A Review of Wind Power Prediction Methods Based on Multi-Time Scales
Abstract
:1. Introduction
2. Classification and Overview of Wind Power Prediction
3. Ultra-Short-Term Wind Power Prediction
3.1. Traditional Statistical Model of Ultra-Short-Term Wind Power Prediction
- Autoregressive integrated moving average (ARIMA) model
- Single exponential smoothing (SES) model
- Bayesian structural break model
- Markov chains.
3.2. Machine Learning-Based Model of Ultra-Short-Term Wind Power Prediction
- Gradient boosting machine (GBM)
- Support vector machine (SVM)
- Support vector regression (SVR)
- Extreme learning machine (ELM)
- Weighted random forest (WRF)
- Artificial neural network (ANN)
- Recurrent neural network (RNN)
- Long short-term memory (LSTM) networks
- Gated recurrent unit (GRU)
- Temporal convolutional network (TCN)
- Convolutional neural network (CNN).
3.3. Hybrid Prediction Model of Ultra-Short-Term Wind Power Prediction
3.3.1. Weighted Combination Prediction Method
3.3.2. Fusion Combination Prediction Method
- Hybrid method including input optimization
- Hybrid method including model optimization
- Hybrid method including error processing techniques
3.4. Other Features of Ultra-Short-Term Wind Power Prediction
4. Short-Term Wind Power Prediction
4.1. Traditional Statistical Model of Short-Term Wind Power Prediction
4.2. Machine Learning-Based Model of Short-Term Wind Power Prediction
- Light gradient boosting machine (LightGBM)
- Support vector machine (SVM)
- Support vector regression (SVR)
- Extreme learning machine (ELM)
- Artificial neural network (ANN)
- Backpropagation (BP)
- Recurrent neural network (RNN)
- Long short-term memory (LSTM) network
- Gated recurrent unit (GRU)
- Temporal convolutional network (TCN)
- Convolutional neural network (CNN)
- Hidden autoregression (HAR)
- Gaussian process (GP)
- K-nearest neighbors (KNN) model
4.3. Hybrid Prediction Model of Short-Term Wind Power Prediction
4.3.1. Weighted Combination Prediction Method
4.3.2. Fusion Forecasting Method
- Hybrid method including input optimization
- Hybrid method including model optimization
- Hybrid method including error processing techniques
4.4. Other Features of Short-Term Wind Power Prediction
5. Mid-Long-Term Wind Power Prediction
5.1. Machine Learning-Based Model of Mid-Long-Term Wind Power Prediction
5.2. Hybrid Prediction Model of Mid-Long-Term Wind Power Prediction
5.2.1. Weighted Combination Prediction Method
5.2.2. Fusion Combination Prediction Method
- Hybrid method including input optimization
- Hybrid method including model optimization
- Hybrid method including error processing techniques
5.3. Other Features of Mid-Long-Term Wind Power Prediction
6. Wind Ramp Event Prediction Methods
7. Case Study
7.1. Result of Ultra-Short-Term Wind Power Prediction Considering Wind Power Information
7.2. Result of Ultra-Short-Term Wind Power Prediction Considering Wind Power Information and NWP Data
8. Discussion and Prospects
8.1. Novelty and Key Contributions
8.2. Future Research and Prospectss
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- China Electricity Council Releases “Analysis and Forecast Report on the National Electricity Supply and Demand Situation in the First Half of 2024”. Available online: https://www.cec.org.cn/websitefzy/detail/index.html?3-335294 (accessed on 8 February 2025).
- National Energy Administration Releases National Electric Power Industry Statistics for January–September 2024. Available online: https://www.gov.cn/lianbo/bumen/202410/content_6981841.htm (accessed on 8 February 2025).
- Vargas, S.A.; Telles Esteves, G.R.; Maçaira, P.M.; Bastos, B.Q.; Cyrino Oliveira, F.L.; Souza, R.C. Wind power generation: A review and a research agenda. J. Clean. Prod. 2019, 218, 850–870. [Google Scholar] [CrossRef]
- Fang, J.; Liu, C. Artificial intelligence techniques for stability analysis in modern power systems. iEnergy 2024, 3, 194–215. [Google Scholar] [CrossRef]
- Qin, B.; Li, H.; Wang, Z.; Jiang, Y.; Lu, D.; Du, X.; Qian, Q. New framework of low-carbon city development of China: Underground space based integrated energy systems. Undergr. Space 2024, 14, 300–318. [Google Scholar] [CrossRef]
- Su, T.; Zhao, J.; Gomez-Exposito, A.; Chen, Y.; Terzija, V.; Gentle, J.P. Grid-enhancing technologies for clean energy systems. Nat. Rev. Clean. Technol. 2025, 1, 16–31. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Liao, Y.; Li, H.; Ding, T.; Wang, Z.; Li, F.; Liu, D. Challenges and opportunities for long-distance renewable energy transmission in China. Sustain. Energy Technol. Assess. 2024, 69, 103925. [Google Scholar] [CrossRef]
- Cai, Y.; Bréon, F. Wind power potential and intermittency issues in the context of climate change. Energy Convers. Manag. 2021, 240, 114276. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Li, F.; Liu, D.; Liao, Y.; Li, H. Towards zero carbon hydrogen: Co-production of photovoltaic electrolysis and natural gas reforming with CCS. Int. J. Hydrogen Energy 2024, 78, 604–609. [Google Scholar] [CrossRef]
- Islam, M.M.; Yu, T.; Giannoccaro, G.; Mi, Y.; la Scala, M.; Nasab, M.R.; Wang, J. Improving Reliability and Stability of the Power Systems: A Comprehensive Review on the Role of Energy Storage Systems to Enhance Flexibility. IEEE Access 2024, 12, 152738–152765. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Li, W.; Li, F.; Wang, W.; Ding, T. Aperiodic Coordination Scheduling of Multiple PPLs in Shipboard Integrated Power Systems. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14844–14854. [Google Scholar] [CrossRef]
- Li, X.; Tian, Z.; Wu, X.; Feng, W.; Niu, J. Optimal planning for hybrid renewable energy systems under limited information based on uncertainty quantification. Renew. Energy 2024, 237, 121866. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Liu, Z.; Li, F.; Wu, X.; Cao, B.; Zhang, C.; Liu, D. Long-term scenario generation of renewable energy generation using attention-based conditional generative adversarial networks. Energy Convers. Econ. 2024, 5, 15–27. [Google Scholar] [CrossRef]
- Li, H.; Qin, B.; Wang, S.; Ding, T.; Liu, J.; Wang, H. Aggregate power flexibility of multi-energy systems supported by dynamic networks. Appl. Energy 2025, 377, 124565. [Google Scholar] [CrossRef]
- Jung, C. Recent Development and Future Perspective of Wind Power Generation. Energies 2024, 17, 5391. [Google Scholar] [CrossRef]
