Review of Offshore Superconducting Wind Power Generation for Hydrogen Production
Abstract
:1. Introduction
2. Offshore Superconducting Wind Power Generation
3. Hydrogen Production and Storage
3.1. Electrolysis Technologies
3.2. Hydrogen Storage Technologies
4. Conceptual Design of Offshore Superconducting Wind Power Generation for Hydrogen Production
5. Challenges for Hydrogen Production in Offshore Superconducting Wind Farms
5.1. Application of Superconducting Technology
5.2. Safety and Stability Concerns
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Xia, P.; Zhang, X. Multi-attribute decision-making method of pumped storage capacity planning considering wind power uncertainty. J. Clean. Prod. 2024, 449, 141655. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Y.; Li, Y.; Yang, J.; Duan, L.; Wang, T.; Adock, T.; Jiang, Z.; Gao, Z.; Lin, Z.; et al. Foundations of offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2019, 104, 379–393. [Google Scholar] [CrossRef]
- Diaz, H.; Soares, C.G. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, B.; Huang, W.; Li, Y.; Hou, L.; Xiao, J.; Mao, Z.; Li, X. A review of hydrogen generation, storage, and applications in power system. J. Energy Storage 2024, 75, 109307. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, X.; Wen, H.; Pei, A. Hydrogen production from offshore wind power in South China. Int. J. Hydrogen Energy 2022, 47, 24558–24568. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Odenweller, A.; Ueckerdt, F.; Nemet, G.F.; Jensterle, M.; Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 2022, 7, 854–865. [Google Scholar] [CrossRef]
- Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.; Lenaert, S. Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 2021, 14, 815–843. [Google Scholar] [CrossRef]
- Rathore, S.; Biswas, S.; Fini, D.; Kulkarni, A.; Giddey, S. Direct ammonia solid-oxide fuel cells: A review of progress and prospects. Int. J. Hydrogen Energy 2021, 46, 35365–35384. [Google Scholar] [CrossRef]
- Xu, Y.; An, L.; Jia, B.; Maki, N. Study on electrical design of large-capacity fully superconducting offshore wind turbine generators. IEEE Trans. Appl. Supercond. 2021, 31, 5201305. [Google Scholar] [CrossRef]
- Song, X.; Buhrer, C.; Brutsaert, P.; Ammar, A.; Krause, J.; Bergen, A.; Winkler, T.; Dhaller, M.; Hansen, J.; Rebsdorf, A.; et al. Ground testing of the world’s first MW-class direct-drive superconducting wind turbine generator. IEEE Trans. Energy Convers. 2020, 35, 757–764. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, S.; Liu, H.; Pu, L.; Wang, X.; Wang, Z.; Wu, M.; Chen, Z. The environmental and public health benefits of offshore wind power deployment in China. Environ. Sci. Technol. 2025, 59, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhang, C.; Shan, F.; Chen, L.; Liu, S.; Zheng, Z.; Zhu, L.; Wang, J.; Wu, X.; Zhai, Y. Review and prospects of key technologies for integrated systems in hydrogen production from offshore superconducting wind power. Energies 2025, 18, 19. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H. Development of offshore wind power and foundation technology for offshore wind turbines in China. Ocean Eng. 2022, 266, 113256. [Google Scholar] [CrossRef]
- Sun, Y.; Ai, H.; Li, Y.; Wang, R.; Ma, R. Data-driven large-scale spatial planning framework for determining size and location of offshore wind energy development: A case study of China. Appl. Energy 2024, 367, 123388. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. A Total of 39.1 Million Kilowatts of Offshore Wind Power had Been Built and Connected to the Grid in China. 2024. Available online: http://www.gov.cn (accessed on 18 November 2024).
