photovoltaic |
REE | Red Eléctrica de España |
RMSE | Root Mean Square Error |
ReLU | Rectified Linear Unit |
REN | Redes Energéticas Nacionais |
SAE | Sum of Absolute Errors |
SDG | Sustainable Development Goals |
TSO | Transmission System Operators |
vRES | variable Renewable Energy Systems |
Indices | |
i | hour |
n | number of samples |
Parameters | |
hourly ratio | |
empiric coefficients | |
Variables | |
maximum consumption | |
secondary energy forecast | |
R | secondary control reserve |
secondary energy observed |
References
- Maris, G.; Flouros, F. The Green Deal, National Energy and Climate Plans in Europe: Member States’ Compliance and Strategies. Adm. Sci. 2021, 11, 75. [Google Scholar] [CrossRef]
- Franc-Dabrowska, J.; Madra-Sawicka, M.; Milewska, A. Energy Sector Risk and Cost of Capital Assessment—Companies and Investors Perspective. Energies 2021, 14, 1613. [Google Scholar] [CrossRef]
- Perissi, I.; Jones, A. Investigating European Union Decarbonization Strategies: Evaluating the Pathway to Carbon Neutrality by 2050. Sustainability 2022, 14, 4728. [Google Scholar] [CrossRef]
- Dobrowolski, Z.; Drozdowski, G.; Panait, M.; Apostu, S.A. The Weighted Average Cost of Capital and Its Universality in Crisis Times: Evidence from the Energy Sector. Energies 2022, 15, 6655. [Google Scholar] [CrossRef]
- Ocker, F.; Ehrhart, K.M. The “German Paradox” in the balancing power markets. Renew. Sustain. Energy Rev. 2017, 67, 892–898. [Google Scholar] [CrossRef]
- Frade, P.M.; Pereira, J.P.; Santana, J.J.; Catalão, J.P. Wind balancing costs in a power system with high wind penetration—Evidence from Portugal. Energy Policy 2019, 132, 702–713. [Google Scholar] [CrossRef]
- Prema, V.; Bhaskar, M.S.; Almakhles, D.; Gowtham, N.; Rao, K.U. Critical Review of Data, Models and Performance Metrics for Wind and Solar Power Forecast. IEEE Access 2022, 10, 667–688. [Google Scholar] [CrossRef]
- Shahidehpour, M.; Yamin, H.; Li, Z. Market Operations in Electric Power Systems. In Market Operations in Electric Power Systems; Wiley-IEEE Press: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Strbac, D.S.K.G. Fundamentals of Power System Economics, 2nd ed.; John Wiley & Sons: Chichester, UK, 2018. [Google Scholar]
- Algarvio, H.; Lopes, F.; Couto, A.; Estanqueiro, A.; Santana, J. Variable Renewable Energy and Market Design: New Products and a Real-World Study. Energies 2019, 12, 4576. [Google Scholar] [CrossRef]
- Skytte, K.; Bobo, L. Increasing the value of wind: From passive to active actors in multiple power markets. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e328. [Google Scholar] [CrossRef]
- Miettinen, J.; Holttinen, H. Impacts of wind power forecast errors on the real-time balancing need: A Nordic case study. IET Renew. Power Gener. 2019, 13, 227–233. [Google Scholar] [CrossRef]
- Martín-Martínez, S.; Lorenzo-Bonache, A.; Honrubia-Escribano, A.; Cañas-Carretón, M.; Gómez-Lázaro, E. Contribution of wind energy to balancing markets: The case of Spain. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e300. [Google Scholar] [CrossRef]
- Algarvio, H.; Lopes, F.; Couto, A.; Estanqueiro, A. Participation of wind power producers in day-ahead and balancing markets: An overview and a simulation-based study. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e343. [Google Scholar] [CrossRef]