- Li, H.; Qin, B.; Wang, S.; Ding, T.; Wang, H. Data-driven two-stage scheduling of multi-energy systems for operational flexibility enhancement. Int. J. Electr. Power Energy Syst. 2024, 162, 110230. [Google Scholar] [CrossRef]
- Yu, D.; Gao, S.; Han, H.; Zhao, X.; Wu, C.; Liu, Y.; Song, T.E. Intraday two-stage hierarchical optimal scheduling model for multiarea AC/DC systems with wind power integration. Appl. Energy 2024, 364, 123079. [Google Scholar] [CrossRef]
- Qin, B.; Wang, H.; Liao, Y.; Liu, D.; Wang, Z.; Li, F. Liquid hydrogen superconducting transmission based super energy pipeline for Pacific Rim in the context of global energy sustainable development. Int. J. Hydrogen Energy 2024, 56, 1391–1396. [Google Scholar] [CrossRef]
- Leon, J.I.; Dominguez, E.; Wu, L.; Marquez, A.; Reyes, M.; Liu, J. Hybrid Energy Storage Systems: Concepts, Advantages, and Applications. IEEE Ind. Electron. Mag. 2021, 15, 74–88. [Google Scholar] [CrossRef]
- Wang, H.; Qin, B.; Hong, S.; Cai, Q.; Li, F.; Ding, T.; Li, H. Optimal planning of hybrid hydrogen and battery energy storage for resilience enhancement using bi-layer decomposition algorithm. J. Energy Storage 2025, 110, 115367. [Google Scholar] [CrossRef]
- Wu, N.; Wang, Z.; Li, X.; Lei, L.; Qiao, Y.; Linghu, J.; Huang, J. Research on real-time coordinated optimization scheduling control strategy with supply-side flexibility in multi-microgrid energy systems. Renew. Energy 2025, 238, 121976. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, B.; Gao, X.; Ding, T.; Zhang, Y.; Wang, H. SE-CNN based emergency control coordination strategy against voltage instability in multi-infeed hybrid AC/DC systems. Int. J. Electr. Power Energy Syst. 2024, 160, 110082. [Google Scholar] [CrossRef]
- Hanifi, S.; Liu, X.; Lin, Z.; Lotfian, S. A Critical Review of Wind Power Forecasting Methods—Past, Present and Future. Energies 2020, 13, 3764. [Google Scholar] [CrossRef]
- Colak, I.; Sagiroglu, S.; Yesilbudak, M. Data mining and wind power prediction: A literature review. Renew. Energy 2012, 46, 241–247. [Google Scholar] [CrossRef]
- Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362–371. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Hong, C.-M.; Tu, C.-S.; Lin, W.-M.; Chen, C.-H. A Review of Modern Wind Power Generation Forecasting Technologies. Sustainability 2023, 15, 10757. [Google Scholar] [CrossRef]
- Kusiak, A.; Zhang, Z.; Verma, A. Prediction, operations, and condition monitoring in wind energy. Energy 2013, 60, 1–12. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Liu, F.; Hou, R. Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renew. Sustain. Energy Rev. 2016, 60, 960–981. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Valdivia-Bautista, S.M.; Domínguez-Navarro, J.A.; Pérez-Cisneros, M.; Vega-Gómez, C.J.; Castillo-Téllez, B. Artificial Intelligence in Wind Speed Forecasting: A Review. Energies 2023, 16, 2457. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, G.; Yang, Z.; Guo, Y.; Li, K.; Xue, Y. A comprehensive review on deep learning approaches in wind forecasting applications. CAAI Trans. Intell. 2021, 7, 129–143. [Google Scholar] [CrossRef]
- Santhosh, M.; Venkaiah, C.; Kumar, D.M.V. Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: A review. Eng. Rep. 2020, 2, e12178. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Yee, P.L.; Petkovic, D.; Zamani, M.; Ch, S. Predicting the wind power density based upon extreme learning machine. Energy 2015, 86, 232–239. [Google Scholar] [CrossRef]
- Jabr, R.A. Adjustable robust OPF with renewable energy sources. IEEE Trans. Power Syst. 2013, 28, 4742–4751. [Google Scholar] [CrossRef]
- Kristoffersen, J.R.; Christiansen, P. Horns rev offshore windfarm: Its main controller and remote control system. Wind Eng. 2003, 27, 351–359. [Google Scholar] [CrossRef]
- Bessa, R.J.; Matos, M.A.; Costa, I.C.; Bremermann, L.; Franchin, I.G.; Pestana, R.; Machado, N.; Waldl, H.P.; Wichmann, C. Reserve setting and steady-state security assessment using wind power uncertainty forecast: A case study. IEEE Trans. Sustain. Energy 2012, 3, 827–836. [Google Scholar] [CrossRef]
- Pinson, P.; Chevallier, C.; Kariniotakis, G.N. Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Trans. Power Syst. 2007, 22, 1148–1156. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Yan, J.; Han, S.; Li, L.; Long, Q. Improved deep mixture density network for regional wind power probabilistic forecasting. IEEE Trans. Power Syst. 2020, 35, 2549–2560. [Google Scholar] [CrossRef]
- Gilbert, C.; Browell, J.; Mcmillan, D. Leveraging turbine-level data for improved probabilistic wind power forecasting. IEEE Trans. Sustain. Energy 2020, 11, 1152–1160. [Google Scholar] [CrossRef]
- Khodayar, M.; Wang, J. Spatio-temporal graph deep neural network for short-term wind speed forecasting. IEEE Trans. Sustain. Energy 2019, 10, 670–681. [Google Scholar] [CrossRef]
- Andrade, J.R.; Bessa, R.J. Improving renewable energy forecasting with a grid of numerical weather predictions. IEEE Trans. Sustain. Energy 2017, 8, 1571–1580. [Google Scholar] [CrossRef]
- Men, Z.; Yee, E.; Lien, F.S.; Wen, D.; Chen, Y. Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203–211. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, L.; Infield, D.; Han, S. Short-term wind power forecasting based on clustering pre-calculated CFD method. Energies 2018, 11, 854. [Google Scholar] [CrossRef]
- Alexiadis, M.C.; Dikopoulos, P.S.; Sahsamanoglou, H.S.; Manousaridis, I.M. Short term forecasting of wind speed and related electrical power. Sol. Energy 1998, 63, 61–68. [Google Scholar] [CrossRef]
- Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [Google Scholar] [CrossRef]
- Croonenbroeck, C.; Dahl, C.M. Accurate medium-term wind power forecasting in a censored classification framework. Energy 2014, 73, 221–232. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, S.; Xie, Z.; Mi, J.; Wan, J. Noise model based ν-support vector regression with its application to short-term wind speed forecasting. Neural Netw. 2014, 57, 1–11. [Google Scholar] [CrossRef]
- Wu, W.; Peng, M. A data mining approach combining k-means clustering with bagging neural network for short-term wind power forecasting. IEEE Internet Things J. 2017, 4, 979–986. [Google Scholar] [CrossRef]
- Zheng, D.; Eseye, A.T.; Zhang, J.; Li, H. Short-term wind power forecasting using a double-stage hierarchical ANFIS approach for energy management in microgrids. Prot. Control Mod. Power Syst. 2017, 2, 136–145. [Google Scholar] [CrossRef]
