A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45
[...] Read more.
A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45 km/h, such as bicycles, e-scooters, and skateboards, which offer flexible, eco-friendly alternatives to traditional transportation, easing congestion and promoting sustainable urban mobility ecosystems. This review aims to guide researchers by consolidating key technical insights and offering a foundation for future exploration in this domain. It examines critical components of EMM systems, including electric motors, batteries, power converters, and control strategies. Likewise, a comparative analysis of electric motors, such as PMSM, BLDC, SRM, and IM, highlights their unique advantages for micromobility applications. Battery technologies, including Lithium Iron Phosphate, Nickel Manganese Cobalt, Nickel-Cadmium, Sodium-Sulfur, Lithium-Ion and Sodium-Ion, are evaluated with a focus on energy density, efficiency, and environmental impact. The study delves deeply into power converters, emphasizing their critical role in optimizing energy flow and improving system performance. Furthermore, control techniques like PID, fuzzy logic, sliding mode, and model predictive control (MPC) are analyzed to enhance safety, efficiency, and adaptability in diverse EMM scenarios by using cutting-edge semiconductor devices like Silicon Carbide (SiC) and Gallium Nitride (GaN) in well-known configurations, such as buck, boost, buck–boost, and bidirectional converters to ensure great efficiency, reduce energy losses, and ensure compact and reliable designs. Ultimately, this review not only addresses existing gaps in the literature but also provides a guide for researchers, outlining future research directions to foster innovation and contribute to the development of sustainable, efficient, and environmentally friendly urban transportation systems.
Full article