- Algarvio, H.; Couto, A.; Estanqueiro, A. RES.Trade: An Open-Access Simulator to Assess the Impact of Different Designs on Balancing Electricity Markets. Energies 2024, 17, 6212. [Google Scholar] [CrossRef]
- Frade, P.M.; Osório, G.J.; Santana, J.J.; Catalão, J.P. Regional coordination in ancillary services: An innovative study for secondary control in the Iberian electrical system. Int. J. Electr. Power Energy Syst. 2019, 109, 513–525. [Google Scholar] [CrossRef]
- Knorr, K.; Dreher, A.; Böttger, D. Common dimensioning of frequency restoration reserve capacities for European load-frequency control blocks: An advanced dynamic probabilistic approach. Electr. Power Syst. Res. 2019, 170, 358–363. [Google Scholar] [CrossRef]
- Vos, K.D.; Stevens, N.; Devolder, O.; Papavasiliou, A.; Hebb, B.; Matthys-Donnadieu, J. Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium. Energy Policy 2019, 124, 272–285. [Google Scholar] [CrossRef]
- Kruse, J.; Schäfer, B.; Witthaut, D. Secondary control activation analysed and predicted with explainable AI. Electr. Power Syst. Res. 2022, 212, 108489. [Google Scholar] [CrossRef]
- Algarvio, H.; Couto, A.; Estanqueiro, A. A Methodology for Dynamic Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations. In Proceedings of the 2024 20th International Conference on the European Energy Market (EEM), Istanbul, Turkey, 10–12 June 2024. [Google Scholar] [CrossRef]
- Handbook, U.O. Policy 1: Load-frequency control and performance. Final. Policy 2009, 2, P1-1–P1-32. [Google Scholar]
- Cardo-Miota, J.; Pérez, E.; Beltran, H. Deep learning-based forecasting of the automatic Frequency Reserve Restoration band price in the Iberian electricity market. Sustain. Energy Grids Netw. 2023, 35, 101110. [Google Scholar] [CrossRef]
- Grubb, M.; Drummond, P.; Maximov, S. Separating Electricity from Gas Prices Through Green Power Pools: Design Options and Evolution; Institute for New Economic Thinking Working Paper Series; UCL Institute for Sustainable Resources: London, UK, 2022; Volume 193. [Google Scholar]
- Frade, P.M.; Shafie-khah, M.; Santana, J.J.; Catalão, J.P. Cooperation in ancillary services: Portuguese strategic perspective on replacement reserves. Energy Strategy Rev. 2019, 23, 142–151. [Google Scholar] [CrossRef]
- Papavasiliou, A. An overview of probabilistic dimensioning of frequency restoration reserves with a focus on the greek electricity market. Energies 2021, 14, 5719. [Google Scholar] [CrossRef]
- Khodadadi, A.; Herre, L.; Shinde, P.; Eriksson, R.; Soder, L.; Amelin, M. Nordic Balancing Markets: Overview of Market Rules. In Proceedings of the 2020 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16–18 September 2020. [Google Scholar] [CrossRef]
- Couto, A.; Estanqueiro, A. Assessment of wind and solar PV local complementarity for the hybridization of the wind power plants installed in Portugal. J. Clean. Prod. 2021, 319, 128728. [Google Scholar] [CrossRef]
- Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15, 7087. [Google Scholar] [CrossRef]
- Hunt, S.; Shuttleworth, G. Competition and Choice in Electricity; John Wiley & Sons: Chichester, UK, 1998. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11966–11976. [Google Scholar] [CrossRef]