- Feng, C.; Cui, M.; Hodge, B.M.; Zhang, J. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Appl. Energy 2017, 190, 1245–1257. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Wang, G.; Peng, J.; Jiang, H.; Liu, Y. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 2017, 188, 56–70. [Google Scholar] [CrossRef]
- Huang, C.-J.; Kuo, P.-H. A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems. Energies 2018, 11, 2777. [Google Scholar] [CrossRef]
- Yang, R.; Liu, H.; Nikitas, N.; Duan, Z.; Li, Y.; Li, Y. Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach. Energy 2022, 239, 122128. [Google Scholar] [CrossRef]
- Olaofe, Z.O. A 5-day wind speed, power forecasts using a layer recurrent neural network (LRNN). Sustain. Energy Technol. Assess. 2014, 6, 1–24. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, T.; Meng, H.; Zhang, J. Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation. Renew. Energy 2021, 164, 687–708. [Google Scholar] [CrossRef]
- Meng, A.; Chen, S.; Ou, Z.; Ding, W.; Zhou, H.; Fan, J.; Yin, H. A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization. Energy 2022, 238, 121795. [Google Scholar] [CrossRef]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Ma, K.; Zhang, Y. A self-adaptive hybrid approach for wind speed forecasting. Renew. Energy 2015, 78, 374–385. [Google Scholar] [CrossRef]
- Shi, J.; Guo, J.; Zheng, S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 2012, 16, 3471–3480. [Google Scholar] [CrossRef]
- Catalão, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F. Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal. IEEE Trans. Sustain. Energy 2011, 2, 50–59. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Sun, B.; Zhang, C.; Zhao, Y.; Zhu, T. A new hybrid prediction method of ultra-short-term wind power forecasting based on EEMD-PE and LSSVM optimized by the GSA. Energies 2018, 11, 697. [Google Scholar] [CrossRef]
- Vladislavleva, E.; Friedrich, T.; Neumann, F.; Wagner, M. Predicting the energy output of wind farms based on weather data: Important variables and their correlation. Renew. Energy 2013, 50, 236–243. [Google Scholar] [CrossRef]
- Gao, Y.; Qu, C.; Zhang, K. A hybrid method based on singular spectrum analysis, firefly algorithm, and BP neural network for short-term wind speed forecasting. Energies 2016, 9, 757. [Google Scholar] [CrossRef]
- Keerthisinghe, C.; Silva, A.R.; Tardáguila, P.; Horváth, G.; Deng, A.; Theis, T.N. Improved Short-Term Wind Power Forecasts: Low-Latency Feedback Error Correction Using Ramp Prediction and Data from Nearby Farms. IEEE Access 2023, 11, 128697–128705. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wei, X. A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China. Energy 2015, 91, 556–572. [Google Scholar] [CrossRef]
- Taloba, A.I.; Abd El-Aziz, R.M.; Alshanbari, H.M.; El-Bagoury, A.A.H. Estimation and prediction of hospitalization and medical care costs using regression in machine learning. J. Healthc. Eng. 2022, 2022, 7969220. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Ma, S.; Zhang, H.; Yang, G. Wind power prediction based on multi-class autoregressive moving average model with logistic function. J. Mod. Power Syst. Clean. Energy 2022, 10, 1184–1193. [Google Scholar] [CrossRef]
- Al-Duais, F.S.; Al-Sharpi, R.S. A unique Markov chain Monte Carlo method for forecasting wind power utilizing time series model. Alex. Eng. J. 2023, 74, 51–63. [Google Scholar] [CrossRef]
- Cadenas, E.; Jaramillo, O.A.; Rivera, W. Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method. Renew. Energy 2010, 35, 925–930. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, Z.; Kusiak, A. Very short-term wind speed forecasting with Bayesian structural break model. Renew. Energy 2013, 50, 637–647. [Google Scholar] [CrossRef]
- He, M.; Yang, L.; Zhang, J.; Vittal, V. A spatio-temporal analysis approach for short-term forecast of wind farm generation. IEEE Trans. Power Syst. 2014, 29, 1611–1622. [Google Scholar] [CrossRef]
- Song, Z.; Jiang, Y.; Zhang, Z. Short-term wind speed forecasting with Markov-switching model. Appl. Energy 2014, 130, 103–112. [Google Scholar] [CrossRef]
- Park, S.; Jung, S.; Lee, J.; Hur, J. A short-term forecasting of wind power outputs based on gradient boosting regression tree algorithms. Energies 2023, 16, 1132. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Zhong, W.Z.; Qu, Y.; Zhai, B.X.; Tang, Y.; Zhao, Y.N. A novel spatio-temporal wind power forecasting framework based on multi-output support vector machine and optimization strategy. J. Clean. Prod. 2020, 254, 119993. [Google Scholar] [CrossRef]
- Tu, C.S.; Hong, C.M.; Huang, H.S.; Chen, C.H. Short term wind power prediction based on data regression and enhanced support vector machine. Energies 2020, 13, 6319. [Google Scholar] [CrossRef]
- Yuan, D.; Li, M.; Li, H.; Lin, C.; Ji, B. Wind power prediction method: Support vector regression optimized by improved jellyfish search algorithm. Energies 2022, 15, 6404. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Shao, L.; Liu, H.; Ren, L.; Zhu, L. Short-term wind power prediction by an extreme learning machine based on an improved hunter–prey optimization algorithm. Sustainability 2023, 15, 991. [Google Scholar] [CrossRef]
- An, G.; Jiang, Z.; Chen, L.; Cao, X.; Li, Z.; Zhao, Y.; Sun, H. Ultra short-term wind power forecasting based on sparrow search algorithm optimization deep extreme learning machine. Sustainability 2021, 13, 10453. [Google Scholar] [CrossRef]
- Niu, D.; Pu, D.; Dai, S. Ultra-short-term wind-power forecasting based on the weighted random forest optimized by the niche immune lion algorithm. Energies 2018, 11, 1098. [Google Scholar] [CrossRef]
- Ramasamy, P.; Chandel, S.S.; Yadav, A.K. Wind speed prediction in the mountainous region of India using an artificial neural network model. Renew. Energy 2015, 80, 338–347. [Google Scholar] [CrossRef]
- Huang, B.; Liang, Y.; Qiu, X. Wind Power Forecasting Using Attention-Based Recurrent Neural Networks: A Comparative Study. IEEE Access 2021, 9, 40432–40444. [Google Scholar] [CrossRef]
- Huang, J.; Niu, G.; Guan, H.; Song, S. Ultra-Short-Term Wind Power Prediction Based on LSTM with Loss Shrinkage Adam. Energies 2023, 16, 3789. [Google Scholar] [CrossRef]
- Hossain, M.A.; Chakrabortty, R.K.; Elsawah, S.D.; Ryan, M.J. Very short-term forecasting of wind power generation using hybrid deep learning model. J. Clean. Prod. 2021, 296, 126564. [Google Scholar] [CrossRef]