- Deng, X.; Xu, W.; Xu, Y.; Shao, Y.; Wu, Y.; Yuan, W.; Qin, Z. Offshore wind power in China: A potential solution to electricity transformation and carbon neutrality. Fundam. Res. 2024, 4, 1206–1215. [Google Scholar] [CrossRef]
- Tyurkay, A.; Kirkelund, G.; Lima, A. State-of-the-art circular economy practices for end-of-life wind turbine blades for use in the construction industry. Sustain. Prod. Consum. 2024, 47, 17–36. [Google Scholar] [CrossRef]
- Abrahamsen, A.; Mijatovic, N.; Seiler, E.; Zirnigibl, T.; Traeholt, C.; Norgard, P.; Pedersen, N.; Andersen, N.; Ostergard, J. Superconducting wind turbine generators. Supercond. Sci. Technol. 2010, 23, 34019. [Google Scholar] [CrossRef]
- Shen, L.; Zhai, Y.; Zheng, Z.; Wu, X.; Zhu, L.; Wang, L.; Huang, S. Research on magnetic field distribution characteristics of 2G-HTS dynamo in superconducting wireless power supply applications. Supercond. Sci. Technol. 2025, 38, 15017. [Google Scholar] [CrossRef]
- Wei, Y.; Cheng, Z.; Si, J.; Jin, F.; Gao, C.; Gan, C. Analysis of a direct-drive permanent magnet synchronous generator with novel toroidal winding. IET Renew. Power Gener. 2021, 15, 2237–2245. [Google Scholar] [CrossRef]
- Xu, Y.; Maki, N.; Izumi, M. Electrical design study of 10-MW salient-pole wind turbine HTS synchronous generators. IEEE Trans. Appl. Supercond. 2014, 24, 5202706. [Google Scholar] [CrossRef]
- Terao, Y.; Ohsaki, H. Short-circuit accident analysis of 10 MW class superconducting wind turbine generators with different structures. In Proceedings of the 19th International Conference on Electrical Machines and Systems, Chiba, Japan, 13–16 November 2016. [Google Scholar]
- Miura, S.; Iwakuma, K.; Izumi, T. Lightweight design of tens-MW fully-superconducting wind turbine generators with high-performance REBa2Cu3Oy wires. IEEE Trans. Appl. Supercond. 2020, 30, 5204106. [Google Scholar] [CrossRef]
- Terao, Y.; Sekino, M.; Ohsaki, H. Comparison of conventional and superconducting generator concepts for offshore wind turbines. IEEE Trans. Appl. Supercond. 2013, 23, 5200904. [Google Scholar] [CrossRef]
- Terao, Y.; Sekino, M.; Ohsaki, H. Electromagnetic design of 10 MW class fully superconducting wind turbine generators. IEEE Trans. Appl. Supercond. 2012, 22, 5201904. [Google Scholar] [CrossRef]
- Wang, L.; Mu, S.; Zhang, T.; Zhou, Q. A superconducting cable with curved HTS tapes. IEEE Trans. Appl. Supercond. 2021, 31, 4805202. [Google Scholar] [CrossRef]
- Akasaka, T.; Onji, T.; Yano, S.; Zhong, Y.; Otabe, E.; Ishihara, A.; Tomita, M. Analytical and experimental evaluation of the joints in Bi-based superconducting tape for the feeder cable. IEEE Trans. Appl. Supercond. 2023, 33, 4800305. [Google Scholar] [CrossRef]
- Shiohara, K.; Sato, M.; Takahashi, Y.; Adachi, K.; Izumi, T.; Iwakuma, M. Development of a superconducting cable for aircraft electric propulsion system. IEEE Trans. Appl. Supercond. 2024, 34, 4801104. [Google Scholar] [CrossRef]
- Yu, H.; Lu, J. Superconducting transformer for superconducting cable testing up to 45 kA. IEEE Trans. Appl. Supercond. 2020, 30, 5500204. [Google Scholar] [CrossRef]
- Uglietti, D. A review of commercial high temperature superconducting materials for large magnets: From wires and tapes to cables and conductors. Supercond. Sci. Technol. 2019, 32, 53001. [Google Scholar] [CrossRef]
- De Almeida, J.; Shadman, M.; Dos Santos Ramos, J.; Bastos, I.; Silva, C.; Chujutalli, J.; Amiri, M.; Bergman-Fonte, C.; Ferreira, G.; Carreira, E.; et al. Techno-economic analysis of hydrogen production from offshore wind: The case of Brazil. Energy Convers. Manag. 2024, 322, 119109. [Google Scholar] [CrossRef]
- Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int. J. Hydrogen Energy 2020, 45, 1541–1558. [Google Scholar] [CrossRef]