- Costa, R.L.d.C. Convolutional-LSTM networks and generalization in forecasting of household photovoltaic generation. Eng. Appl. Artif. Intell. 2022, 116, 105458. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5999–6009. [Google Scholar]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Buck, S.F. A Method of Estimation of Missing Values in Multivariate Data Suitable for use with an Electronic Computer. J. R. Stat. Soc. Ser. B (Methodol.) 1960, 22, 302–306. [Google Scholar] [CrossRef]
Variables | Options |
---|---|
Architecture | CNN |
LSTM | |
FCNN | |
UNET | |
Transformer | |
Advance loss function | Mirror weights |
N/A | |
Loss function | MAE |
MSE | |
MSLE | |
Activation | Linear |
ReLU | |
GELU | |
Weights | Temporal |
Distance to mean | |
No weights |
ESIOS Code | ESIOS Name | Variable | Units |
---|---|---|---|
632 | Secondary Reserve Allocation AUpward | Up Allocated | MW |
633 | Secondary Reserve Allocation ADownward | Down Allocated | MW |
680 | Upward Used Secondary Reserve Energy | Up Used | MWh |
681 | Downward Used Secondary Reserve Energy | Down Used | MWh |
1777 | Wind D+1 Daily Forecast | DA Wind | MWh |
1779 | Photovoltaic D+1 Daily Forecast | DA PV | MWh |
1775 | Demand D+1 Daily Forecast | DA Demand | MWh |
10258 | Total Base Daily Operating Schedule PBF Generation | DA Schedule Generation | MWh |
14 | Base Daily Operating Schedule PBF Solar PV | DA Schedule PV Generation | MWh |
10073 | Base Daily Operating Schedule PBF Wind | DA Schedule Wind Generation | MWh |
10186 | Base Daily Operating Schedule PBF Total Balance Interconnections | DA Scheduled Tie Lines | MWh |
Hour | 1 | 2 | 24 | 23 | 25 | 168 | 144 | 192 | 48 |
---|---|---|---|---|---|---|---|---|---|
Up | 0.44 | 0.24 | 0.22 | 0.19 | 0.19 | 0.17 | 0.16 | 0.16 | 0.16 |
Down | 0.43 | 0.22 | 0.25 | 0.20 | 0.19 | 0.21 | 0.19 | 0.20 | 0.19 |
Mean | Standard Deviation | Min | Max | |
---|---|---|---|---|
Down Used | 168.18 | 199.23 | 0.00 | 1721.40 |
Up Allocated | 665.98 | 150.88 | 399.00 | 958.00 |
Down Allocated | 554.50 | 131.06 | 312.00 | 956.00 |
Up Used | 160.82 | 193.09 | 0.00 | 1654.80 |
DA Wind | 5881.14 | 3480.52 | 66.13 | 20,879.30 |
DA PV | 1676.31 | 2745.51 | 0.00 | 14,925.30 |
DA Demand | 27,933.38 | 4488.71 | 14,170.00 | 41,799.66 |
DA Schedule Generation | 27,250.40 | 4608.74 | 13,470.50 | 42,707.60 |
DA Schedule PV Generation | 1737.79 | 2850.91 | 0.00 | 16,358.90 |
DA Schedule Wind Generation | 6588.28 | 3637.80 | 308.60 | 21,619.60 |
DA Scheduled Tie Lines | 266.26 | 2169.01 | −7817.00 | 6858.50 |
Mean | Standard Deviation | Min | Max | |
---|---|---|---|---|
Down Used | 176.54 | 199.61 | 0.00 | 2012.00 |
Up Used | 273.29 | 238.75 | 0.00 | 1852.80 |
Up Allocated | 921.49 | 191.72 | 719.00 | 1694.00 |
Down Allocated | 921.84 | 191.03 | 720.00 | 1708.00 |
DA Wind | 6882.86 | 3963.88 | 452.80 | 19,182.00 |
DA PV | 4922.12 | 6136.32 | 0.00 | 19,526.50 |
DA Demand | 26,430.59 | 4003.09 | 17,500.30 | 38,047.00 |
DA Schedule Generation | 27,790.16 | 5317.65 | 14,489.30 | 41,348.40 |
DA Schedule PV Generation | 5442.92 | 6571.48 | 1.30 | 21,273.90 |
DA Schedule Wind Generation | 7774.31 | 4066.82 | 545.00 | 21,195.10 |
DA Scheduled Tie Lines | −1130.23 | 2477.49 | −7814.20 | 5884.80 |
RMSE | SAE | AllocM | AllocS | |
---|---|---|---|---|
Up Allocation (MW) | 726.26 | 5,787,490.59 | 41,080.10 | 5,746,410.49 |
Down Allocation (MW) | 794.53 | 6,585,513.97 | 15,017.90 | 6,570,496.07 |