- Wang, L.; He, Y. M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions. Appl. Energy 2022, 324, 119672. [Google Scholar] [CrossRef]
- Dong, X.; Sun, Y.; Li, Y.; Wang, X.; Pu, T. Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms. J. Mod. Power Syst. Clean. Energy 2022, 10, 388–398. [Google Scholar] [CrossRef]
- Bezerra, E.C.; Pinson, P.; Leao, R.P.S.; Braga, A.P.S. A Self-Adaptive Multikernel Machine Based on Recursive Least-Squares Applied to Very Short-Term Wind Power Forecasting. IEEE Access 2021, 9, 104761–104772. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, G. Short-term wind power forecasting approach based on Seq2Seq model using NWP data. Energy 2020, 213, 118371. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Z.Y.; Yu, X.N.; Li, B.J.; Yang, M. Research on Ultra-Short-Term Wind Power Prediction Considering Source Relevance. IEEE Access 2020, 8, 147703–147710. [Google Scholar] [CrossRef]
- Nascimento, E.G.S.; de Melo, T.A.; Moreira, D.M. A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy. Energy 2023, 278, 127678. [Google Scholar] [CrossRef]
- Yu, W.; Li, S.; Zhang, H.; Kang, Y.; Li, H.; Dong, H. Ultra-short-term wind-power forecasting based on an optimized CNN-BILSTM-attention model. iEnergy 2024, 3, 268–282. [Google Scholar] [CrossRef]
- Miao, C.; Li, H.; Wang, X.; Li, H. Ultra-Short-Term Prediction of Wind Power Based on Sample Similarity Analysis. IEEE Access 2021, 9, 72730–72742. [Google Scholar] [CrossRef]
- Yu, G.; Liu, C.; Tang, B.; Chen, R.; Lu, L.; Cui, C.; Hu, Y.; Shen, L.; Muyeen, S.M. Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution. Renew. Energy 2022, 199, 599–612. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, H.; Xu, Y.; Jiang, W. A Hybrid Framework for Short Term Multi-Step Wind Speed Forecasting Based on Variational Model Decomposition and Convolutional Neural Network. Energies 2018, 11, 2292. [Google Scholar] [CrossRef]
- Liu, F.; Li, R.; Dreglea, A. Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model. Energies 2019, 12, 3551. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, S.; Lai, C.S.; Zhao, Z.; Lai, L.L. Short-Term Wind Power Prediction Based on Data Decomposition and Combined Deep Neural Network. Energies 2022, 15, 6734. [Google Scholar] [CrossRef]
- Jalali, S.M.J.; Osorio, G.J.; Ahmadian, S.; Lotfi, M.; Campos, V.M.A.; Shafie-Khah, M.; Khosravi, A.; Catalao, J.P.S. New Hybrid Deep Neural Architectural Search-Based Ensemble Reinforcement Learning Strategy for Wind Power Forecasting. IEEE Trans. Ind. Appl. 2022, 58, 15–27. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, C. A hybrid model based on a modified optimization algorithm and an artificial intelligence algorithm for short-term wind speed multi-step ahead forecasting. Sustainability 2018, 10, 1443. [Google Scholar] [CrossRef]
- Hossain, M.A.; Gray, E.; Lu, J.; Islam, M.R.; Alam, M.S.; Chakrabortty, R.; Pota, H.R. Optimized Forecasting Model to Improve the Accuracy of Very Short-Term Wind Power Prediction. IEEE Trans. Ind. Inform. 2023, 19, 10145–10159. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Zhao, H. Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction. Energies 2023, 16, 4249. [Google Scholar] [CrossRef]
- Chen, D.; Xue, J. An overview on recent progresses of the operational numerical weather prediction models. Acta Meteorol. Sin. 2004, 62, 623–633. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P.; Yang, X. Research on wind power prediction modeling based on numerical weather prediction. Renew. Energy Resour. 2013, 31, 34–38. [Google Scholar]
- Torres, J.L.; García, A.; De Blas, M.; De Francisco, A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 2005, 79, 65–77. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009, 34, 1388–1393. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Z.; Liu, X. Short-term offshore wind power forecasting-A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Inte-grated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM). Renew. Energy 2022, 185, 611–628. [Google Scholar] [CrossRef]
- Louka, P.; Galanis, G.; Siebert, N.; Kariniotakis, G.; Katsafados, P.; Pytharoulis, I.; Kallos, G. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Ind. Aerodyn. 2008, 96, 2348–2362. [Google Scholar] [CrossRef]
- Liao, S.; Tian, X.; Liu, B.; Liu, T.; Su, H.; Zhou, B. Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis. Energies 2022, 15, 6287. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Ma, K. A hybrid technique for short term wind speed prediction. Energy 2015, 81, 563–574. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Jiang, P. The study and application of a novel hybrid forecasting model a case study of wind speed forecasting in China. Appl. Energy 2015, 143, 472–488. [Google Scholar] [CrossRef]
- Yu, L.; Meng, G.; Pau, G.; Wu, Y.; Tang, Y. Research on Hierarchical Control Strategy of ESS in Distribution Based on GA-SVR Wind Power Forecasting. Energies 2023, 16, 2079. [Google Scholar] [CrossRef]
- Abbasipour, M.; Igder, M.A.; Liang, X. A Novel Hybrid Neural Network-Based Day-Ahead Wind Speed Forecasting Technique. IEEE Access 2021, 9, 151142–151154. [Google Scholar] [CrossRef]
- Cadenas, E.; Rivera, W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renew. Energy 2009, 34, 274–278. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Jokar, M.A.; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers. Manag. 2016, 115, 17–25. [Google Scholar] [CrossRef]
- Medina, S.V.; Ajenjo, U.P. Performance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Output. J. Mod. Power Syst. Clean. Energy 2020, 8, 484–490. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Cao, Q.; Ewing, B.T.; Thompson, M.A. Forecasting wind speed with recurrent neural networks. Eur. J. Oper. Res. 2012, 221, 148–154. [Google Scholar] [CrossRef]
- Ko, M.S.; Lee, K.G.; Kim, J.K.; Hong, C.W.; Dong, Z.Y.; Hur, K. Deep Concatenated Residual Network with Bidirectional LSTM for One-Hour-Ahead Wind Power Forecasting. IEEE Trans. Sustain. Energy 2021, 12, 1321–1335. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Yang, J. Modified particle swarm optimization with attention-based lstm for wind power prediction. Energies 2022, 15, 4334. [Google Scholar] [CrossRef]
- Xiong, B.; Lou, L.; Meng, X.Y.; Wang, X.; Ma, H.; Wang, Z.G. Short-term wind power forecasting based on Attention Mechanism and Deep Learning. Electr. Power Syst. Res. 2022, 206, 107776. [Google Scholar] [CrossRef]