- van Geem, K.M.; Galvita, V.V.; Marin, G.B. Make chemicals with power. Science 2019, 364, 734–735. [Google Scholar] [CrossRef] [PubMed]
- Iulianelli, A.; Liguori, S.; Wilcox, J.; Basile, A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catal. Rev. Sci. Eng. 2016, 58, 1–35. [Google Scholar] [CrossRef]
- Wismann, S.T.; Engbaek, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendoff, I.; Mortensen, P. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 759, 756–759. [Google Scholar] [CrossRef]
- Rodrıguez, P.; Sanchez-Molina, A.; Mais, C. Simple and Precise Approach for Determination of Ohmic Contribution of Diaphragms in Alkaline Water Electrolysis. Membranes 2019, 9, 129. [Google Scholar] [CrossRef]
- Rosa, V.M.; Santos, M.B.F.; da Silva, E.P. New materials for water electrolysis diaphragms. Int. J. Hydrogen Energy 1995, 20, 697–700. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Buttler, A.; Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [Google Scholar] [CrossRef]
- Babic, U.; Suermann, M.; Buchi, F.N.; Gubler, L.; Schmidt, T.J. Review—Identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 2017, 164, 387–399. [Google Scholar] [CrossRef]
- Pandiyan, A.; Uthayakumar, A.; Subrayan, R.; Cha, S.W.; Krishna Moorthy, S.B. Review of solid oxide electrolysis cells: A clean energy strategy for hydrogen generation. Nanomater. Energy 2019, 8, 2–22. [Google Scholar] [CrossRef]
- Jiang, S.P. Challenges in the development of reversible solid oxide cell technologies: A mini review, Asia-Pac. J. Chem. Eng. 2016, 11, 386–391. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis e a review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Li, K.; Yu, S.; Li, D.; Wang, W.; Xie, Z.; Park, E.; Fujimoto, C.; Cullen, D.; Kim, Y.; Zhang, F.; et al. Engineered thin diffusion layers for anion-exchange membrane electrolyzer cells with outstanding performance. ACS Appl. Mater. Interfaces 2021, 13, 50957–50964. [Google Scholar] [CrossRef] [PubMed]
- Talabi, O.O.; Dorfi, A.E.; O’Neil, G.D.; Esposito, D.V. Membraneless electrolyzers for the simultaneous production of acid and base. Chem. Commun. 2017, 53, 8006–8009. [Google Scholar] [CrossRef]
- Hashemi, S.M.H.; Karnakov, P.; Hadikhani, P.; Chinello, E.; Litvinov, S.; Moser, C.; Koumoutsakos, P.; Psaltis, D. A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy Environ. Sci. 2019, 12, 1592–1604. [Google Scholar] [CrossRef]
- Qian, Q.; Zhu, Y.; Ahmad, N.; Feng, Y.; Zhang, H.; Cheng, M.; Liu, H.; Xiao, C.; Zhang, G. Recent advancements in electrochemical hydrogen production via hybrid water splitting. Adv. Mater. 2024, 36, 2306108. [Google Scholar] [CrossRef]
- Sun, F.; Qin, J.; Wang, Z.; Yu, M.; Wu, X.; Sun, X.; Qiu, J. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Duan, X.; Zou, P.; Jeerh, G.; Sun, B.; Chen, S.; Humphreys, J.; Walker, M.; Xie, K.; et al. An efficient symmetric electrolyzer based on bifunctional perovskite catalyst for ammonia electrolysis. Adv. Sci. 2021, 8, 2101299. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Rafiee, R.; Torabi, M.A. Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 2018, 185, 573–583. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Meyer, K.; Pignagnoli, F.; Potts, D.; Hunter, G. Lightweighting matters in energy storage. Reinf. Plast. 2014, 58, 20–23. [Google Scholar] [CrossRef]
- Kanoglu, M.; Dincer, I.; Rosen, M.A. Geothermal energy use in hydrogen liquefaction. Int. J. Hydrogen Energy 2007, 32, 4250–4257. [Google Scholar] [CrossRef]
- Aasadnia, M.; Mehrpooya, M.; Ansarinasab, H. A 3E evaluation on the interaction between environmental impacts and costs in a hydrogen liquefier combined with absorption refrigeration systems. Appl. Therm. Eng. 2019, 159, 113798. [Google Scholar] [CrossRef]