RMSE | SAE | AllocM | AllocS | ||
---|---|---|---|---|---|
Architecture | |||||
Up Allocation | StackedFCNN200 | 558.73 | 4.45 | 0.41 | 4.41 |
StackedCNN200 | 241.95 | 1.52 | 10.68 | 0.45 | |
UNET200 | 242.62 | 1.55 | 10.75 | 0.48 | |
VanillaCNN200 | 233.11 | 1.63 | 6.42 | 0.99 | |
Transformer | 267.64 | 8.28 | 6.37 | 7.65 | |
Down Allocation | StackedFCNN200 | 674.12 | 5.64 | 0.14 | 5.62 |
StackedCNN200 | 196.73 | 1.20 | 7.24 | 0.47 | |
UNET200 | 187.44 | 1.11 | 6.78 | 0.43 | |
VanillaCNN200 | 664.59 | 5.41 | 0.21 | 5.39 | |
Transformer | 351.15 | 10.69 | 4.59 | 10.23 |
PPG | PPG M | PPG S | PPG Positive | ||
---|---|---|---|---|---|
Architecture | % | % | % | % | |
Up Allocation | StackedFCNN200 | 22.67 | 1.02 | 22.83 | 22.67 |
StackedCNN200 | 73.69 | −2500.21 | 92.18 | 0.00 | |
UNET200 | 73.14 | −2516.72 | 91.74 | 0.00 | |
VanillaCNN200 | 71.72 | −1463.78 | 82.75 | 0.00 | |
Transformer | 52.27 | −317.32 | 55.55 | 0.00 | |
Down Allocation | StackedFCNN200 | 14.08 | 6.01 | 14.10 | 14.08 |
StackedCNN200 | 81.81 | −4721.00 | 92.84 | 0.00 | |
UNET200 | 83.09 | −4413.30 | 93.41 | 0.00 | |
VanillaCNN200 | 17.48 | −40.50 | 17.61 | 0.00 | |
Transformer | 5.63 | 2.18 | 5.15 | 5.63 |
Architecture | Advance Loss Function Ratio | Loss Function | Activation | Weights | |
---|---|---|---|---|---|
Up Allocation | StackedFCNN | 0.23 | MSE | ReLU | Mean |
Down Allocation | StackedFCNN | 0.002 | MSE | ReLU | Mean |
RMSE | SAE | AllocM | AllocS | |
---|---|---|---|---|
Up Allocation (MW) | 570.21 | 4,506,080.04 | 40,569.85 | 4,465,510.18 |
Down Allocation (MW) | 694.80 | 5,811,536.58 | 13,619.08 | 5,797,917.50 |
PPG | PPGM | PPGS | |
---|---|---|---|
Up Allocation (%) | 21.77 | 1.24 | 21.92 |
Down Allocation (%) | 11.39 | 9.31 | 11.39 |
Mean | Standard Deviation | Min | Max | |
---|---|---|---|---|
Down Allocation (MW) | (921.84) | (191.03) | (720.00) | (1708.00) |
836.85 | 182.04 | 247.82 | 1469.62 | |
Up Allocation (MW) | (921.49) | (191.72) | (719.00) | (1694.00) |
778.42 | 228.85 | −29.47 | 1458.01 | |
Hourly Capacity (MW) | (1843.32) | (382.35) | (1439.00) | (3399.00) |
1615.27 | 346.50 | 393.85 | 2594.85 | |
Extraordinary Down Energy (MWh) | (168.74) | (175.69) | (0.90) | (1214.00) |
149.66 | 179.96 | 2.66 | 1358.81 | |
Extraordinary Up Energy (MWh) | (179.39) | (163.94) | (1.00) | (1054.80) |
141.85 | 153.57 | 1.83 | 1420.22 |
% | |
---|---|
Down Allocation | −9.22 |
Up Allocation | −15.53 |
Hourly Capacity | −12.37 |
Extraordinary Down Energy | −11.31 |
Extraordinary Up Energy | −20.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passagem dos Santos, J.; Algarvio, H. A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations. Energies 2025, 18, 1467. https://doi.org/10.3390/en18061467
Passagem dos Santos J, Algarvio H. A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations. Energies. 2025; 18(6):1467. https://doi.org/10.3390/en18061467
Chicago/Turabian StylePassagem dos Santos, João, and Hugo Algarvio. 2025. "A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations" Energies 18, no. 6: 1467. https://doi.org/10.3390/en18061467
APA StylePassagem dos Santos, J., & Algarvio, H. (2025). A Machine Learning Model for Procurement of Secondary Reserve Capacity in Power Systems with Significant vRES Penetrations. Energies, 18(6), 1467. https://doi.org/10.3390/en18061467