- Zhao, Z.; Yun, S.; Jia, L.; Guo, J.; Meng, Y.; He, N.; Li, X.; Shi, J.; Yang, L. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features. Eng. Appl. Artif. Intell. 2023, 121, 105982. [Google Scholar] [CrossRef]
- Blazakis, K.; Katsigiannis, Y.; Stavrakakis, G. One-Day-ahead solar irradiation and windspeed forecasting with advanced deep learning techniques. Energies 2022, 15, 4361. [Google Scholar] [CrossRef]
- Zheng, J.; Du, J.; Wang, B.; Klemeš, J.J.; Liao, Q.; Liang, Y. A hybrid framework for forecasting power generation of multiple renewable energy sources. Renew. Sustain. Energy Rev. 2023, 172, 113046. [Google Scholar] [CrossRef]
- Maatallah, O.A.; Achuthan, A.; Janoyan, K.; Marzocca, P. Recursive wind speed forecasting based on hammerstein auto-regressive model. Appl. Energy 2015, 145, 191–197. [Google Scholar] [CrossRef]
- Sidorov, D.; Tynda, A.; Muratov, V.; Yanitsky, E. Volterra Black-Box Models Identification Methods: Direct Collocation vs. Least Squares. Mathematics 2024, 12, 227. [Google Scholar] [CrossRef]
- Chen, N.; Qian, Z.; Nabney, I.T.; Meng, X. Wind power forecasts using Gaussian processes and numerical weather prediction. IEEE Trans. Power Syst. 2014, 29, 656–665. [Google Scholar] [CrossRef]
- Xue, H.; Jia, Y.; Wen, P.; Farkoush, S.G. Using of improved models of Gaussian Processes in order to Regional wind power forecasting. J. Clean. Prod. 2020, 262, 121391. [Google Scholar] [CrossRef]
- Mararakanye, N.; Dalton, A.; Bekker, B. Incorporating Spatial and Temporal Correlations to Improve Aggregation of Decentralized Day-Ahead Wind Power Forecasts. IEEE Access 2022, 10, 116182–116195. [Google Scholar] [CrossRef]
- Lee, D.; Baldick, R. Short-term wind power ensemble prediction based on Gaussian processes and neural networks. IEEE Trans. Smart Grid 2014, 5, 501–510. [Google Scholar] [CrossRef]
- Garg, S.; Krishnamurthi, R. A CNN encoder decoder LSTM model for sustainable wind power predictive analytics. Sustain. Comput. Inform. Syst. 2023, 38, 100869. [Google Scholar] [CrossRef]
- Khazaei, S.R.; Ehsan, M.D.; Soleymani, S.D.B.; Mohammadnezhad-Shourkaei, H.S. A high-accuracy hybrid method for short-term wind power forecasting. Energy 2022, 238, 122020. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, M. Short-Term Wind Power Forecasting Based on VMD Decomposition, ConvLSTM Networks and Error Analysis. IEEE Access 2020, 8, 134422–134434. [Google Scholar] [CrossRef]
- Chandran, V.; Patil, C.K.; Manoharan, A.M.; Ghosh, A.; Sumithra, M.G.; Karthick, A.; Rahim, R.; Arun, K. Wind power forecasting based on time series model using deep machine learning algorithms. Mater. Today Proc. 2021, 47, 115–126. [Google Scholar] [CrossRef]
- Wen, S.; Li, Y.; Su, Y. A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations. Renew. Energy 2022, 198, 155–168. [Google Scholar] [CrossRef]
- Ye, L.; Li, Y.; Pei, M.; Zhao, Y.; Li, Z.; Lu, P. A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching. Appl. Energy 2022, 327, 120131. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, G.P.; Hu, W.S. Priori-guided and data-driven hybrid model for wind power forecasting. ISA Trans. 2023, 134, 380–395. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yang, M.; Han, X.; Zhang, Y.; Ye, P. A Regional Wind Power Probabilistic Forecast Method Based on Deep Quantile Regression. IEEE Trans. Ind. Appl. 2021, 57, 4420–4427. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of two new ARIMA ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98, 415–424. [Google Scholar] [CrossRef]
- Shukur, O.B.; Lee, M.H. Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew. Energy 2015, 76, 637–647. [Google Scholar] [CrossRef]
- Osorio, G.J.; Matias, J.C.O.; Catalao, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [Google Scholar] [CrossRef]
- Han, Y.; Tong, X. Multi-step short-term wind power prediction based on three-level decomposition and improved grey wolf optimization. IEEE Access 2020, 8, 67124–67136. [Google Scholar] [CrossRef]
- Gu, B.; Hu, H.; Zhao, J.; Zhang, H.; Liu, X. Short-term wind power forecasting and uncertainty analysis based on FCM–WOA-ELM–GMM. Energy Rep. 2023, 9, 807–819. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Pastor-Sanchez, A.; Del Ser, J.; Prieto, L.; Geem, Z.W. A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction. Renew. Energy 2015, 75, 93–101. [Google Scholar] [CrossRef]
- Mughees, M.; Li, Y.; Li, Y. From C. elegans to liquid neural networks: A robust wind power multi-time scale prediction framework. In Proceedings of the IECON 2024—50th Annual Conference of the IEEE Industrial Electronics Society, Chicago, IL, USA, 3–6 November 2024. [Google Scholar] [CrossRef]
- Li, M.; Yang, M.; Yu, Y.; Lee, W.-J. A wind speed correction method based on modified hidden markov model for enhancing wind power forecast. IEEE Trans. Ind. Appl. 2022, 58, 656–666. [Google Scholar] [CrossRef]
- Hu, S.; Xiang, Y.; Huo, D.; Jawad, S.; Liu, J. An improved deep belief network based hybrid forecasting method for wind power. Energy 2021, 224, 120185. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Wang, J.; Zhou, Y.; Gan, W. A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data. Renew. Energy 2023, 211, 948–963. [Google Scholar] [CrossRef]
- Hu, S.; Xiang, Y.; Zhang, H.; Xie, S.; Li, J.; Gu, C.; Sun, W.; Liu, J. Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction. Appl. Energy 2021, 293, 116951. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Z.; He, Y.; Xiong, X.; Li, F. An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events. Energy 2023, 263, 125888. [Google Scholar] [CrossRef]
- Llido, A.M.; Ortiz-Garca, E.G.; Portilla-Figueras, A.; Prieto, L.; Paredes, D. Hybridizing the fifth generation mesoscale model with articial neural networks for short-term wind speed prediction. Renew. Energy 2009, 34, 1451–1457. [Google Scholar] [CrossRef]
- Ghadi, M.J.; Gilani, S.H.; Afrakhte, H.; Baghramian, A. A novel heuristic method for wind farm power prediction: A case study. Int. J. Electr. Power Energy Syst. 2014, 63, 962–970. [Google Scholar] [CrossRef]
- Yesilbudak, M.; Sagiroglu, S.; Colak, I. A new approach to very short term wind speed prediction using k-nearest neighbor classification. Energy Convers. Manag. 2013, 69, 77–86. [Google Scholar] [CrossRef]