- Nandi, T.K.; Sarangi, S. Performance and optimization of hydrogen liquefaction cycles. Int. J. Hydrogen Energy 1993, 18, 131–139. [Google Scholar] [CrossRef]
- Krasae-in, S.; Stang, J.H.; Neksa, P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. Int. J. Hydrogen Energy 2010, 35, 4524–4533. [Google Scholar] [CrossRef]
- Jarvis, S.M.; Samsatli, S. Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis. Renew. Sustain. Energy Rev. 2018, 85, 46–68. [Google Scholar] [CrossRef]
- Gotz, M.; Lefebvre, J.; Mors, F.; Koch, A.M.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef]
- Bowker, M. Methanol Synthesis from CO2 Hydrogenation. ChemCatChem 2019, 11, 4238–4246. [Google Scholar] [CrossRef]
- Enthaler, S.; Von Langermann, J.; Schmidt, T. Carbon dioxide and formic acid—The couple for environmental friendly hydrogen storage? Energy Environ. Sci. 2010, 3, 1207–1217. [Google Scholar] [CrossRef]
- Abbas, M.A.; Grant, D.M.; Brunelli, M.; Hansen, T.C.; Walker, G.S. Reducing the dehydrogenation temperature of lithium hydride through alloying with germanium. Phys. Chem. Chem. Phys. 2013, 15, 12139–12146. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, N.; Obesser, K.; Bosmann, A.; Teichmann, D.; Arlt, W.; Dungs, J.; Wasserscheid, P. Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. ChemSusChem 2014, 7, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, T.; Gong, F.; Othman, M.; Xiao, R. Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell—A comprehensive review. Fuel Process. Technol. 2022, 235, 107380. [Google Scholar] [CrossRef]
- Jeerh, G.; Zhang, M.; Tao, S. Recent progress in ammonia fuel cells and their potential applications. J. Mater. Chem. 2021, 9, 727–752. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, Z.; Xia, L.; He, Q.; Li, Z.; Bello, I.T.; Zheng, K.; Ni, M. A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Convers. Manag. 2022, 253, 115175. [Google Scholar] [CrossRef]
- Rouwenhorst, K.; Engelmann, Y.; Veer, K.; Postma, R.; Bogaerts, A.; Lefferts, L. Plasma-driven catalysis: Green ammonia synthesis with intermittent electricity. Green Chem. 2020, 22, 6258. [Google Scholar] [CrossRef]
- Cherkasov, N.; Ibhadon, A.O.; Fitzpatrick, P. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 2015, 90, 24–33. [Google Scholar] [CrossRef]
- Chen, J.G.; Crooks, R.; Seefeldt, L.; Bren, K.; Bullock, R.; Darensbourg, M.; Holland, P.; Hoffman, B.; Janik, M.; Jones, A.; et al. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, eaar6611. [Google Scholar] [CrossRef]
- Malmali, M.; Wei, Y.; McCormick, A.; Cussler, E.L. Ammonia Synthesis at Reduced Pressure via Reactive Separation. Ind. Eng. Chem. Res. 2016, 55, 8922–8932. [Google Scholar] [CrossRef]
- Ishaq, H.; Crawford, C. Review and evaluation of sustainable ammonia production, storage and utilization. Energy Convers. Manag. 2024, 300, 117869. [Google Scholar] [CrossRef]
- Aziz, M.; TriWijayanta, A.; Nandiyanto, A.B.D. Ammonia as effective hydrogen storage: A review on production, storage and utilization. Energies 2020, 13, 3062. [Google Scholar] [CrossRef]
- Kurien, C.; Mittal, M. Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Convers. Manag. 2022, 251, 114990. [Google Scholar] [CrossRef]
- Yanxing, Z.; Maoqiong, G.; Yuan, Z.; Xueqiang, D.; Jun, S. Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int. J. Hydrogen Energy 2019, 44, 16833–16840. [Google Scholar] [CrossRef]
- Kalsi, S.; Storey, J.; Lumsden, G.; Thrimawithana, D.; Badcock, R. Conceptual design of a 25 MW HTS wind power generator for offshore green hydrogen production. IEEE Trans. Appl. Supercond. 2025, 35, 5200405. [Google Scholar] [CrossRef]
- Barter, G.E.; Sethuraman, L.; Bortolotti, P.; Keller, J.; Torrey, D.A. Beyond 15 MW: A cost of energy perspective on the next generation of drivetrain technologies for offshore wind turbines. Appl. Energy 2023, 344, 121272. [Google Scholar] [CrossRef]