- Ahmadi, A.; Nabipour, M.; Mohammadi-Ivatloo, B.; Amani, A.; Rho, S.; Piran, M.J. Long-Term Wind Power Forecasting Using Tree-Based Learning Algorithms. IEEE Access 2020, 8, 151511–151522. [Google Scholar] [CrossRef]
- Bouzgou, H.; Benoudjit, N. Multiple architecture system for wind speed prediction. Appl. Energy 2011, 88, 2463–2471. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Ficarella, A.; Tarantino, M. Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 2011, 36, 3968–3978. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Zeng, G. A hybrid forecasting approach applied to wind speed time series. Renew. Energy 2013, 60, 185–194. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37, 241–249. [Google Scholar] [CrossRef]
- Han, S.; Qiao, Y.; Yan, J.; Liu, Y.; Li, L.; Wang, Z. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. Appl. Energy 2019, 239, 181–191. [Google Scholar] [CrossRef]
- Skittides, C.; Fruh, W. Wind forecasting using principal component analysis. Renew. Energy 2014, 69, 365–374. [Google Scholar] [CrossRef]
- Hu, Q.; Su, P.; Yu, D.; Liu, J. Pattern-based wind speed prediction based on generalized principal component analysis. IEEE Trans. Sustain. Energy 2014, 5, 866–874. [Google Scholar] [CrossRef]
- Kusiak, A.; Zheng, H.; Song, Z. Models for monitoring wind farm power. Renew. Energy 2009, 34, 583–590. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Hou, J.; Wang, S.; Yao, H. Medium- and Long-Term Wind-Power Forecasts, Considering Regional Similarities. Atmosphere 2023, 14, 430. [Google Scholar] [CrossRef]
- Azad, H.B.; Mekhilef, S.; Ganapathy, V.G. Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans. Sustain. Energy 2014, 5, 546–553. [Google Scholar] [CrossRef]
- Akcay, H.; Filik, T. Short-term wind speed forecasting by spectral analysis from long-term observations with missing values. Appl. Energy 2017, 191, 653–662. [Google Scholar] [CrossRef]
- Guo, Z.; Chi, D.; Wu, J.; Zhang, W. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm. Energy Convers. Manag. 2014, 84, 140–151. [Google Scholar] [CrossRef]
- Togelou, A.; Sideratos, G.; Hatziargyriou, N. Wind power forecasting in the absence of historical data. IEEE Trans. Sustain. Energy 2012, 3, 416–421. [Google Scholar] [CrossRef]
- Sideratos, G.; Hatziargyriou, N. An advanced statistical method for wind power forecasting. IEEE Trans. Power Syst. 2007, 22, 258–265. [Google Scholar] [CrossRef]
- Sideratos, G.; Hatziargyriou, N. Probabilistic wind power forecasting using radial basis function neural networks. IEEE Trans. Power Syst. 2012, 27, 1788–1796. [Google Scholar] [CrossRef]
- Sideratos, G.; Hatziargyriou, N. Wind power forecasting focused on extreme power system events. IEEE Trans. Sustain. Energy 2012, 3, 445–454. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Lu, Y. A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system. Renew. Energy 2017, 103, 620–629. [Google Scholar] [CrossRef]
- Yi, P.; Bao, Z.; Huang, F.; Wang, J.; Peng, J.; Zhang, L. Towards Effective Long-Term Wind Power Forecasting: A Deep Conditional Generative Spatio-Temporal Approach. IEEE Trans. Knowl. Data Eng. 2024, 36, 9403–9417. [Google Scholar] [CrossRef]
- Yu, J.; Chen, K.; Mori, J.; Rashid, M.M. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy 2013, 61, 673–686. [Google Scholar] [CrossRef]
- Cadenas, E.; Rivera, W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renew. Energy 2010, 35, 2732–2738. [Google Scholar] [CrossRef]
- Shahzad, M.N.; Kanwal, S.; Hussanan, A. A New Hybrid ARAR and Neural Network Model for Multi-Step Ahead Wind Speed Forecasting in Three Regions of Pakistan. IEEE Access 2020, 8, 199382–199392. [Google Scholar] [CrossRef]
- Chen, F.; Vinsen, K.; Filoche, A. Spatial–Temporal Approach for Gridded Wind Forecasting Across Southwest Western Australia. IEEE Access 2024, 12, 85905–185917. [Google Scholar] [CrossRef]
- Yeh, W.C.; Yeh, Y.M.; Chang, P.C.; Ke, Y.C.; Chung, V. Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. Int. J. Electr. Power Energy Syst. 2014, 55, 741–748. [Google Scholar] [CrossRef]
- Abedinia, O.; Bagheri, M.; Naderi, M.S.; Ghadimi, N. A New Combinatory Approach for Wind Power Forecasting. IEEE Syst. J. 2020, 14, 4614–4625. [Google Scholar] [CrossRef]
- Lin, K.-P.; Pai, P.-F.; Ting, Y.-J. Deep Belief Networks with Genetic Algorithms in Forecasting Wind Speed. IEEE Access 2019, 7, 99244–99253. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F.; Zareipour, H. Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans. Sustain. Energy 2011, 2, 265–276. [Google Scholar] [CrossRef]
- Wang, J.; Qin, S.; Zhou, Q.; Jiang, H. Medium-term wind speeds forecasting utilizing hybrid models for three dierent sites in Xinjiang, China. Renew. Energy 2015, 76, 91–101. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Wang, J.; Zhao, W.; Shen, L. Performance analysis of four modified approaches for wind speed forecasting. Appl. Energy 2012, 99, 324–333. [Google Scholar] [CrossRef]
- Haque, A.U.; Nehrir, M.H.; Mandal, P. A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans. Power Syst. 2014, 29, 1663–1672. [Google Scholar] [CrossRef]
- Fang, S.; Chiang, H.-D. A high-accuracy wind power fore casting model. IEEE Trans. Power Syst. 2017, 32, 1589–1590. [Google Scholar] [CrossRef]
- Chang, Y.; Yang, H.; Chen, Y.; Zhou, M.; Yang, H.; Wang, Y.; Zhang, Y. A hybrid model for long-term wind power forecasting utilizing nwp subsequence correction and multi-scale deep learning regression methods. IEEE Trans. Sustain. Energy 2024, 15, 263–275. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, J.; Xia, J.; Dai, Y.; Sheng, Y.; Yue, J. Performance evaluation and accuracy enhancement of a day ahead wind power forecasting system in China. Renew. Energy 2012, 43, 234–241. [Google Scholar] [CrossRef]
- Ferreira, C.A.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. A Survey on Wind Power Ramp Forecasting; Argonne National Laboratory: Chicago, IL, USA, 2011. [Google Scholar] [CrossRef]
- Cutler, N.; Kay, M.; Jacka, K.; Nielsen, T.S. Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT. Wind Energy 2007, 10, 453–470. [Google Scholar] [CrossRef]
- Bradford, K.T.; Carpenter, R.L.; Shaw, B.L. Forecasting southern plains wind ramp events using the WRF model at 3km. In Proceedings of the Ninth Annual Student Conference, Atlanta, GA, USA, 17 January 2010. [Google Scholar]
- Hirth, B.D.; Schroeder, J.; Irons, Z.; Walter, K. Dual Dopler measurements of a wind ramp event at an Oklahoma wind plant. Wind Energy 2016, 19, 953–962. [Google Scholar] [CrossRef]
- Potter, C.W.; Grimit, E.; Nijssen, B. Potential benefits of a dedicated probabilistic rapid ramp event forecast tool. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 15–18 March 2009. [Google Scholar]
- Bossavy, A.; Girard, R.; Kariniotakis, G. Forecasting uncertainty related to ramps of wind power production. In Proceedings of the European Wind Energy Conference & Exhibition, Warsaw, Poland, 20–23 April 2010. [Google Scholar]
- Greaves, B.; Collins, J.; Parkes, J.; Tindal, A. Temporal forecast uncertainty for ramp events. Wind Eng. 2009, 33, 309–319. [Google Scholar] [CrossRef]
- Zareipour, H.; Huang, D.; Rosehart, W. Wind power ramp events classification and forecasting: A data mining approach. In Proceedings of the Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar]
- Mishra, S.; Ören, E.; Bordin, C.; Wen, F.; Palu, I. Features extraction of wind ramp events from a virtual wind park. Energy Rep. 2020, 6, 237–249. [Google Scholar] [CrossRef]
Model Type | Reference | Prediction Model | Input Data Type | Evaluation Metric | Spatial Scale | ||
---|---|---|---|---|---|---|---|
Traditional statistical model | [47] | ARMA | Wind information | MAE | Wind farm | ||
[69] | ARMA | Wind information | RMSE, MAPE | Wind farm | |||
[70] | SARIMA | Wind information | RMSE, MAPE | Wind farm | |||
[71] | SES | Wind information | MAPE | Wind farm | |||
[72] | BSBM | Wind information | MAE, MSE, RMSE | Wind farm | |||
[73] | Markov chain | Wind information | MAE, MAPE, RMSE | Wind farm | |||
[74] | Markov chain | Wind information | MAE, MSE, RMSE | Wind farm | |||
Machine learning-based model | [75] | GBM | Wind information | MAE, RMSE | Wind farm | ||
[78] | IJS-SVR | Wind information, NWP | MAE, RMSE, MAPE | Wind farm | |||
[79] | IHPO-ELM | Wind information | MAE, RMSE, MAPE | Wind farm | |||
[80] | SSA-DELM | Wind information | RMSE, MAE | Wind farm | |||
[82] | ANN | Wind information, NWP | MAPE | Wind farm | |||
[56] | LRNN | Wind information, NWP | MAPE | Wind farm | |||
[83] | DA-RNN | Wind information | MAE | Wind farm | |||
[84] | LSTM | Wind information | MSE, MAE | Wind farm | |||
[87] | STCN | Wind information | RMSE, MAE | Wind farm region | |||
Hybrid model | Weighted combination prediction method | [88] | MC-KRLS | Wind information | RMSE | Wind farm | |
Fusion combination prediction method | Input optimization | [77] | DR-LSSVM | Wind information, NWP | MAE, RMSE, MAPE | Wind farm | |
[85] | CNN-GRU | Wind information | MAE, RMSE, MAPE | Wind farm | |||
[89] | Seq2Seq | Wind information | RMSE, MAE | Wind farm | |||
[90] | PM-BP | Wind information | MAE, RMSE | Wind farm | |||
[91] | MLP-transformer | Wind information, NWP | MAE, MSE, RMSE | Wind farm | |||
[93] | CNN-MLSTMs | Wind information | MAE, RMSE | Wind farm | |||
[94] | I-CNN-BILSTM | Wind information, NWP | MAE, RMSE | Wind farm region | |||
[95] | VMD-CNN | Wind information | MAPE | Wind farm | |||
Model optimization | [62] | WT-PSO-ANFIS | Wind information | MAPE&NMAE | Wind farm | ||
[63] | GSA-EEMD-PE-LSSVM | Wind information | NMAE&NRMSE | Wind farm | |||
[76] | ST-GWO-MSVM | Wind information | MAE, RMSE | Wind farm region | |||
[81] | WD-NILA-WRF | Wind information, NWP | MAPE | Wind farm | |||
[86] | M2STAN | Wind information, NWP | MAE, RMSE | Wind farm region | |||
[77] | DR-LSSVM | Wind information, NWP | MAE, RMSE, MAPE | Wind farm | |||
[97] | VMD-CNN-IPSO-LSTM | Wind information, NWP | MAE, RMSE, MAPE | Wind farm | |||
[98] | DOCREL | Wind information | RMSE, MAE | Wind farm | |||
[99] | WD-APSOACO-BP | Wind information | MAPE, RMSE | Wind farm | |||
[81] | WD-NILA-WRF | Wind information, NWP | MAPE | Wind farm | |||
[100] | CEEMDAN-LSTM-MBO | Wind information | MAE, RMSE, MAPE | Wind farm | |||
Error processing techniques | [101] | BiLSTM-GBM | Wind information, NWP | MAE, RMSE, MAPE | Wind farm |
Model Type | Reference | Prediction Model | Input Data Type | Evaluation Metric | Spatial Scale | ||
---|---|---|---|---|---|---|---|
Traditional statistical model | [104] | ARMA | Wind information | RMSE | Wind farm | ||
[105] | f-ARIMA | Wind information | RMSE | Wind farm | |||
Machine learning-based model | [108] | LightGBM-MIC | Wind information, NWP | MAE, RMSE | Wind farm | ||
[49] | N-SVR | Wind information | MAE, RMSE, MAPE | Wind farm | |||
[111] | GA-SVR | Wind information | MAE, RMSE | Wind farm | |||
[113] | ANN | Wind information | MSE, MAE | Wind farm | |||
[115] | ANN | Wind information, NWP | MAPE | Wind farm | |||
[116] | BP, RBF, BMA | Wind information | MAE, RMSE, MAPE | Wind farm | |||
[117] | RNN | Wind information | MAE | Wind farm | |||
[57] | LSTM | Wind information, NWP | RMSE, MAE | Wind farm | |||
[118] | Bi-LSTM | Wind information, NWP | MSE, MAE, MAPE | Wind farm | |||
[87] | STCN | Wind information | RMSE, MAE | Wind farm region | |||
[54] | CNN | Wind information | MAE, RMSE | Wind farm | |||
[124] | HAR | Wind information | RMSE, MAE, MAPE | Wind farm | |||
[126] | GP | Wind information, NWP | RMSE, MAE, MAPE | Wind farm | |||
[127] | GP | Wind information, NWP | RMSE, MAE | Wind farm region | |||
[128] | KNN | Wind information, NWP | MAE, RMSE | Wind farm region | |||
Hybrid model | Weighted combination prediction method | [52] | ANN, SVM, GBM, RF | Wind information, NWP | MAE, RMSE | Wind farm region | |
[112] | ICSA-WNN, PSO-WNN, ELM, RBF, MLP | Wind information, NWP | RMSE, MAE | ||||
[129] | GP-NN | Wind information | MAE, MSE, RMSE, MAPE | Wind farm | |||
Fusion combination prediction method | Input optimization | [122] | CNN-LSTM | Wind information | MSE, RMSE, MAPE, MAE | Wind farm | |
[130] | CNN-ED-LSTM | Wind information, NWP | MAE, MSE, MAPE, RMSE | Wind farm | |||
[131] | NSGA-II-WT-MLP | Wind information, NWP | RMSE, MAPE, RMSE, MAE | Wind farm | |||
[132] | VMD-ConvLSTM-LSTM | Wind information | MRE, MAE, MSE, RMSE | Wind farm | |||
[133] | EEMD-LSTM | Wind information, NWP | MSE | Wind farm | |||
[60] | ELM-LBQ-SARIMA | Wind information | MAE, MAPE, RMSE | Wind farm | |||
[134] | KHC-SVD-SVR | Wind information | MAE, RMSE | Wind farm | |||
[135] | VMD-FFT-FCM-RF | Wind information, NWP | MAE, RMSE | Wind farm | |||
[136] | FCM-VPBFN | Wind information, NWP | MAE, RMSE | Wind farm | |||
Model optimization | [65] | SSA-FA-BP | Wind information | MSE, MAE, MAPE | Wind farm | ||
[67] | C-LSSVM-PSOGSA | Wind information | MAE, RMSE, MAPE | Wind farm | |||