- Xu, Y.; An, L.-T.; Jia, B.-Z.; Maki, N.; Izumi, M. Electrical design and structure optimization of 10 MW fully superconducting wind turbine generators. Phys. C Supercond. Appl. 2020, 578, 1353767. [Google Scholar] [CrossRef]
- Goldacker, W.; Grilli, F.; Pardo, E.; Kario, A.; Schlachter, S.I.; Vojenčiak, M. Roebel cables from REBCO coated conductors: A one-century-old concept for the superconductivity of the future. Supercond. Sci. Technol. 2014, 27, 93001. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, Y.; Hu, Z.; Zheng, C.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272. [Google Scholar] [CrossRef]
- Sinay, J.; Brestovic, T.; Markovic, J.; Glatz, J.; Gorzas, M.; Vargova, M. Analysis of the risks of hydrogen leakage from hydrogen-powered cars and their possible impact on automotive market share increase. Appl. Sci. 2020, 10, 4292. [Google Scholar] [CrossRef]
- Menon, S.; Kumar, A.; Mondal, S. Advancements in hydrogen gas leakage detection sensor technologies and safety measures. Clean Energy. 2025, 9, 263–277. [Google Scholar] [CrossRef]
- Sun, Z.; Hong, J.; Zhang, T.; Sun, B.; Yang, B.; Lu, L.; Li, L.; Wu, K. Hydrogen engine operation strategies: Recent progress, industrialization challenges, and perspectives. Int. J. Hydrogen Energy 2023, 48, 366–392. [Google Scholar] [CrossRef]
- Zhang, T.; Li, M.; Liu, C.; Wang, S.; Yan, Z. A review of the toxic effects of ammonia on invertebrates in aquatic environments. Environ. Pollut. 2023, 336, 122374. [Google Scholar] [CrossRef]
- Zhang, Z.; Cang, H.; Huang, W.; Li, H.; Li, H. Photoionization ion mobility analyzer for on-site measurement of exhaled acetone by coupling miniature thermoelectric cooling dehydration. Sensor Actuat. B-Chem. 2025, 423, 136743. [Google Scholar] [CrossRef]
- Blumenfeld, P.; Prenger, C.; Roth, E.; Stewart, J. High temperature superconducting current lead test facility with heat pipe intercepts. IEEE Trans. Appl. Supercond. 1999, 9, 527–530. [Google Scholar] [CrossRef]
- Bagni, T.; Duchateau, J.; Breschi, M.; Devred, A.; Nijhuis, A. Analysis of ITER NbTi and Nb3Sn CICCs experimental minimum quench energy with JackPot, MCM and THEA models. Supercond. Sci. Technol. 2017, 30, 095003. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W. Electrochemical deposition of Ni-Co/SiC nanocomposite coatings for marine environment. Int. J. Electrochem Sc. 2017, 12, 7017–7030. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Cen, W.; Xu, R.; Huang, Y.; Zhang, X.; Han, Y.; Zhang, Y. Ecological impacts of the expansion of offshore wind farms on trophic level species of marine food chain. J. Environ. Sci. 2024, 139, 226–244. [Google Scholar] [CrossRef]
- Alkhayat, G.; Mehmood, R. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy AI 2021, 4, 100060. [Google Scholar] [CrossRef]
- Luna, A.; Diaz, N.; Graells, M.; Vasquez, J.; Guerrero, J. Mixed-Integer-Linear-Programming-Based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification. IEEE Trans. Power Electr. 2017, 32, 2769–2783. [Google Scholar] [CrossRef]
- Tajalli, S.; Tajalli, S.; Homayounzadeh, M.; Khooban, M. Zero-carbon power-to-hydrogen integrated residential system over a hybrid cloud framework. IEEE Trans. Cloud Comput. 2023, 11, 3099–3110. [Google Scholar] [CrossRef]
Categories | Items | Key Features | TRL |
---|---|---|---|
Onshore wind | Direct-drive turbines | Gearless design reduces mechanical losses | 9 |
Long blades and lightweight materials | Using carbon/glass fiber composites, enhanced low-wind performance | 9 | |
Control systems | Real-time optimization and predictive maintenance | 8–9 | |
Offshore wind | Large-capacity turbines | Large capacity and huge blades, optimized for deep-sea environments | 8–9 |