[61] | ARIMA-ANN, ARIMA-SVM | Wind information | MAE, RMSE | Wind farm | |||
[109] | EWT-CSA-LSSVM | Wind information | MAE, MAPE, RMSE | Wind farm | |||
[110] | WPT–LSSVM–PSOSA | Wind information | MAE, MSE, MAPE | Wind farm | |||
[114] | ANFIS | Wind information | MAPE, MAE, RMSE | Wind farm | |||
[119] | MPSO-ATT-LSTM | Wind information, NWP | MAPE, MAE | Wind farm | |||
[120] | AMC-LSTM | Wind information, NWP | MSE, MAE, RMSE | Wind farm | |||
[58] | EEMD-BA-RGRU-CSO | Wind information, NWP | MAE, RMSE | Wind farm | |||
[121] | VMD-CNN-GRU | Wind information, NWP | RMSE, MAE, MAPE | Wind farm | |||
[123] | A-CNN-LSTM | Wind information | RMSE, MAE, MAPE | Wind farm | |||
[51] | ANFIS | Wind information, NWP | RMSE, MAPE | Wind farm | |||
[137] | DQR | Wind information | MAE, RMSE | Wind farm region | |||
[40] | IDMDZ | Wind information, NWP | RMSE, MAE | Wind farm region | |||
[138] | ARIMA-ANN, ARIMA-Kalman | Wind information | MAE, MAPE, MSE | Wind farm | |||
[139] | KF-ANN | Wind information | MAPE | Wind farm | |||
[140] | WT-EPSO-ANFIS | Wind information | MAPE, MAE | Wind farm | |||
[141] | WPD-VMD-SSA-IGWO-KELM | Wind information | RMSE, MAE, MAPE | Wind farm | |||
[142] | FCM-WOA-ELM-GMM | Wind information, NWP | MAE, RMSE | Wind farm | |||
[143] | CRO-HS-ELM | Wind information | RMSE | Wind farm | |||
Error processing techniques | [66] | ramp predictor | Wind information, NWP | MAE | Wind farm region | ||
[55] | EWT-Q-GRU-BiLSTM-DBN | Wind information | MAE, RMSE, MAPE | Wind farm | |||
[67] | ICEEMDAN-LSTM | Wind information, NWP | MAPE, RMSE | Wind farm | |||
[145] | HMM | Wind information, NWP | RMSE, MAE | Wind farm | |||
[146] | DBN-SC | Wind information, NWP | RMSE, MAPE, MAE | Wind farm | |||
[147] | STC-DPN | Wind information, NWP | MAE, RMSE | Wind farm | |||
[148] | GP-SC | Wind information, NWP | RMSE, MAPE, MAE | Wind farm | |||
[149] | LSTM-WPRE | Wind information, NWP | MAPE, RMSE | Wind farm |
Model Type | Reference | Prediction Model | Input Data Type | Evaluation Metric | Spatial Scale | ||
---|---|---|---|---|---|---|---|
Machine learning-based model | [150] | ANN | Wind information, NWP | MAE, MSE | Wind farm | ||
[151] | MLP | Wind information, NWP | RMSE | Wind farm | |||
[152] | KNN | Wind information, NWP | MAE, MAPE, NRMSE | Wind farm | |||
[153] | Decision tree, bagging, random forest, boosting method, gradient boosting method, XGBoost | Wind information | MAE, RMSE, NRMSE, R2 | Wind farm region | |||
Hybrid model | Weighted combination prediction method | [154] | MLR, MLP, RFB, SVM | Wind information, NWP | MAE, RMSE, NMSE | Wind farm region | |
[129] | GP-NN | Wind information | MAE, MSE, RMSE, MAPE | Wind farm | |||
[155] | WT-ELMAN-MLP | Wind information, NWP | MSE, NMAPE | Wind farm | |||
Fusion combination prediction method | Input optimization | [110] | WPT-PSOSA-LSSVM | Wind information | MAE, MSE, MAPE | Wind farm | |
[156] | EEMD-SVM | Wind information | MAE, MAPE | Wind farm | |||
[157] | EMD-FNN | Wind information | MSE, MAE, MAPE | Wind farm region | |||
[158] | copula-LSTM | Wind information | RMSPE, MAPE | Wind farm | |||
[159] | PCA-KNN | Wind information | MAE, RMSE | Wind farm region | |||
[160] | PCA-SVR | Wind information | MAE, MSE | Wind farm | |||
[161] | PCA-K-NN | Wind information | MAE, MRE | Wind farm | |||
[143] | CRO-HS-ELM | Wind information | RMSE | Wind farm | |||
[162] | FRAMA-LSTM | Wind information, NWP | RMSE | Wind farm region | |||
[163] | NARX | Wind information, NWP | MAE | Wind farm | |||
[164] | S-Kalman | Wind information | RMSE, MAE | Wind farm | |||
[165] | k-means, chaotic time series | Wind information, NWP | ARE, MAPE | Wind farm | |||
[166] | RBFNN | Wind information | NMAE, NRMSE | Wind farm | |||
[167] | RBFNN | Wind information, NWP | NMAE, NRMSE | Wind farm | |||
[168] | RBFNN | Wind information, NWP | NMAE, NRMSE | Wind farm | |||
[169] | ARTMAP-RBFNN | Wind information, NWP | NMAE, NRMSE | Wind farm | |||
Model optimization | [170] | ANFIS | Wind information, NWP | MAPE, NMAE, NRMSE | Wind farm | ||
[171] | DCGST | Wind information | MSE, MAE | Wind farm | |||
[172] | GMCM-GPR | Wind information | RMSE, MAPE, R2 | Wind farm region | |||
[173] | ARIMA-ANN | Wind information | ME, MSE, MAE | Wind farm | |||
[174] | ARAR-ANN | Wind information | MAE, MSE, MAPE | Wind farm | |||
[139] | KF-ANN | Wind information | MAPE | Wind farm region | |||
[175] | ABED | Wind information, NWP | MAE, RMSE | Wind farm region | |||
[176] | iSSO-PCA-MLP | Wind information | MSE | Wind farm | |||
[177] | AFPSO-IWT-TDCNN | Wind information | RMSE, MAPE | Wind farm | |||
[178] | DBNGA | Wind information, NWP | RMSE, MAPE | Wind farm region | |||
[179] | RBF-MLP | Wind information, NWP | RMSE, NMAE | Wind farm | |||
[180] | SIA-SVR-ERNN | Wind information | MSE, MAE, MAPE | Wind farm region | |||
[181] | PSO-FCA, PSO-SCA | Wind information | MSE, MAPE | Wind farm region | |||
Error processing techniques | [182] | WT-FA-FF-SVM | Wind information | MAPE, NRMSE, NMAE | Wind farm | ||
[126] | GP-Cspeed | Wind information, NWP | RMSE, NMAE | Wind farm | |||
[183] | ALL-CF | Wind information, NWP | NRMSE | Wind farm region | |||
[184] | MSHP | Wind information, NWP | MSE, MAE | Wind farm | |||
[185] | Kelman-ANN | Wind information, NWP | ME, MAE, RMSE, NRMSE | Wind farm |
Prediction Model | MAE/MW | MSE/MW | RMSE/MW | MAPE/% |
---|---|---|---|---|
ARIMA | 1.643 | 14.287 | 3.780 | 20.54 |
LSTM | 4.817 | 146.537 | 12.105 | 16.70 |
CNN-LSTM | 2.947 | 37.063 | 6.088 | 8.3739% |
Prediction Model | MAE/MW | MSE/MW | RMSE/MW | MAPE/% |
---|---|---|---|---|
LSTM | 9.094 | 201.681 | 14.201 | 17.76 |
CNN-LSTM | 8.363 | 177.790 | 13.334 | 11.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Wang, H.; Wang, D.; Liu, D.; Sun, K. A Review of Wind Power Prediction Methods Based on Multi-Time Scales. Energies 2025, 18, 1713. https://doi.org/10.3390/en18071713
Li F, Wang H, Wang D, Liu D, Sun K. A Review of Wind Power Prediction Methods Based on Multi-Time Scales. Energies. 2025; 18(7):1713. https://doi.org/10.3390/en18071713
Chicago/Turabian StyleLi, Fan, Hongzhen Wang, Dan Wang, Dong Liu, and Ke Sun. 2025. "A Review of Wind Power Prediction Methods Based on Multi-Time Scales" Energies 18, no. 7: 1713. https://doi.org/10.3390/en18071713
APA StyleLi, F., Wang, H., Wang, D., Liu, D., & Sun, K. (2025). A Review of Wind Power Prediction Methods Based on Multi-Time Scales. Energies, 18(7), 1713. https://doi.org/10.3390/en18071713