Floating platforms | Deployable in offshore environments with floating structures | 7–8 | |
Dispatch systems | Drone-based monitoring | 7–8 | |
Emerging technology | Wind–solar hybrid systems | Integrated wind/solar generation with energy storage for grid stability | 7–8 |
Wind-to-hydrogen production | Electrolysis for hydrogen production and hydrogen storage | 6–7 | |
Digital twin-based fault prediction | Data-driven blade health monitoring for improved diagnostic accuracy | 7–8 | |
Dynamic wind zone mapping | Multi-source data integration for real-time energy dispatch optimization | 8–9 |
Items | Bi-2212 | Bi-2223 | REBCO |
---|---|---|---|
Shape | Twisted Filamentary wire | Non-twisted Filamentary tape | Monofilament tape |
Critical longitudinal Tensile stress (MPa) | 100–150 (bare) 250 (reinforced) | 30 (bare) 270–450 (reinforced) | 400–800 |
Critical transverse Compressive stress (MPa) | - | 50 (bare) 150 (reinforced) | 300–750 |
Reversible longitudinal Strain range | 0%~0.3–0.6% | −0.1%~0.25% (bare) 0.55% (reinforced) | −1.2%~0.4–1.0% |
Items | AWE | PEM | SOEC | AEM | MFWS | HWS |
---|---|---|---|---|---|---|
Operating temperature (°C) | <90 | <80 | >800 | <60 | <50 | - |
Power consumption (kw/h) | 4500–5500 | 4000–6000 | 3000–4000 | - | 5434 | - |
Start-stop speed | Fast | Faster | Slow | Faster | - | Fast |
Occupied area (m2) | 800 | 500 | 1000 | - | - | - |
Efficiency (%) | 60–75 | 70–90 | 85–100 | 70–90 | - | 90–100 |
Current density (A/cm2) | <0.8 | 1–4 | 0.2–0.4 | 1–2 | 0.75 | - |
Power range (%) | 10–100 | 0–160 | 0–100 | 0–160 | - | - |
Application stage | Large-scale applications | Initial applications | Demonstration | Laboratory | Laboratory | Laboratory |
Items | I | II | III | IV | V |
---|---|---|---|---|---|
Materials | Metal | Metal, polymer | Metal, fibers | Polymer, fibers | Composite materials |
Pressure (MPa) | 17.5–30 | 20–30 | 30–70 | 30–70 | >70 |
Density (kg/L) | 0.9–1.3 | 0.6–1.0 | 0.35–1.0 | 0.3–0.8 | - |
Service life (year) | 15 | 15 | 20 | 20 | >30 |
Cost | Low | Middle | Highest | High | High |
Vehicle mountable | No | No | Yes | Yes | Yes |
Items | T (°C) | P (MPa) | Reactions | ∆H (kJ/mol) | Hydrogen Utilization |
---|---|---|---|---|---|
Diesel | 225 | 2.5–3 | 40.6 −152 | 33% | |
Methane | 400 | 10 | −165 | 50% | |
Methanol | 230 | 5 | 50 | 70% | |
Formic acid | 90 | 8 | −32.2 | 100% |
Items | Toluene | DBT | N-Ethyl Carbazole |
---|---|---|---|
Hydrogen storage capacity (wt%) | 7.2 | 6.2–6.5 | 5.8–6.2 |
Hydrogen storage density (kg/L) | 0.0612 | 0.0623 | 0.058 |
Hydrogenation temperature (°C) | 150–200 | 180–250 | 150–250 |
Dehydrogenation temperature (°C) | 300–350 | 300–350 | 270–300 |
Energy consumption | High | Middle | Low |
Carrier price | Middle | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Shen, L.; Wu, X.; Shan, F.; Chen, L.; Liu, S.; Zheng, Z.; Zhu, L.; Wang, J.; Zhai, Y. Review of Offshore Superconducting Wind Power Generation for Hydrogen Production. Energies 2025, 18, 1889. https://doi.org/10.3390/en18081889
Zhang C, Shen L, Wu X, Shan F, Chen L, Liu S, Zheng Z, Zhu L, Wang J, Zhai Y. Review of Offshore Superconducting Wind Power Generation for Hydrogen Production. Energies. 2025; 18(8):1889. https://doi.org/10.3390/en18081889
Chicago/Turabian StyleZhang, Cheng, Liufei Shen, Xingzheng Wu, Feiyue Shan, Long Chen, Shuai Liu, Zhiqiang Zheng, Litong Zhu, Jinduo Wang, and Yujia Zhai. 2025. "Review of Offshore Superconducting Wind Power Generation for Hydrogen Production" Energies 18, no. 8: 1889. https://doi.org/10.3390/en18081889
APA StyleZhang, C., Shen, L., Wu, X., Shan, F., Chen, L., Liu, S., Zheng, Z., Zhu, L., Wang, J., & Zhai, Y. (2025). Review of Offshore Superconducting Wind Power Generation for Hydrogen Production. Energies, 18(8), 1889. https://doi.org/10.3390/en18081889